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Abstract

The paper discusses the problem of sensitivity analysis in normal Bayesian net-
works. The algebraic structure of the conditional means and variances, as linear
and quadratic functions of the parameters, are used to simplify the sensitivity anal-
ysis. In particular the probabilities of conditional variables exceeding given values
and related probabilities are analyzed, and full expressions for the partial deriva-
tives obtained. An example of application is used to illustrate all the concepts and
methods.
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1 Introduction

Sensitivity analysis is becoming an important and popular area of work. When solving
practical problems, applied scientists are not satisfied enough with getting results coming
from models, but they require a sensitivity analysis, indicating how sensitive the resulting
numbers are to changes in the parameter values, to be performed (see Castillo, Gutiérrez
and Hadi [5, 4], Castillo, Gutiérrez, Hadi and Solares [5], Castillo, Solares, and Gómez.[6,
7, 8]).

In some cases, the parameter selection has an extreme importance in the final results.
For example, it is well known how sensitive are the distributional asumptions and pa-
rameter values to tail distributions (see Galambos [13] or Castillo [2]). If this influence is
neglected, the consequences can be desastrous. Thus, the relevance of sensitivity analysis.

Laskey [16] seems to be the first to address the complexity of sensitivity analysis
of Bayesian networks, byintroducing a method for computing the partial derivative of
a posterior marginal probability with respect to a given parameter. Castillo, Gutiérrez
and Hadi[5, 4] show that the function expressing the posterior probability is a quotient
of linear functions in the parameters and the evidence values in the discrete case, and
of the means, variances and evidence values, but covariances can appear squared. This
discovery allows simplifying sensitivity analysis and making it computationally efficient
(see, for example, Kjaerulff and van der Gaag [15], or Darwiche [12]).
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In this paper we address the problem of sensitivity analysis in normal Bayesian net-
works and show how changes in the parameter and evidence values influence marginal
and conditional probabilities given the evidence.

Normal Bayesian networks are specially useful when dealing with reliability analysis.
It is well known that in this area, the normal procedure consists of transforming the initial
set of variables into a set of normal variables, using the Rosenblatt transformation [19],
that transforms a set of continuous variables X = (X1, X2, . . . , Xn) into a set of normal
variables. Rosenblatt converts first the original multidimensional variable X into a set of
independent standard uniform random variables U, using the transformation:

U1 = F1(X1)
U2 = F2(X2|X1)
...

...
...

Un = Fn(Xn|X1, X2, . . . , Xn)

(1)

where, F1(·), F2(·|·), . . . , Fn(·|·) are the conditional cdfs of the set {X1, X2, . . . , Xn}.
Next, using the transformation

Zi = Φ−1(Ui); i = 1, 2, . . . , n, (2)

where Φ(x)is the cdf of the standard N(0, 1) random variable, the random vector Z
becomes normal N(0, I).

It is interesting to realize that the Rosenblatt transformation transforms X to non-
dimensional variables U.

This paper is structured as follows. In Section 2 we remind the reader about normal
Bayesian networks and introduce our working example. In Section 3 we discuss how
to perform an exact propagation in normal Bayesian networks. Section 4 is devoted to
symbolic propagation. Section 5 analyses the sensitivity problem. Finally, Section 6 gives
some conclusions.

2 Normal Bayesian Network Models

In this section we introduce Bayesian network models, but we first remind the reader the
definition of Bayesian network.

Definition 1 (Bayesian network) A Bayesian network is a pair (D,P ), where D is
a directed acyclic graph (DAG), P = {p(x1|π1), . . . , p(xn|πn)} is a set of n conditional
probability densities (CPD), one for each variable, and Πi is the set of parents of node Xi

in D. The set P defines the associated joint probability density as

p(x) =
n∏
i=1

p(xi|πi). (3)

The DAG D is a minimal directed I-map of p(x).
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The main two advantages of Bayesian networks are: (a) the factorization implied by
(3), and (b) the fact that conditionally independence relations can be inferred directly
from the graph D.

