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Abstract

We present a practical and gen-
eral methodology that simplifies the
task of acquiring and formulating
qualitative knowledge for construct-
ing probabilistic graphical models
(PGMs). The methodology effi-
ciently captures and communicates
expert knowledge, and has signifi-
cantly eased the model development
process for three real-world prob-
lems in the domain of robotics.
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1 Introduction

Probabilistic graphical models (PGMs) is a
powerful paradigm for reasoning and decision
making under uncertainty [3, 8]. Unfortu-
nately, however, the construction of a PGM
can be a labour intensive task with respect to
both knowledge acquisition and formulation.
This paper presents a practical and general
methodology that simplifies the task.

The methodology has been developed as part
of the joint European research and develop-
ment project ADVOCATE II [1], in which
PGMs were developed for advanced onboard
diagnosis of (semi-)autonomous vehicles. The
knowledge acquisition process associated with
building these models involved knowledge en-
gineers and domain experts located in four
different countries with limited possibilities
for face-to-face meetings. Therefore, a knowl-
edge acquisition scheme had to be developed

that did not rely on familiarity with the ter-
minology of PGMs.

The scheme is based on building a problem hi-
erarchy for an overall problem. The problems
(or causes) of the hierarchy relate to the states
of the different parts of a vehicle and its envi-
ronment. The methodology is described from
a practical point of view and is illustrated on
one of the three real-world problem domains
on which it has been used. Experience has
shown that the methodology provides an effi-
cient means of capturing and communicating
expert knowledge in the domain of robotics.
The use of the methodology has significantly
eased the model construction process.

The literature contains a number of methods
and ideas to help acquire the necessary infor-
mation for building PGMs. Exploiting vari-
ous forms of independence properties of the
problem domain, Heckerman’s similarity net-
works [2] support construction of independent
Bayesian networks for subsets of a domain. A
valid network for the entire domain can then
be constructed from the individual networks.
The method suggested by Skaanning [9] has
some similarities with our method. There
is, however, an important distinction: His
method is focusing specifically on acquiring
cause-effect knowledge for decision-theoretic
troubleshooting models under the single-fault
assumption, effectively reducing the models to
the simple-Bayes type. Möbus & Schröder [7]
describe a method for qualitative and quan-
titative learning of Bayesian networks from
knowledge acquired from a domain expert.
The qualitative knowledge is acquired via



composition of constrained natural language
sentences in a linguistic model editor, whereas
the quantitative knowledge is compiled from
fuzzy, qualitative statements about stochas-
tic relations. In his report on the knowledge
acquisition process for a particular medical
expert system, Lucas [6] emphasizes the use
of specific domain models in guiding the pro-
cess, and he presents various other techniques
that may be helpful in designing a Bayesian
network. Lacave and D́ıez [5] reports on
the process of constructing PROSTANET, a
Bayesian network for diagnosing prostate can-
cer. They present hints to facilitate acquisi-
tion of probabilities. Acquisition of structure
was performed through oral interviews of do-
main experts.

2 Probabilistic Graphical Models

A PGM is a formal representation of the qual-
itative and quantitative knowledge about re-
lations among variables of a problem domain.

Our knowledge acquisition scheme focuses
on acquiring the qualitative (i.e., structural)
knowledge for the two most popular PGMs,
namely Bayesian networks and influence dia-
grams. By “PGM” we shall henceforth refer
to a Bayesian network or an influence diagram
over discrete variables, where each variable,
V , has a finite set of exhaustive and mutually
exclusive states, Sp(V ) = (v1, . . . , vn).

An acyclic, directed graph (DAG) is a pair
G = (V, E), where V is a finite set of vertices
(or nodes) and E is a set of ordered pairs
(U, V ) ⊆ V of directed edges, where U is a
parent of V and V a child of U . The par-
ents and children of V are denoted pa(V ) and
ch(V ), respectively. If |pa(V )| = 1 for each
V ∈ V \ {R} and |pa(R)| = 0, then G is a tree
and R is its root.

