Tools for Presentation and Animation of
Dynamic Models in Object-oriented Design

Kurt Ngrmark, Lars Iversen, and Per Madsen
Aalborg University
Denmark*

October 1, 1998

Abstract

Modelling the dynamic aspects of an object-oriented design is impor-
tant to gain concrete insight into the ways objects interact and relate to
each other. A similar insight may be obtained from a static model, but
at a more abstract level and in a more indirect way. Dynamic models are
usually presented as graph-based diagrams in which the vertices are ob-
jects and the edges are messages or relations among objects. In this paper
we study such diagrams as the basis for tools in a dynamic modelling envi-
ronment. We are especially interested in different ways to present time in
such tools. One particular approach is to present “time by time”, hereby
leading to animation of dynamic models. By introducing the idea of ‘de-
sign by animation’ we aim at a radical improvement of the presentation
and manipulation of dynamic models in contemporary CASE tools.

1 Introduction

Diagrammatic, graph-based presentations play an important role as the docu-
mentation of an object-oriented model. This is because of the documentation
traditions in early phases of a software engineering process, and due to fact that
graph-based models provide attractive and natural overviews of a set of objects
together with their mutual relations [19].

Object-oriented models come in two different flavors: Static models and dy-
namic models. Static models are concerned with classes, methods, attributes,
and relations among these. Dynamic models deal with objects, object inter-
actions, and object relations. Some dynamic models provide for semantically
complete specifications, whereas others are oriented towards examples.

This paper is based on the work with DYNAMO [17] in which we investigate
the following overall hypothesis:

Programmers think in terms of objects, object relations, and
object interactions during the creative phases of the design process.

“Department of Computer Science, Fredrik Bajers Vej 7E, 9220 Aalborg @, Denmark. E-
mail: normark@cs.auc.dk. WWW: http://www.cs.auc.dk/~normark/ — This research was
supported by the Danish Natural Science Research Council, grant no. 9400911.

As a natural consequence of this hypothesis, the DYNAMO environment al-
lows the designer to capture essential properties of an object-oriented model
in concrete and tangible terms: objects and messages. In order to amplify the
concreteness, DYNAMO is based on examples of object interaction in terms of
scenarios.

The work with DYNAMO is oriented towards three research areas:

1. Definition of an object-oriented, dynamic modelling language.
2. Automatic generation of static models from dynamic models.
3. Construction of a set of tools for model building and exploration.

The modelling language is defined at an abstract level, and consequently
a dynamic model is represented as an abstract syntax tree derived from an
abstract grammar. The current version of the modelling language is described
in details in a separate paper [16].

It is one of the basic ideas behind the work with DYNAMO that the dy-
namic model should be made early in the design phase, before (or perhaps
simultaneous with) the creation of the static model. This is consistent with the
ideas of ‘use case driven design’ [9]. We attempt to generate substantial parts
of the static model from the dynamic models. As argued in [14], the majority of
the information in a static model can be extracted from a set of scenario based
dynamic models. A detailed account on this part of the DYNAMO work can be
found in a separate paper [18]. The approach taken in this part of the work is
to generate program outlines in a familiar programming language syntax. The
program outlines are intended as static overviews of a set of scenarios rather
than the first version of the implementation of the design. Alternatively, we
could present the extracted static model as a class structure diagram.

This paper contributes to the third research area. The tools of the DY-
NAMO environment depend critically on diagrammatic means of presentation.
In section 2 we introduce and discuss two well-known and widespread possi-
bilities: Interaction diagrams [9] (also known as sequence diagrams [20], mes-
sage sequence charts [27], or event trace diagrams [21]) and object-graphs (also
known as collaboration diagrams [20]). In chapter 3 and 4 we elaborate on each
of these kind of diagrams with the purpose to remedy a number of weaknesses
and shortcomings, and in order to prepare for a more advanced specification of
scenarios using animations.