Definition 2 (Gaussian Bayesian network) A Bayesian network is said to be a Gaus-
sian Bayesian network if and only if the JPD associated with its variables X is a multi-
variate normal distribution, N(µ,Σ), i.e., with joint probability density function:

f(x) = (2π)−n/2|Σ|−1/2 exp
{
−1/2(x− µ)TΣ−1(x− µ)

}
, (4)

where µ is the n-dimensional mean vector, Σ is the n × n covariance matrix, |Σ| is the
determinant of Σ, and µT denotes the transpose of µ.

Gaussian Bayesian networks have been treated, among others, by Kenley [14], Shachter
and Kenley [20]), and Castillo, Gutiérrez and Hadi [3]. The JPD of the variables in a
Gaussian Bayesian network can be specified as in (3) by the product of a set of CPDs
whose joint probability density function is given by

f(xi|πi) ∼ N

µi +
i−1∑
j=1

βij(xj − µj), vi
 , (5)

where βij is the regression coefficient of Xj in the regression of Xi on the parents of Xi,
Πi, and

vi = Σi − ΣiΠiΣ
−1
Πi

ΣT
iΠi

is the conditional variance of Xi, given Πi = πi, where Σi is the unconditional variance of
Xi, ΣiΠi is the covariances between Xi and the variables in Πi, and ΣΠi is the covariance
matrix of Πi. Note that βij measures the strength of the relationship between Xi and Xj.
If βij = 0, then Xj is not a parent of Xi.

Note that while the conditional mean µxi|πi depends on the values of the parents πi,
the conditional variance does not depend on these values. Thus, the natural set of CPDs
defining a normal Bayesian network is given by a collection of parameters {µ1, . . . , µn},
{v1, . . . , vn}, and {βij | j < i}, as shown in (5).

Alternatively, we can define a normal JPD function by giving its mean µ vector and its
precision matrix W = Σ−1. Shachter and Kenley [20] describe the general transformation
from {v1, . . . , vn} and {βij : j < i} to W . They use the following recursive formula, in
which W (i) denotes the i× i upper left submatrix of W and βi denotes the column vector
{βij : j < i}:

W (i+ 1) =


W (i) +

βi+1β
T
i+1

vi+1

−βi+1

vi+1

−βTi+1

vi+1

1

vi+1

 , (6)

with W (1) = 1/v1.
Thus, we have two alternative representations of the JPD of a normal Bayesian net-

work. The following is an illustrative example of a normal Bayesian network.
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Example 1 (Normal Bayesian network) Assume that we are studying the river in
Figure 1(a), where we have indicated the four cross sections A,B,C and D, where the
water discharges are measured. The mean time of the water going from A to B and from
B to D is one day, and the mean time from C to D is two days. Thus, we register the set
(A,B,C,D) with the corresponding delays. Assume that the joint water discharges can
be assumed to be normal distributions and that we are interested in predicting B and D,
one and two days later, respectively, from the observations of A and C.

Figure 1: (a) the river in Example 1 and the selected cross sections, and (b) the Bayesian
network used to solve the problem.

In Figure 1(b) we have shown the graph associated with a Bayesian network that
shows the dependence structure of the variables involved.

Suppose that the random variable (A,B,C,D) is normally distributed, i.e., {A,B,C,D} ∼
N(µ,Σ). A normal Bayesian network is defined by specifying the set of CPDs appearing
in the factorization (3), which gives

f(a, b, c, d) = f(a)f(b|a)f(c|a)f(d|b, c), (7)

where

f(a) ∼ N (µA, vA) ,

f(b|a) ∼ N (µB + βBA(a− µA), vB) , (8)

f(c|a) ∼ N (µC + βCA(a− µA), vC) ,

f(d|b, c) ∼ N (µD + βDB(b− µB) + βDC(c− µC), vD) .
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This set of CPDs constitutes one of two equivalent representations of the normal
Bayesian network. The parameters involved in this representation are {µA, µB, µC , µD},
{vA, vB, vC , vD}, and {βBA, βCB, βDB, βDC}.

An alternative representation can be obtained using (6). In this case, after four itera-
tions, we finally obtain the matrix

W =



1

vA
+
β2
BA

vB
+
β2
CA

vC
−βBA
vB

−βCA
vC

0

−βBA
vB

1

vB
+
β2
DB

vD

βDBβDC
vD

−βDB
vD

−βCA
vC

βDBβDC
vD

1

vC
+
β2
DC

vD
−βDC
vD

0 −βDB
vD

−βDC
vD

1

vD


.