A PGM is a triple (G,P,U ), where G = (V, E)
is a DAG that represents the qualitative
knowledge and (P, U) are sets of conditional
probability distributions (CPDs) and util-
ity functions, respectively, that represent the
quantitative knowledge. Each vertex V ∈ V
represents a discrete random (or chance) vari-
able, a discrete decision variable, or a util-

ity function. We shall refer interchangeably
to vertices (or nodes) and variables or utility
functions. To each chance variable, V , is as-
sociated exactly one CPD, P (V |pa(V )) ∈ P,
which consists of a set of conditional proba-
bility distributions, P (V |pa(V ) = π), where
pa(V ) contains no utility nodes and π ∈
Sp(pa(V )) is a vector of states of pa(V ). To
each utility node, V , is associated exactly one
real-valued utility function, U(pa(V )), where
pa(V ) contains no utility nodes.

An edge X −→ Y can have different inter-
pretations depending on what X and Y rep-
resent. If Y is a chance variable or a utility
function, the edge can represent a causal or a
functional relationship between X and Y . If
Y is a decision variable, the edge represents
the fact that the value of X will be known
before the decision Y is made.

3 Three Real-World Applications

PGMs have been developed for three prob-
lem domains of the ADVOCATE II project:
(i) energy problem for an autonomous ground
vehicle (AGV), (ii) energy problem for an
autonomous under-water vehicle (AUV), and
(iii) sonar image assessment for an AUV.

The models will be used as components of
intelligent modules of the autonomous vehi-
cles. Based on sensor input, decisions made
by the vehicle piloting module, and historical
data, the intelligent modules must provide di-
agnoses and recommend preventive or recov-
ery actions in case of an abnormal situation.

The set of probability-ranked diagnoses as-
sociated with each problem must be exhaus-
tive in terms of the possible root causes of
the problem. Similarly, the set of expected-
utility-ranked preventive and error recovery
actions must exhaustively list the possible ac-
tion options in response to different abnormal
mission states.

4 Acquiring Domain Knowledge

Our knowledge acquisition approach relies on
a hierarchical decomposition of the overall ab-
stract target problem into a number of less



abstract sub-problems, etc, until the overall
abstract problem has been decomposed into
its possible root causes. The decomposition
process is followed by descriptions of relevant
diagnostic information and possible recovery
actions for each root cause. Given such a
problem decomposition and associated diag-
nostic and error recovery information, knowl-
edge engineers are able to construct a corre-
sponding qualitative PGM representation.

4.1 Cause Hierarchy

Given an abstract problem formulation, a
hierarchical decomposition of the problem
should be provided as the first step of the
knowledge acquisition process. Note that sub-
problems of a problem may be considered as
causes of the problem. We shall therefore
use the terms “problem” and “cause” inter-
changeably.

A cause hierarchy is a tree, where each node
represents a sub-cause of the cause repre-
sented by the node one step further towards
the root of the tree, which is given by the most
abstract problem formulation. The “leaf”
nodes of the hierarchy comprise causes for
which no breakdown into further sub-causes
is deemed necessary in relation to the task
at hand (i.e., diagnosis, error recovery, trou-
bleshooting, etc). The leaf nodes represent
root causes of the overall problem, and qual-
ify as permissible diagnoses of the problem.
We shall use X � X ′ to denote the fact that
X is a sub-cause of X ′; i.e., X ′ lies on the
path from X to the root of the hierarchy. If
X is a sub-cause of X ′ and X 6= X ′, X is a
proper sub-cause of X ′, denoted X ≺ X ′.

Definition 1 A tree T = (V, E) is a cause hi-
erarchy for a problem P if each of the follow-
ing conditions are fulfilled:

1. P is the root of T ; i.e., 6 ∃X ∈ V : P ≺ X.

2. Each X ∈ V is a cause of P ; i.e., X � P .

3. (X ′,X) ∈ E if and only if X ≺ X ′ and
6 ∃X ′′ ∈ V : X ≺ X ′′ ≺ X ′.