2 Diagrammatic presentations of scenarios

A scenario is a concrete example of interaction among a number of objects. A
scenario is described in terms of a message from the “surround” to a receiver
object. The receiver, may in turn, send a number of messages to other objects,
and so on recursively. Thus, a scenario is as a tree of messages which we often
identify with the root node of the tree (the top-level message). In this paper
we will call this structure a message tree.

root a-subject an- observer observer
observer 1)

observer—nlanipulatii) n
Ll

_ set-state;
notify
update -

L
P get-state
.

do-update

update

get-state

A

set-state @
»
Ll

observer-
manipulation

observer

do-update do-update

Figure 1: An interaction diagram (above) and the similar object graph (below).

There are two different scenario diagramming techniques in widespread use:
Object graphs and interaction diagrams. In an object graph vertices represent
objects and edges represent messages (or relations between objects via which it
is possible to send messages). In an interaction diagram objects are represented
by vertical lines, and messages are represented as arrows between the objects.
Figure 1 shows comparable and stylized examples of the two kinds of diagrams.
We will now discuss these two kinds of diagrams as the basis for tools in a
dynamic modelling environment.

An object graph is probably the most intuitive notation. People who discuss
an object-oriented design at a blackboard tend to use the object graph notation.
As pointed out in [28], the designer is free to place an object anywhere in the
two-dimensional space. This allows for natural grouping of related objects. As
a contrast to interaction diagrams, an object graph is symmetric in its use of
the two dimensions of the drawing surface. However, this can be regarded as

1.1.1: notify

an 1.1: set-state -
observer > @
1.1.1.2.1

1: observer- 1.1.1.1: updat
manipulation 1.1.1.2 get-state
@ update
1.1.1.1.1
2

1.1.1.1.2: do-update 1.1.1.2.2 do-update

Figure 2: An object graph with sequence numbers.

a disadvantage from the tool perspective because it is inherently difficult to
automatically make “natural layout” of graphs in a two dimensional surface [5].

It is possible to interpret an interaction diagram as an object graph. Follow-
ing this interpretation the nodes of the graph are rendered as vertical lines, and
the edges are horizontal arrows, or bended arrows from one node to itself. The
node layout is linear and therefore trivial. Only the mutual, horizontal ordering
of objects is an issue, perhaps with the goal of minimizing the distance between
objects that communicate a lot.

The important and special characteristic of an interaction diagram is the
significance attached to the relative vertical positions of the edges: The verti-
cal dimension represents time. If timing aspects have to be shown in a more
conventional object graph, additional graphical details in terms of sequence
numbers need to be added to the graph. Figure 2 shows a version of the object
graph from figure 1 with sequence numbers.

From a tool perspective it is relatively straightforward to draw an interaction
diagram, primarily because there is no complicated layout problems that have
to solved. However, as mentioned in [28], the number of objects that can be
shown on the screen at a given point of time is lower than the number of objects
that can be arranged in the two dimensional surface of an object graph. The
opposite observation holds for the number of messages: In case there is heavy
interaction among the objects (especially in case of multiple messages between
pairs of objects) the interaction diagram is superior to object graphs.

The problem of “scaling up” is a major concern when discussing tools for
presentation of dynamic models. We see three possible way of improving the
presentation of large dynamic models:

e Subscenario abstraction.
e Presentation filtering.

e Alternative presentations of time.

Abstraction of subscenarios is a possible approach in dealing with scenarios
that contain many objects and messages. In SCED [15] a subscenario may be
abstracted to a single named interaction which represent all the detailed inter-
actions in the subscenario. By defining part of a scenario to be a subscenario,
the space limitation of interaction diagrams are alleviated in the vertical “mes-
sage direction” as well as the horizontal “object direction”. The reduction of
space in the horizontal direction is due to the observation that objects, which
are used only internally in the subscenario, do not need to be presented in the
surrounding scenario.

The idea of presentation filtering is to suppress selected graphical details in
order to provide for presentation of larger models. The more details we choose
to present in diagrams such as in the figures 1 and 2, the smaller becomes
the models that we can deal with on a screen or a piece of paper. In CASE
tools it is attractive to support a variety of presentation filters which allows
the designer to switch between detailed and overall presentations of dynamic
models. Presentation filtering may be realized through a graphical zoom facility.
Extreme graphical “zoom outs” have been described as information murals
[10]. In the mentioned reference information murals are used to visualize huge
interaction diagrams captured from running object-oriented programs.