Note that so far, all parameters have been considered in symbolic form. Thus, we
can specify a Bayesian model by assigning numerical values to the parameters above. For
example, for

µA = 3, µB = 4, µC = 9, µD = 14.

vA = 4; vB = 1; vC = 4; vD = 1, βBA = 1, βCA = 2, βDB = 1, βDC = 1.

we get

µ =


3
4
9
14

 , Σ =


4 4 8 12
4 5 8 13
8 8 20 28
12 13 28 42

 .

3 Exact Propagation in Gaussian Networks

Several algorithms have been proposed in the literature to solve the problems of evidence
propagation in these models. Some of them have originated from the methods for discrete
models. For example, Normand and Tritchler [18] introduce an algorithm for evidence
propagation in Gaussian network models using the same idea of the polytrees algorithm.
Lauritzen [17] suggests a modification of the join tree algorithm to propagate evidence in
mixed models.

Several algorithms use the structure provided by (3) and (5) for evidence propagation
(see Xu and Pearl [21], and Chang and Fung [11]). In this section we present a concep-
tually simple and efficient algorithm that uses the covariance matrix representation. An
incremental implementation of the algorithm allows updating probabilities, as soon as a
single piece of evidence is observed. The main result is given in the following theorem,
which characterizes the CPDs obtained from a Gaussian JPD (see, for example, Anderson
[1]).
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Theorem 1 Conditionals of a Gaussian distribution. Let Y and Z be two sets of
random variables having a joint multivariate Gaussian distribution with mean vector and
covariance matrix given by

µ =

(
µY

µZ

)
and Σ =

(
ΣY Y ΣY Z

ΣZY ΣZZ

)
,

where µY and ΣY Y are the mean vector and covariance matrix of Y , µZ and ΣZZ are the
mean vector and covariance matrix of Z, and ΣY Z is the covariance of Y and Z. Then the
CPD of Y given Z = z is multivariate Gaussian with mean vector µY |Z=z and covariance
matrix ΣY |Z=z that are given by

µY |Z=z = µY + ΣY ZΣZZ−1
(z − µZ), (9)

ΣY |Z=z = ΣY Y − ΣY ZΣZZ−1
ΣZY . (10)

Note that the conditional mean µY |Z=z depends on z but the conditional variance ΣY |Z=z

does not.
Theorem 1 suggests an obvious procedure to obtain the means and variances of any

subset of variables Y ⊂ X, given a set of evidential nodes E ⊂ X whose values are known
to be E = e. Replacing Z in (9) and (10) by E, we obtain the mean vector and covariance
matrix of the conditional distribution of the nodes in Y . Note that considering Y = X \E
we get the joint distribution of the remaining nodes, and then we can answer questions
involving the joint distribution of nodes instead of the usual information that refers only
to individual nodes.

The above introduced methods for evidence propagation in Gaussian Bayesian network
models use the same idea, but perform local computations by taking advantage of the
factorization of the JPD as a product of CPDs.

In order to simplify the computations, it is more convenient to use an incremental
method, updating one evidential node at a time (taking elements one by one from E). In
this case we do not need to calculate the inverse of a matrix because it degenerates to a
scalar. Moreover, µY and ΣY Z are column vectors, and ΣZZ is also a scalar. Then the
number of calculations needed to update the probability distribution of the nonevidential
variables given a single piece of evidence is linear in the number of variables in X. Thus,
this algorithm provides a simple and efficient method for evidence propagation in Gaussian
Bayesian network models.

Due to the simplicity of this incremental algorithm, the implementation of this propa-
gation method in the inference engine of an expert system is an easy task. The algorithm
gives the CPD of the nonevidential nodes Y given the evidence E = e. The performance
of this algorithm is illustrated in the following example.

Example 2 Propagation in Gaussian Bayesian network models. Consider the
Gaussian Bayesian network given in Figure 1. Suppose we have the evidence {A = 7, C =
17, B = 8}.