4. For each X ∈ V, ch(X) is an exhaustive
set of direct sub-causes of X, and no pair
in ch(X) are mutually exclusive. 2

A cause qualifies as a root cause if it pro-
vides a satisfactory explanation of the over-
all problem. Thus, non-leaf nodes can also
be root causes. Whether or not a cause is
to be considered a root cause may be situa-
tion specific. For example, to a car owner “Ig-
nition system problem” may be considered a
root cause of a “Car won’t start” problem, as
it provides him with sufficient information to
decide if he should consult a mechanic. His
mechanic, however, would not accept this as
a root cause, as he would want to diagnose the
problem in further depth, allowing e.g. “Igni-
tion cable broken” to be a root cause.

Parsimony is strongly recommended when
constructing the cause hierarchy. More pre-
cisely, the level of detail of the hierarchy
should be just large enough to allow each vari-
able relevant for solving the inference problem
at hand to be elicited from the cause hierar-
chy. For example, in the “Car won’t start”
problem, including a sub-cause like “Forgot to
turn off the light” of the cause “Dead battery”
or a sub-cause like “More than 50,000 km
since last service” of the cause “Worn spark
plugs” might not be relevant, as they provide
no extra information relevant for solving the
problem or pinpointing the cause of it.

Definition 2 A node X of a cause hierarchy
T for a problem P is a permissible diagno-
sis (or root cause) of P if it potentially pro-
vides a satisfactory explanation for P and it
provides more information relevant for solv-
ing P than do pa(X). A permissible diag-
nosis is a possible diagnosis if and only if it
can be distinguished from other permissible
diagnoses of P given any diagnostic informa-
tion. pd(X) ⊆ ch(X) is the maximal subset of
ch(X) of permissible diagnoses of P . A cause
of P that is not a permissible diagnosis of P

is called an abstract cause. 2

A possible diagnosis can be thought of as a
“diagnosable root cause”.

4.2 Building the Cause Hierarchy

We now present a method for constructing a
cause hierarchy, illustrating it using the AGV
energy problem mentioned in Section 3.



The AGV is a simple four-wheel vehicle that
carries no active payload systems. The vehi-
cle has two actuators that are responsible for
driving it forward and backward, as well as
turning it. The actuators are small electrical
motors driven by an onboard battery.

There are two different aspects (or sub-
causes) of the energy problem: “High en-
ergy consumption”, indicating that the cur-
rent level of energy consumption is signifi-
cantly higher than recommended, and “Low
state of charge (SOC)”, indicating either an
abnormally high level of cumulative energy
consumption or a poor state of the battery.

These two aspects relate to, respectively, the
present and the cumulative energy consump-
tion. To simplify the analysis, we shall assume
that if both situations occur simultaneously,
the situation shall be characterized as “Low
state of charge”, as this is the more serious
cause, calling for mission re-planning or mis-
sion abortion.

In terms of diagnostic and error recovery be-
haviour of the intelligent module of the AGV,
these two aspects translate into a proactive
and a reactive behaviour, respectively. Thus,
if the present consumption level is higher than
recommended, the AGV system should act
proactively to avoid reaching a critical situa-
tion later in the mission. On the other hand,
if a critical situation has occurred, the AGV
system should act reactively, trying to make
sure the AGV is able to complete its mission
(possibly involving re-planning).

The root of the cause hierarchy, “Energy
problem”, provides the most abstract prob-
lem description (or diagnosis). Following the
above discussion, this most abstract problem
diagnosis is naturally decomposed into sub-
causes “High energy consumption” and “Low
state of charge”. Neither of these sub-causes
are to be considered as root causes, as more
detailed diagnoses will be required.