In static presentations of dynamic models time is presented by various
graphical means (described above). In such presentations both past and fu-
ture objects, messages, and relations are shown relative to some given point of
time. In more dynamic presentations of dynamic models, model time is repre-
sented by real time, as experience by the user of a tool (hereafter called tool
time). As a function of tool time, objects, relations, and messages appear and
disappear on the screen. In animative presentations the model elements are
moved relative to each other as a function of time. We see animations as a new
and interesting way of presenting dynamic models in the process of designing
object-oriented software. Animative presentations lead to presentations of dy-
namic models in which we do not show legacy or futuristic elements, and as
a consequence we may be able to present larger models than in similar static
presentations.

As it appears from this discussion there are relative strengths and weak-
nesses with both interaction diagrams and object graphs. In the following we
will first discuss and elaborate on interaction diagrams as the basis of a scenario
editing tool in the DYNAMO environment. Following that we will return to
the object graph as the basis of a design by animation tool.

3 Presentations based on interaction diagrams

The primary internal representation of a scenario in DYNAMO is the message
tree in which a node N represents a message to some receiver object O. In
DYNAMO we assume that every object has a name. Sons of N represent sub-
messages from O to other objects (or to O itself), and so on recursively.

An interaction diagram is structurally different from a message tree. The
difference between the two is that an object only appears once in an interaction

object.message

object.messagel ObJ?Ct
object.message?2 ‘message
object.message3 : : messagel
object.message4 ;
object.messageb :message2
(@)]
‘message3
object.message f
object.messagel : message4
object.message?2 ;
object.message3 ‘message5
object.message4 :
object.message5
(b) ()

Figure 3: Two different message trees (a) and (b) with identical interaction
diagrams (c).

objectl object2 object3

messagei 15 :
message message2:
messages.

message4

messages

message6- :
message?l:l'

Figure 4: An interaction diagram in “Booch style”.

diagram, but it may appear several times, at several levels in a message tree
(as instances of a name representing the object). As an implication of this an
interaction diagram may be ambiguous relative to the underlying message tree.
Figure 3 shows an extreme example of two different message trees which cannot
be distinguished in the usual rendering of an interaction diagram.

The ambiguity problem pointed out above is formulated as a problem of
visualizing methods by Wolber in [29]. As a reaction to this problem (among
others) Wolber proposes a new graphical formalism called a use case structure
chart. A use case structure chart is a hierarchical method decomposition tree

root ohiject another root ohject another
ohject object

imessaze messaze
] essage | '
rnessazed
i [nessazes |
messaged

i [ressages |

@) (b)
root ohiject] ohject? chject3
imess§g

messagel
H Lo

| messaged |

| |message3

35

roessages :
tsssazen
messggg?.i

(©

Figure 5: DYNAMO interaction diagrams of message tree a and b from fig-
ure 3 and a diagram similar to the “Booch style diagram” of figure
4. The interaction diagrams are taken directly from the DYNAMO
environment.

(which also supports some special means for event handling).

As illustrated in figure 4 several authors, such as Booch, impose a vertical
box on the object line representing the method, which is invoked by a message
[2]. In case several methods are activated on a single object it would be natural
to nest the “method boxes” into each other, but this is graphically intractable
because of the narrow width of the method boxes.

In order to remedy the ambiguity problem we have designed a new graphical
notation in the DYNAMO project in which each method activation is shown
as an activation line parallel with the object line, but with a few pixels offset
to the right (see figure 5). The principle is that each activation of a method
M on an object O gives rise to a new activation line on O. In more graphical
terms, each arrow head points at a new activation line. In uni-sequential models
(models without multiple, active objects) a message does not return before all
the sub-messages have returned. In such situations it is always the case that

oot a-sibject an ohserver observer observer observer mmodel raodel

ohzerver change list 1 2 change 1 change 2

ohserver-rajnipulation

det-state{obgpyypr-changd)

e

update

L zet-stale
du.u}__ladate nmdel—chamL)

update

get-stafe

do-u}jdateémodel—chﬂjL)

Figure 6: An interaction diagram for the observer design pattern with object
relevance lines (in black and white only).

inner activation lines of O are temporally contained in outer activation lines of
0.