If we apply expressions (9) and (10) to propagate evidence, we obtain the following:
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After evidence A = 7: In the first iteration step, we consider the first evidential node
A = 7. We obtain the following mean vector and covariance matrix for the rest of
the nodes Y = {B,C,D}:

µY |A=7 =

 8
17
26

 ; ΣY Y |A=7 =

 1 0 1
0 4 4
1 4 6

 . (11)

After evidence A = 7, C = 17: The second step of the algorithm adds evidence C = 17;
we obtain the following mean vector and covariance matrix for the rest of the nodes
Y = {B,D}:

µY |A=7,C=17 =

(
8
26

)
; ΣY Y |A=7,C=17 =

(
1 1
1 2

)
. (12)

After evidence A = 7, C = 17, B = 8: Finally, after considering evidence B = 8 we get
the conditional mean and variance of D, which are given by µD|A=7,C=17,B=8 = 26,
σDD|A=7,C=17,B=8 = 1.

4 Symbolic Propagation in Gaussian Bayesian Net-

works

In Section 3 we presented several methods for exact propagation in Gaussian Bayesian
networks. Some of these methods have been extended for symbolic computation (see, for
example, Chang and Fung [11] and Lauritzen [17]). In this section we illustrate symbolic
propagation in Gaussian Bayesian networks using the conceptually simple method given
in Section 3. When dealing with symbolic computations, all the required operations must
be performed by a program with symbolic manipulation capabilities. Figure 2 shows the
Mathematica code for the symbolic implementation of the method given in Section 3. The
code calculates the mean and variance of all nodes given the evidence in the evidence list.

Example 3 Consider the set of variables X = {A,B,C,D} with mean vector and co-
variance matrix

µ =


p
4
9
q

 and Σ =


a 4 d f
4 5 8 c
d 8 20 28
f c 28 b

 . (13)

Note that some means and variances are specified in symbolic form, and that we have

σY Y =
(

5 c
c b

)
, σZZ =

(
a d
d 20

)
, σY Z =

(
4 8
f 28

)
. (14)
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(* Definition of the JPD *)

M={p,4,9,q};
V={{a, 4, d, f},
{4, 5, 8, c},
{d, 8, 20, 28},
{f, c, 28, b}};

(* Nodes and evidence *)

X={A,B,C,D};
Ev={A,C};
ev={x1,x3};
(* Incremental updating of M and V *)

NewM=Transpose[List[M]];

NewV=V;

For[k=1, k<=Length[Ev], k++,

(* Position of the ith element of E[[k]] in X *)

i=Position[X,Ev[[k]]][[1,1]];

My=Delete[NewM,i];

Mz=NewM[[i,1]];

Vy=Transpose[Delete[Transpose[Delete[NewV,i]],i]];

Vz=NewV[[i,i]];

Vyz=Transpose[List[Delete[NewV[[i]],i]]];

NewM=My+(1/Vz)*(ev[[k]]-Mz)*Vyz;

NewV=Vy-(1/Vz)*Vyz.Transpose[Vyz];

(* Delete ith element *)

X=Delete[X,i];

(* Printing results *)

Print["Iteration step = ",k];

Print["Remaining nodes = ",X];

Print["M = ",Together[NewM]];

Print["V = ",Together[NewV]];

Print["--------------------"];

]

Figure 2: Mathematica code for symbolic propagation of evidence in a Gaussian Bayesian
network model.
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We use the Mathematica code in Figure 2 to calculate the conditional means and
variances of all nodes. The first part of the code defines the mean vector and covariance
matrix of the Bayesian network. Table 1 shows the initial marginal probabilities of the
nodes (no evidence) and the conditional probabilities of the nodes given each of the
evidences {A = x1} and {A = x1, C = x3}. An examination of the results in Table 1
shows that the conditional means and variances are rational expressions, that is, ratios
of polynomials in the parameters. Note, for example, that for the case of evidence {A =
x1, C = x3}, the polynomials are first-degree in p, q, a, b, x1, and x3, that is, in the mean
and variance parameters and in the evidence variables, and second-degree in d, f , i.e.,
the covariance parameters. Note also the common denominator for the rational functions
giving the conditional means and variances.

The fact that the mean and variances of the conditional probability distributions of the
nodes are rational functions of polynomials is given by the following theorem (see Castillo,
Gutiérrez, Hadi, and Solares [5]).