A natural decomposition of “High energy con-
sumption” could be “External problems” and
“Internal problems”, referring, respectively,
to causes in the working environment of the
AGV and to causes in the AGV itself. Due to

the simplicity of the AGV, the only relevant
internal problem is “Actuator problem”.

The health state of an actuator can influ-
ence its consumption of energy. However, the
health state cannot be detected directly, as
there are no sensor data available for the ac-
tuators. Still, it can be useful to include “Ac-
tuator problem” in the model, as we can get
indirect indications of actuator problems. For
example, if all external problems have been
ruled out as causes of “High energy consump-
tion”, we get reason to believe that a prob-
lem with one of the actuators is the cause of
the unexpected high consumption level. Since
there is no sensor data available for the actua-
tors, “Actuator problem” is the most specific
diagnosis that can be provided for “Internal
problems”, and is thus a root cause.

This decomposition process continues until we
have a complete hierarchical description of the
causes of the energy problem. Figure 1 shows
the resulting cause hierarchy.

The subset of the permissible diagnoses (root
causes) that are possible diagnoses are marked
with a “+” in front of them. The remaining
permissible diagnoses are marked with a “−”
in front of them.

Sometimes one may not want to incorporate
a root cause as a possible diagnosis if it is
trivially true given previous diagnoses or ac-
tions. Such root causes may then be marked
with a “−”. Note, for example, that the root
causes of “High cumulative consumption” as
well as the sub-causes of these root causes are
all marked with a “−”. The reason is that
each of them simply represents repetitive di-
agnoses or decisions of a particular kind. For
example, the diagnosis “Large number of ob-
structing objects” should be immediately ob-
vious from the multiplicity of the “Obstruct-
ing object” diagnosis. This information will
be available from the decision module that is
assumed to request and record diagnoses from
the intelligent module on a regular basis.

In summary, the procedure for establishing
the cause hierarchy can be outlined as follows:

1. Define the overall problem, P , and the



Figure 1: Cause hierarchy for the UAH energy problem.

purpose of the resulting PGM.

2. Let T be a cause hierarchy with a single
node labelled P . Let X refer to this node.

3. Identify the set ch(X).

4. For each D ∈ ch(X) do:

(a) Add a node labelled D to T and let
X be its parent.

(b) Let X := D and go to 3.

5. Let X refer to the root node of T .

6. For each D ∈ pd(X) do:

(a) If D can be distinguished from each
D′ ∈ pd(X)\{D} given available in-
formation, mark D with a “+”; oth-
erwise, mark D with a “−”.

7. For each D ∈ ch(X) do:

(a) Let X := D and go to 6.

4.3 Diagnostic Information and

Recovery Actions

The cause hierarchy acts as a roadmap for
describing the relevant diagnostic information
and the possible recovery actions. We divide
this information into background information
(e.g., the age of a battery) and symptom infor-
mation provided through sensor readings, in-
spection, etc., as well as information provided
through interaction with the system during
the course of diagnosing the system.

For example, in the “Car won’t start” exam-
ple, information of the latter kind could be
“Radio is dead” or “Coated spark plugs” pro-
vided through interaction with the car. Thus,
this kind of information can be characterized

as information obtained through deliberate
information-gathering actions or test actions.

Thus, the diagnostic information relevant for
identifying a cause, C, as the root cause of
a problem, P , can be elicited by describing
(i) all pieces of background information that
potentially provide information relevant for
identifying C as the cause of P , (ii) all the
symptoms that can be observed if C is the
cause of P , and (iii) all investigating actions
performed to obtain further information to
identify C as the cause of P .

Relevant background information for identify-
ing a cause C is information that has a causal
influence on C. Symptom information, on the
other hand, is information that can be ob-
served as a consequence of the cause being
present. In other words, C has a causal influ-
ence on its symptoms.

Although an abstract cause does not provide
a satisfactory explanation for a problem, it
might still be important to provide relevant
diagnostic information for the cause, as this
information may have a significant impact on
the probabilities of the permissible diagnoses.