Interaction diagrams with activation lines show the message tree of the un-
derlying scenario in an unambiguous way. It is possible to track the stack of
method activations by following the edges from one activation to another, possi-
bly in a number of different objects. Figure 5 illustrates DYNAMO interaction
diagrams for the two message trees in figure 3(a) and (b), and a diagram similar
to the one in figure 4.

Objects can appear and disappear during a scenario. It is important that
this dynamic aspect can be reflected in the presentations of the model. Object
appearance may in some situations be equivalent to object creation, but in
others it may signal that an object becomes relevant for the scenario we are
specifying. In the DYNAMO modelling language it is possible to specify when
an object becomes relevant via the so-called object provision mechanism [16)."
Also the period of time in which the object is relevant for the design is dealt
with in DYNAMO. Some objects are local to an activation (and thereby cease
to exist at method return time), others exist as long as at least one relation
associates them to other living objects.

It is important to reflect graphically the object provision time and the period
of object relevance. In DYNAMO interaction diagrams each object is presented
as a dashed object line, which is “open” in the positive time direction. We
superimpose a closed, colored line segment on the object line which shows the
period of time the object is relevant for the purposes of the scenario. We call

! An object provision states that an object, with some given properties, exists at ‘object
provision time’. The object is either created at object provision time, or it has been created
at an earlier time. When an object is provided, the object enters the scene in a ‘magical
way’. For the purpose of a particular dynamic model we do not care about the detailed object
creation circumstances.

this line segment an object relevance-line. Different colors are used to signal
the role? of the object relative to the enclosing scenario. It should be noticed
that the object relevance line is contained in the object life line (the time span
between object creation and object destruction), as defined in UML [20]. Figure
6 shows an example of an interaction diagram with object relevance lines.

It is, of course, possible to add additional graphical details to an interaction
diagram, hereby making it possible to illustrate more and more aspects of the
dynamic model directly through the interaction diagram. However, the more
details we add the more difficult it becomes to grasp and extract the general
overview of the message structure. The UML diagrams for dynamic modelling
[20] contain several examples of fairly detailed graphical (and embedded textual)
notations which make it difficult to comprehend the diagrams. In the DYNAMO
environment we use graphical popup boxes? and a variety of browsers with
textual fields to present and edit the details of a dynamic model (described in
[16]). In addition we use presentation filtering, as described in section 2, to add
or to suppress certain details of the diagrams.

Given the intuitively appealing notation of an interaction diagram, it is
important to extend this also to cover the way we edit an interaction diagram.
In the work with DYNAMO we have made a direct manipulation interface for
the following editing operations on interaction diagrams:

1. Creation of a new message.

2. Changing the receiver of a message.

3. Changing the place from which a message is sent.

4. Creating a new object in a particular interaction context.

When a designer wants to add a new message to a scenario he or she drags a
new arrow from the sending object to the receiving object. New objects can
be created via a popup menu. Objects are created relative to the interaction
context in terms of the currently selected message and the currently selected
object.* The name and the parameters are typed directly into the diagram
(no indirection in terms of a data entering windows is present). Similarly, the
designer can change the receiver by dragging the message arrow to another
object; And by dragging the initial point of an arrow, the underlying message
subtree can be moved from one sending context to another.

Changing the receiver of a messages supports redistribution of responsibili-
ties among the objects in a dynamic model. Changing the place, from which a
message is sent supports revised implementations of existing responsibilities. It

®The object roles include global/persistent objects, objects provided in a parameter list,
object provided in the body of a method, and objects provided as part of a message result.

3 A graphical popup boz appears when the user rests a little while with the mouse button
pressed down on some graphical item which represents a message or an object in the interaction
diagram.