Theorem 2 Consider a Gaussian Bayesian network over a set of variables X = {X1, . . . , Xn}
with mean vector µ and covariance matrix Σ. Partition X, µ, and Σ as X = {Y, Z},

µ =

(
µY

µZ

)
, and Σ =

(
ΣY Y ΣY Z

ΣZY ΣZZ

)
,

where µY and ΣY Y are the mean vector and covariance matrix of Y , µZ and ΣZZ are
the mean vector and covariance matrix of Z, and ΣY Z is the covariance of Y and Z.
Suppose that Z is the set of evidential nodes. Then the conditional probability distribution
of any variable Xi ∈ Y given Z is normal, with mean and variance that are ratios of
polynomial functions in the evidential variables and the related parameters in µ and Σ.
The polynomials involved are at most of degree one in the conditioning variables and in
the mean and variance parameters and are of degree two in the covariance parameters
involving at least one Z (evidential) variable. Finally, the polynomial in the denominator
is the same for all nodes.

Proof: From Theorem 1,

µY |Z=z = µY + ΣY ZΣZZ−1
(z − µZ). (15)

Note that ΣY ZΣZZ−1
(z − µZ) is a rational function because it can be written as the

quotient of the polynomials ΣY Zadj(ΣZZ)(z − µZ) and det(ΣZZ), where adj(ΣZZ) is the
adjoint matrix of ΣZZ and det(ΣZZ) is the determinant of ΣZZ . Therefore, the conditional
expectation µY |Z=z in (15) is µY plus a rational function, which implies that µY |Z=z is a
rational function with polynomial denominator det(ΣZZ). Note also that each parameter
appears in only one of the three factors above, which implies linearity in each parameter.

Similarly, from Theorem 1 the conditional variance is

ΣY Y |Z=z = ΣY Y − ΣY ZΣZZ−1
ΣZY , (16)
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No Evidence
Node Mean Variance
A p a
B 4 5
C 9 20
D q b

Evidence A = x1

Node Mean µY |A=x1 Variance σY Y |A=x1

A x1 0

B
4(a− p+ x1)

a

5a− 16
a

C
9a− dp+ dx1

a

20a− d2

a

D
−fp+ aq + fx1

a

ab− f2

a
Evidence A = x1 and C = x3

Node Mean µY |A=x1,C=x3 Variance σY Y |A=x1,C=x3

A x1 0

B
4(2a+ (9− d)d+ (2d− 20)p+ (20− 2d)x1 + (2a− d)x3

20a− d2

36a+ 64d− 5d2 − 320
20a− d2

C x3 0

D

−252a+ 9df + (28d− 20f)p+ (20a− d2)q
20a− d2

+
(20f − 28d)x1 + (28a− df)x3

20a− d2

(20ab− bd2 + 56df − 20f2 − 784a
20a− d2

Table 1: Means and variances of the marginal probability distributions of nodes, initially
and after evidence.
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which is ΣY Y minus the rational function ΣY ZΣZZ−1
ΣZY . This implies that ΣY |Z=z is

a rational function with polynomial denominator |ΣZZ |. Note also that all parameters
except the covariances in ΣY Z and ΣZZ appear in only one of the factors, which implies
linearity in these parameters. On the contrary, the covariance parameters in ΣY Z and ΣZZ

appear in two factors, and hence they generate second-degree terms in the polynomials.
Finally, the denominator polynomial is of second degree in the covariance parameters

of ΣZZ , because of the symmetry of the covariance matrix.

Note that because the denominator polynomial is identical for all nodes, for implementa-
tion purposes it is more convenient to calculate and store all the numerator polynomials
for each node and calculate and store the common denominator polynomial separately.

5 Sensitivity Analysis

When dealing with Normal Bayesian networks, one is normally involved in calculating
probabilities of the form:

P (Xi > a|e) = 1− FXi|e(a),
P (Xi ≤ a|e) = FXi|e(a)

P (a < Xi ≤ b|e) = FXi|e(b)− FXi|e(a)
(17)

and one is required to perform a sensibility analysis on this probabilities with respect to
a given parameter θ or evidence value e. Thus, it becomes important to know the partial
derivatives

∂FXi|e(a;µ(θ), σ(θ))

∂θ
and

∂FXi|e(a;µ(θ), σ(θ))

∂e
.