By a closer examination, however, it becomes
apparent that a cause of a sub-tree of the
cause hierarchy that does not contain any pos-
sible diagnoses is unlikely to provide relevant
diagnostic information or error recovery in-
formation. That is, if there are no observable
manifestations of the cause strong enough to
identify a possible diagnosis for the cause, we



probably need not worry about it when elic-
iting the diagnostic and error recovery infor-
mation. In particular, none of the causes be-
low the dotted line in Figure 1 contain any
possible diagnoses. A cause of a sub-tree of
the cause hierarchy that contains one or more
possible diagnoses is called an eligible cause.

The actions used for eliminating causes of the
problem must be represented in the PGM.
Such actions are referred to as recovery ac-
tions if they recover the system from non-fatal
states and as repair actions if they recover
from fatal states.

The elicitation of actions is simply a matter
of running through the list of possible diag-
noses (i.e., those marked with a “+” in our
cause hierarchy). That is, we assume that all
relevant recovery actions can be identified by
listing the possible recovery actions for each
possible diagnosis.

For a particular root cause, there might be
several actions that can eliminate the cause,
and an action can be something that per-
manently solves the problem or it can be a
workaround that can be used as a temporary
solution until a proper fix can be made. Infor-
mation of that kind should also be mentioned.

In ADVOCATE II, the diagnostic and error
recovery knowledge were simply stated in tab-
ular form, where there is one row for each eli-
gible cause (i.e., those above the dotted line in
Figure 1). The diagnostic and error recovery
knowledge elicited for the AGV energy prob-
lem appears in Table 1, where both the inves-
tigating actions and the recovery actions are
listed in the “Actions” column.

5 Constructing the PGM

We now describe how the elicited qualitative
knowledge can be translated into a PGM.

First, the variables of the model must be
identified. These come from three different
sources: (i) Each cause of the cause hierarchy
qualifies as a chance variable. (ii) Each source
of background information and symptom in-
formation, as well as the result of each kind of
investigating action qualifies as a chance vari-

able. (iii) Each subset of mutually exclusive
recovery actions qualify as a decision variable.

From the information provided in Figure 1
and Table 1 it is relatively straightforward
to identify the chance and decision variables,
the domains of relevant utility functions, and
the causal and functional relations. We shall
spare the reader for a complete and tedious
description of how each variable and relation
are identified, and only give two examples.

Figure 2 shows the structure of the result-
ing PGM for the AGV energy problem. The
ovals, rectangles, and diamonds represent, re-
spectively, random variables, decision/action
variables, and utility functions. The black
ovals represent the possible diagnoses, the
grey ovals with white labels the background
information, and the grey ovals with black
lables the symptom information and the infor-
mation acquired by performing investigating
actions. The white oval nodes represent aux-
iliary random variables (i.e., variables never
observed and for which their probability dis-
tributions are of no immediate interest).

Note that the cause hierarchy of Figure 1
is reflected directly by the diagnosis vari-
ables, the symptom variables (except “NSS
vehicle stalled”), those of the background-
information variables that are parents of di-
agnosis variables, and the auxiliary variable
“SOC level”.

To get a feeling for how the structure has been
derived from the elicited knowledge, consider
the following couple of examples:

• The most abstract problem, “Energy
problem”, that appears as the root node
of the cause hierarchy, is naturally rep-
resented as a Boolean variable with two
parent variables, namely a variable, SOC

level, representing the current state of
charge (SOC) of the battery and a vari-
able, Energy consumption, representing
the current energy consumption. The
variable Energy problem has no child vari-
ables, as there are no direct symptoms
associated with it (see Table 1).