“Let us give a couple of examples of the use of the interaction context when creating new
objects. If an existing object O is selected it is possible to create an object associated with,
or part of O. If an existing message M is selected it is possible to create an object local to the
method underlying the message M, or an object which is result of sending the message M.

is a typical refinement step in a design to decide that a responsibility should be
changed from one object to another. Consequently it is important to visualize
a holistic view of the responsibilities among the objects. Interaction diagrams
and object graphs are good in that respect - much better the traditional static
descriptions (class diagrams or source program) in which we show fragmented
and information-limited pictures of a design. Furthermore it is important to
provide flexible and natural means of interactions for changing the responsibil-
ities. The direct manipulation interfaces described above seems well suited to
support a flexible design process.

The objects and messages in a dynamic model are tightly related to each
other, either directly or indirectly. Some relationships are shown clearly in an
interaction diagram. As an example the relationship between the sender and
the receiver of a message is shown by an arrow. Other relationships are more
difficult to extract from an interaction diagram. As examples of these we can
mention (1) the relationship between a message and its local objects, (2) the
relationship between a message and the object possibly returned as the result
of passing the message, (3) the relationship between a message and the objects
playing the roles as parameters of the message, and (4) the associations and
aggregations between objects. It is important to come up with ways to show
such relationships. In DYNAMO we temporarily highlight related objects when
a message or an object is selected. The highlighting disappears when the mouse
button is released. Using temporary highlighting, we keep the diagram free from
disturbing details. Furthermore, we utilize the dynamic nature of a computer
screen as the medium being used to present a dynamic model.

As already pointed out above there is a fairly large body of literature on
various aspects of scenarios and static presentations of scenarios, such as in-
teraction diagrams [9, 20, 27, 21, 28]. We have found that the work closest
to DYNAMO is that on SCED [15, 14, 13]. The scenario concept (called al-
gorithmic scenarios) in SCED is relatively powerful, featuring both repetition
and conditionals. As already mentioned earlier in this paper SCED supports
interesting abstraction mechanisms on scenarios. The diagrammatic notation
of scenarios in SCED is relatively rich because it includes specific graphical
renderings of informal comments, states, actions, repetitions, conditionals, and
subscenarios besides the fundamental interaction diagram notation of objects
and messages/events. The most important result of the work with SCED is,
however, an algorithm for automatic generation of state machines from a set of
scenarios [12]. The algorithm is based on a relatively old algorithm by Biermann
et al. which deals with program construction from examples [1].

Interaction diagrams can be used for other purposes than (object-oriented)
design. Scene [11] is an example of a system which is able to produce interaction
diagrams from program executions. The main focus in Scene is to use scenarios
for understanding and browsing existing software. As such, scene represent a
“reversed approach” compared with SCED and DYNAMO.

10

4 Animations based on object graphs.

Both interaction diagrams and object graphs provide static views of a dynamic
model. In section 2 we have already discussed relative advantages and disad-
vantages of the two kinds of diagrams, and in section 3 we introduced a number
of interactive features on top of static presentations of interaction diagrams.
If, however, we want radical changes in the way we visualize and manipulate
dynamic models we must improve on the handling and the representation of
time in dynamic models.

Recall that interaction diagrams devote one of the two dimensions of the
drawing surface to a representation of time. As such, time is represented in a
clear and dominating way. If there are many objects in an interaction diagram it
can be necessary to scroll the diagram window horizontally. Horizontal scrolling
in an interaction diagram is very unfortunate, because it severely obstructs the
general overview of the model. Another priced paid for the “time dimension” is
the lack of natural grouping means among objects presented in an interaction
diagram.

In object graphs time is represented by graphical adornments in terms of
sequence numbers on the edges of the graphs. As illustrated in figure 2 this
is a less dominating and quite compact representation of time. It is, however,
difficult to track the temporal aspects of a dynamic model from the sequence
numbers. Casual studies of an object graph with sequence numbers is not likely
to reveal potential timing difficulties in a dynamic model.

The idea is now to represent model time by means of tool time. In this
context, model time represents the relative ordering of messages (and possibly
other actions) in a dynamic model. As mentioned earlier in the paper tool time
refers to the designer’s experience of time when using the modelling tool.