We can write

∂FXi|e(a;µ(θ), σ(θ))

∂θ
=
∂FXi|e(a;µ(θ), σ(θ))

∂µ

∂µ(θ)

∂θ
+
∂FXi|e(a;µ(θ), σ(θ))

∂σ

∂σ(θ)

∂θ
(18)

where θ is one of the parameters.
Since

FXi|e(a;µ(θ), σ(θ)) = Φ(
a− µ(θ)

σ(θ)
) (19)

we have
∂FXi|e(a;µ(θ), σ(θ))

∂µ
= fN(0,1)(

a− µ(θ)

σ(θ)
)

(
−1

σ(θ)

)
(20)

and
∂FXi|e(a;µ(θ), σ(θ))

∂σ
= fN(0,1)(

a− µ(θ)

σ(θ)
)

(
µ(θ)− a
σ(θ)2

)
(21)

and then (18) becomes

∂FXi|e(a;µ(θ), σ(θ))

∂θ
= fN(0,1)(

a− µ(θ)

σ(θ)
)

[(
−1

σ(θ)

)
∂µ(θ)

∂θ
+

(
µ(θ)− a
σ(θ)2

)
∂σ(θ)

∂θ

]
(22)
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Thus, the partial derivatives
∂FXi|e(a;µ(θ), σ(θ))

∂θ
can be obtained by a single evalu-

ation of µ(θ) and σ(θ), and determining the partial derivatives
∂µ(θ)

∂θ
and

∂σ(θ)

∂θ
with

respect to all the parameters being considered. Thus, the calculus of these partial deriva-
tives becomes crucial.

There are two ways of calculating these partial derivatives:

1. Using the algebraic structure of the conditional means and variances.

2. Direct differentiations of the formulas (15) and (16).

We use both method below.

5.1 Sensitivity based on the algebraic structure of conditional
means and variances

To calculate
∂µN(θ)

∂θ
and

∂σN(θ)

∂θ
for node N we need to know the dependence of µN(θ)

and σN(θ) on the parameter θ. This can be done with the help of Theorem 2. To illustrate
we use the previous example.

From Theorem 2 we can write

µ
Y |A=x1,C=x3

N (a) =
α1a+ β1

γa+ δ
(23)

σ
Y |A=x1,C=x3

N (a) =
α2a+ β2

γa+ δ
, (24)

where N is B or D, and since we have only 6 unknowns, calculation of µ
Y |A=x1,C=x3

N and

σ
Y |A=x1,C=x3

N for three different values of a allows determining the constant coefficients
α1, α2, β1, β2, γ and δ. Then, the partial derivatives with respect to a becomes

∂µ
Y |A=x1,C=x3

N (a)

∂a
=

α1δ − β1γ

(γa+ δ)2
(25)

∂σ
Y |A=x1,C=x3

N (a)

∂a
=

α2δ − β2γ

(γa+ δ)2
. (26)

Similarly, from Theorem 2 we can write

µ
Y |A=x1,C=x3

N (f) =
α3f + β3

γ1

(27)

σ
Y |A=x1,C=x3

N (f) =
α4f + β4

γ1

(28)

(29)
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and since we have only 5 unknowns, calculation of a total of 5 values of µ
Y |A=x1,C=x3

N (f)

and σ
Y |A=x1,C=x3

N (f) for different values of f allows determining the constant coefficients
α3, α4, β3, β4 and γ1. Then, the partial derivatives with respect to f becomes

∂µ
Y |A=x1,C=x3

N (f)

∂f
=

α3

γ1

(30)

∂σ
Y |A=x1,C=x3

N (f)

∂f
=

α4

γa1

. (31)

It is worthwhile mentioning that if N = B, then α3 = α4 = β3 = β4 = 0, and we need no
calculations.

Finally, we can also obtain the partial derivatives with respect to evidence values.
From Theorem 2 we can write

µ
Y |A=x1,C=x3

N (x1) = α5x1 + β5 (32)

σ
Y |A=x1,C=x3

N (x1) = γ2 (33)

and since we have only 3 unknowns, calculation of a total of 3 values of µ
Y |A=x1,C=x3

N (x1)

and σ
Y |A=x1,C=x3

N (x1) for different values of f allows determining the constant coefficients
α5, β5 and γ2. Then, the partial derivatives with respect to f becomes

∂µ
Y |A=x1,C=x3

N (x1)

∂x1

= α5 (34)

∂σ
Y |A=x1,C=x3

N (x1)

∂x1

= 0. (35)

It is worthwhile mentioning that if partial derivatives with respect to several parame-
ters are to be calculated, the number of calculations reduces even more because some of
them are common.