• From Table 1 it can be concluded that



Cause Background Symptoms Actions Remarks

Energy problem SOC level and
energy consumption
level

Reduce velocity,
re-plan mission,
abort mission, or
emergency stop

Action depends on
severity of problem

High energy
consumption

High measured
RPM

Reduce velocity or
re-plan mission

Estimated energy
consumption level is
provided

Actuator problem High energy
consumption

Abort mission, or
emergency stop

Action depends on
severity of problem

Heavy RPM mode Expected RPM and
measured RPM

Reduce velocity

Obstructing object Vehicle stalled
diagnosis from NSS,
measured RPM,
and energy
consumption level

Perform a
back/forth
manoeuvre

If 3 consecutive
back/forth actions
haven’t solved the
problem, the AGV
should be liberated

Slippery surface Energy
consumption and
measured RPM

Reduce velocity Slippery surface
results in relatively
low energy
consumption

Unexpected low
SOC (state of
charge)

See “Energy
problem” + perform
a SOB test if the
acceptable SOC is
significantly less
than actual SOC

Estimated SOC is
provided

Poor SOB (state of
battery)

Working age of
battery and its
long-term working
conditions

Negative high
derivative of the
battery SOC

See “Energy
problem” + replace
battery

Old battery Age of battery and
number of recharges

Poor SOB

Long-term heavy
working conditions

History log of AGV Poor SOB

High cumulative
consumption

Working conditions,
environment
conditions, #
re-planning actions,
# manoeuvres

Low SOC level

Table 1: The diagnostic and error recovery information provided for the AGV energy problem.

there must be a decision variable with
mutually exclusive states representing
various crucial mission actions: Reduce

velocity, Re-plan mission, Abort mission,
and Emergency stop. To make the set
of decision options exhaustive we need
to add one additional option, Continue,
representing the decision in the “normal”
situation. It appears from Table 1 that
the desired decision option depends on
SOC level, Poor state of battery, and Ac-

tuator problem.

Hopefully, the above examples clearly show
that deriving the structure of the model is
straightforward given the information pro-
vided in Figure 1 and Table 1.

There are some degrees of freedom, however,
and some need to refine the information pro-
vided. For example, in a discussion follow-
ing the initial knowledge acquisition process,
it appeared that the utility function associ-
ated with the Mission action decision variable
needed to depend also on the actual veloc-

ity of the AGV. That is, if the velocity is al-
ready low, the model should not recommend
Reduce velocity, but rather Re-plan mission in
response to indications of an energy problem.
As another example, from Figure 1 the vari-
able Heavy RPM mode appears to be a par-
ent of Energy consumption, whereas in Ta-
ble 1, Heavy RPM mode appears to be a child
of Measured RPM and Expected RPM. Thus,
since Measured RPM is a child of Energy con-

sumption, we cannot allow Heavy RPM mode

to be a parent of Energy consumption, as this
would introduce a directed cycle, which is pro-
hibited in PGMs.

Note that, for clarity of exposition, we have
left out information about the order in which
the actions are to be made and which informa-
tion is available before performing each of the
actions. This kind of information can have a
crucial impact on the results of the inference
performed. The information can, however, be
acquired very easily.



Figure 2: Structure of the probabilistic graphical model of the AGV energy problem.

6 Concluding Remarks

Our knowledge acquisition scheme has been
successfully applied for constructing the qual-
itative parts of three different PGMs within
the robotics domain. Although the scheme
relies exclusively on the use of a colloquial
vocabulary in its knowledge formulation pro-
cess, experience has shown that knowledge
engineers are able to straightforwardly trans-
late the knowledge expressed into a graphical
model representation, ready to be populated
with probability and utility parameters.

Despite the successful application of the
scheme, much work remains to make it a
comprehensive knowledge acquisition scheme
for constructing PGMs. This work includes
things like improved support for specification
of diagnostic and error recovery information
that is more closely linked to the cause hierar-
chy, support for specification of quantitative
knowledge, support for construction of hier-
archical (object-oriented) models [4], etc. We
think, however, that this work is an important
first step in that direction.
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