This representation of “time by time” leads to diagrams that change ap-
pearance as a function of time. As the amount of diagram changes is relatively
small over a short period of time the diagrams are apprehended as animated dia-
grams. In principle both interaction diagrams and object graphs can be used as
a starting point of an animative presentation. However, due to (a) the intuitive
appeal of the object graphs as claimed in section 2, (b) space economical use of
the two dimensional drawing surface, and (c) the weak representation of time
in static object graphs, it seems obvious to use object graphs (without sequence
numbers) for animation purposes. In case we used animated interaction dia-
grams, time would be presented both graphically and temporally. Clearly, this
would be an overkill. Thus, in the following discussion we will focus exclusively
on animated object graphs.

Animated object graphs are used in a process which we call design by an-
imation [6]. In a design by animation process we create and explore dynamic
models represented as scenarios. It is our basic hypothesis that a design by
animation process gives ideal support for the object-oriented designer in the
creative phases of the OOD process. Moreover, we are convinced that the re-
sult of a design by animation process provides attractive documentation of the
dynamic aspects of an object-oriented design, perhaps even for people with lit-
tle insight in object-oriented modelling concepts. Design by animation depends

11

critically on the computer used as a dynamic medium. This should be seen as
a contrast to the use of static mediums (like paper). As can be seen from the
first sections of this paper it is very difficult to capture the inherent dynamic
properties of a dynamic model on a static medium.

In a typical scenario only a small number of messages are passed at a given
point in time. In uni-sequential models, only a single message is passed at a
time. Similarly, in some dynamic models many objects have limited lifetimes.
The node representing an object with limited lifetime appears at a given point
in time and it possibly disappears before the completion of the animation. Also
the relations (associations) among the objects are dynamic elements. Thus,
when dealing with animated object graphs we are only faced with a fraction
of the messages, objects, and relations at a given point in time. This makes
it possible to handle larger models. Consequently, animation contributes in
a positive way to alleviating “the problem of scaling up”, which we discussed
earlier in section 2 of this paper.

The animation of objects and messages may in the extremes be either dis-
crete or continuous. Discrete animation may be understood as a sequential
presentation of a number of (partial and developing) object graphs. Using dis-
crete animation we show a sequence of partial object graphs that illustrate
the temporal development of the underlying model. A discrete animation may
be understood as a sequential presentation of object graph “snapshots”. Each
snapshot only presents the model elements that are relevant at a given point in
time. Neither “history elements” nor “future elements” are part of the actual
snapshot.

Using continuous animation the neighboring snapshots of a discrete ani-
mation are “interpolated” by means of smooth and sliding movements of the
graphical elements in an object graph. It is one of our hypotheses that contin-
uous movements make it easier and more natural to track the model changes
between two points in time. This is confirmed by Statsko in his work on ani-
mation of algorithms [25]. In addition, we want to assign semantic significance
to the ways objects and messages are animated in XMAS [6, 8, 7]. The “tool
time” dependent animation carries more information than just the relative or-
dering of actions in the underlying dynamic model. The interval of “tool time”
between two snapshots may vary depending on the amount of animation which
is required to bring us from one “model time” to the next.

In order to make the discussion concrete, we will now describe the most
important patterns of animation used in XMAS:

e Object creation: If an object A is responsible for creation of object B,
the B object grows out of A. The new object B moves from the inner of A
to its final destination on the screen, and while moving its size increases
from half to full size.

e Object provision: In case an object B is provided, we do not know for
sure which object created it in the past. This is animated by dropping B
from the top of the window and after that moving it to its final destination
in window.

12

Object A is provided

Object B creates object C

Ce—r

Object C dies

Object A becomes a ghost

Figure 7: The animations used to create, provide, and “ghostify” an object.

e Object deletion: When an object no longer is accessible (because, for
instance, it goes out of scope) it may be deleted from the screen. Object
deletion is animated in the opposite way of object creation and provision.
Consequently objects either disappears into the object that created it, or
they move into a corner of the screen, where they become “ghost objects”.5

e Message passing: A message m is passed from one object A to an
object B by running and arrow out of A towards B. During the animation
a textual label appears, showing the name of the message together with
actual parameters. The return of the message is shown by retracting the
message from the receiver, hereby moving the arrow back into the sending
objects. During this animation a description of the returned value appears
as the label of the message arrow.