5.2 Sensitivity based on direct differentiation

To calculate the partial derivatives
∂µ(θ)

∂θ
and

∂σ(θ)

∂θ
we need to develop the expressions

for µY |Z=z and ΣY |Z=z in terms of the parameters. We consider only the case where the
set Y has a unique component, that we denote y.

Equations (15) and (16) for a single variable become

µY |Z=z(θ) = µY (θ) + ΣY Z(θ)ΣZZ−1
(θ)(z − µZ(θ)). (36)

and
σY Y |Z=z(θ) = ΣY Y (θ)− ΣY Z(θ)ΣZZ−1

(θ)
(
ΣY Z(θ)

)T
, (37)

where θ is the single parameter under consideration.
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It must be noted that with the exception of ΣY Z(θ), only one of the functions in (36)
and (37), can be dependent on θ.

µY |Z=z
y = µYy +

∑
z
σY Zyz

∑
k
σZZ

−1

zk

(
zk − µZk

)

=



µYy +
∑
z
σY Zyz /σ

ZZ
zz

(
zz − µZz

)
if |Z| = 1

µYy +

∑̄
z
σY Zyz̄

∑̄
k

(−1)z+kσZZzk
(
zk̄ − µZk̄

)
∑
k

(−1)z+kσZZzk σ
ZZ
z̄k̄

if |Z| = 2

µYy +

∑
r
σY Zyr

∑
s

∑
k 6=s

(−1)z+k+r+sσZZzk
∣∣∣σZZ(rz)(sk)

∣∣∣ (zs − µZs )∑
k

(−1)z+kσZZzk

∣∣∣σZZ(z)(k)

∣∣∣ if |Z| > 2

(38)

σY Y |Z=z
yy = σY Yyy −

∑
z
σY Zyz

∑
k
σZZ

−1

zk σZYky = σY Yyy −
∑
z
σY Zyz

∑
k
σZZ

−1

zk σY Zyk

=



σY Yyy −
∑
z
σY Zyz /σ

ZZ
zz σ

Y Z
yz if |Z| = 1

σY Yyy −

∑̄
z
σY Zyz̄

∑̄
k

(−1)z+kσZZzk σ
Y Z
yk̄∑

k
(−1)z+kσZZzk σ

ZZ
z̄k̄

if |Z| = 2

σY Yyy −

∑
r
σY Zyr

∑
s

∑
k 6=s

(−1)z+k+r+sσZZzk
∣∣∣σZZ(rz)(sk)

∣∣∣σY Zys∑
k

(−1)z+kσZZzk

∣∣∣σZZ(z)(k)

∣∣∣ if |Z| > 2

(39)

where r refers to an arbitrary row of ΣZZ different from row z, and σZZ
−1

(zr)(ks) is the matrix

σZZ
−1

after removing rows z and r and columns k and s, and r̄ means the row or column
different from r.Note that for |Z| = 1, σzk becomes σzz.

From (38) and (39) we have only the following cases:

Case 1: θ = µYr : then, we have

∂µY |Z=z
y

∂µYr
= δyr,

∂σY |Z=z
yy

∂µYr
= 0. (40)

Case 2: θ = µZk : then, we have

∂µY |Z=z
y

∂µZk
= −

∑
z

σY Zyz σ
ZZ−1

zk ,
∂σY |Z=z

yy

∂µZk
= 0. (41)
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Case 3: θ = σZZrs : then, the partial derivative
∂µY |Z=z

y

∂σZZzk
becomes



−σY Zyz
(
zz − µZz

)
(σZZzz )2 if |Z| = 1

σY Zyz̄ (−1)z+k
(
zk̄ − µZk̄

) ∣∣∣ΣZZ
∣∣∣− (−1)z+kσZZz̄k̄

(∑̄
z
σY Zyz̄

∑̄
k

(−1)z+kσZZzk
(
zk̄ − µZk̄

))
|ΣZZ |2

if |Z| = 2

∑
r
σY Zyr

∑
s 6=k

(−1)z+k+r+s
∣∣∣σZZ(rz)(sk)

∣∣∣ (zs − µZs ) ∣∣∣ΣZZ
∣∣∣

|ΣZZ |2

−
(−1)z+k

∣∣∣σZZ(z)(k)

∣∣∣ (∑
r
σY Zyr

∑
s

∑
k 6=s

(−1)z+k+r+sσZZzk
∣∣∣σZZ(rz)(sk)

∣∣∣ (zs − µZs )
)

|ΣZZ |2
if |Z| > 2

(42)
Note that for |Z| = 1 we have z = r = s.

Similarly, the partial derivative
∂σY |Z=z

yy

∂σZZrs
becomes



−σY Zyz σY Zyz
(σZZzz )2 if |Z| = 1

σY Zyz̄ (−1)z+k
(
zk̄ − µZk̄

) ∣∣∣ΣZZ
∣∣∣− (−1)z+kσZZz̄k̄

(∑̄
z
σY Zyz̄

∑̄
k

(−1)z+kσZZzk σ
Y Z
yk̄

)
|ΣZZ |2

if |Z| = 2

∑
r
σY Zyr

∑
s 6=k

(−1)z+k+r+s
∣∣∣σZZ(rz)(sk)

∣∣∣σY Zys ∣∣∣ΣZZ
∣∣∣

|ΣZZ |2

−
(−1)z+k

∣∣∣σZZ(z)(k)

∣∣∣ (∑
r
σY Zyr

∑
s

∑
k 6=s

(−1)z+k+r+sσZZzk
∣∣∣σZZ(rz)(sk)

∣∣∣σY Zys
)

|ΣZZ |2
if |Z| > 2

(43)

Case 4: θ = σY Yrs : then, we have

∂µY |Z=z
y

∂σY Yrs
= 0,

∂σY |Z=z
yy

∂σY Yrs
= δrs, (44)

where δrs are the Kronecker deltas.
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Table 2: Normalized partial derivatives with respect of all parameters.

t
t ∂P (B > 11|A = 7, C = 17)

∂t

t ∂P (D > 30|A = 7, C = 17)

∂t

p −0.01330 −0.01550
q 0 0.07233
a 0.00886 0
b 0 0.2170
d 0 0.04134
f 0 −0.0620
x1 0.03102 0.03617
x3 0 0.08783

Case 5: θ = σY Zyz : then, we have

∂µY |Z=z
y

∂σY Zyz
=
∑
k

σZZ
−1

zk

(
zk − µZk

)
,
∂σY |Z=z

yy

∂σY Zyz
= −2

∑
k

σZZ
−1

zk σY Zyk . (45)

Case 6: If we look for the sensitivity with respect to observed values we need to consider
zk:

∂µY |Z=z
y

∂zk
=
∑
z

σY Zyz σ
ZZ−1

zk ,
∂σY |Z=z

yy

∂zk
= 0. (46)

Example 4 We continue with the previous example and calculate now the probabilities
of B exceeding the critical value 11, and D exceeding the critical value 30, because they
have been determined as those producing important damages in the associated areas B
and D, respectively. Using Expressions (17), (19) and (12) we get

P (B > 11|A = 7, C = 17) = 1− FB|A=7,C=17(11) = 1− Φ(
11− 8

1
) = 0.00135

P (D > 30|A = 7, C = 17) = 1− FD|A=7,C=17(30) = 1− Φ(
30− 26√

2
) = 0.00234

In Table 2 we have calculated all the normalized partial derivatives of the failure
probabilities. We have used the parameter values for the normalization.
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6 Conclusions

Sensitivity analysis in normal Bayesian networks is gratedly simplified due to the knowl-
edge of the algebraic structure of conditional mean and variances. The fact that condi-
tional means and variances are quotients of linear or quadratic functions of the parameters
and evidence values, and which of them appear as linear or quadratic terms, allows an
efficient evaluation. Closed expressions for the partial derivatives of probabilities of the
form P (Xi > a|e), P (Xi ≤ a|e) and P (a < Xi ≤ b|e) with respect to the parameters can
be obtained.
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[7] Castillo, E., Solares, C., and Gómez, P. Estimating extreme probabilities using tail
simulated data. International Journal of Approximate Reasoning, 1996.
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