Figure 7 and 8 illustrate these animations, although, of course, it is difficult to
make convincing illustrations of animation on a piece of paper. ©

Although well researched, the graph layout problem remains as one of the
severe difficulties in dealing with object graphs. In other words, it is not easy
to determine the most natural and the most optimal position of nodes in the
two-dimensional drawing surface. The difficulties are amplified by aesthetic
requirements (such as minimizing crossing edges) and hidden semantic require-
ments (such grouping of related objects). In the XMAS research we have until

% An object becomes a ghost if we have incomplete knowledge of the object’s life time. This
may occur in case a provided object goes out of scope. The reason is that a provided object
is created before its provision, but we don’t know exactly where in the model it happened.

5The XMAS tool can be downloaded from the World Wide Web [7] for a more interactive
experience.

13

Message
Parameters

Calling path from A to B \ Description

ffffffffffffffffffff o] o

Message
Result

Figure 8: The animations used for message passing.

now ignored these difficulties by placing objects manually on the screen. In a
more practical and complete tool, however, this is not an appropriate solution.

In order for XMAS to be a complete design by animation tool we also need
to edit a dynamic model in terms of animation. To this endeavor, it is tempting
to gain some inspiration from film editing. We map the message tree into a one-
dimensional reel by a depth-first traversal of the tree. While a reel normally
consists of equally spaced frames, an XMAS reel is made up of a hierarchy
of scenes. In terminology of the message tree, a scene consists of a number
of neighboring siblings in the tree, including the descendants of those siblings.
Thus, a scene corresponds to a structurally well-defined portion of the message
tree.

To edit the reel we use navigation primitives such as GotoFirst, GotoPre-
vious, GotoNext and GotoLast. In XMAS, these navigation primitives are pro-
vided in both normal speed and high speed versions, see figure 9. Using the
high speed versions in both forward and backward direction it is possible to
retain some kind of holistic overview of the scenario, despite the fact that only
a subset of the objects and messages are presented graphically at a given point
in time. We also support editing primitives like Cut, Copy and Paste. Besides
these, a number of direct and animative manipulation primitives would be use-
ful to create and modify messages and objects. However, in the current version
of XMAS we use a simpler approach. Instead of direct and animative editing
operations we create and modify the dynamic model by means of a number of
dialogue boxes (one box for object creation, object provision, message passing,
etc).

Modifying the reel via one of the above mentioned primitives implies the
risk of an inconsistent reel. An inconsistency can for instance occur if we delete
a sub-scenario that creates an object, which is referred at a later point in the

14

ek | CHN

BrplaFind e
floalbpct [y
' B

.......... -

e
(]

= P

=l
Ly aipie
wdd b

1mad
Show srope thagram | o e

Figure 9: A snapshot of the XMAS tool. The animation of the object graph
takes place in the large area to the left. The diagram to the right,
called a box diagram, provides a compact static overview of the dy-
namic model.

model. In this situation it will be difficult to visualize a message to the non-
existing object. Such (temporary) inconsistencies are well-known from struc-
ture editing in general, but they may be especially severe in our context. The
reason is that the inconsistencies can make it difficult to animate the model,
such as navigating to the place where the inconsistency can be alleviated. In
XMAS, measures have been taken to ensure that all editing operations deliver
a consistent model. In some situations this is achieve by adding elements, or
ignoring changes in the internal “runtime” tool representation of the model.
Such temporary counter measures are not reflected in the real and underlying
dynamic model.

Editing and navigating a dynamic model via exclusive use of an animative
presentation may be too difficult in practice. As already mentioned, the problem
is to maintain an overall understanding of the entire model via the animated
presentation. Therefore we find it useful to propose an supplementary, static
presentation of the dynamic model besides the animative presentation. An
interaction diagram is well suited for this purpose, because that kind of diagram
in our opinion presents time in the most graphically comprehensible way, while
at the same time providing a general overview of the dynamic model. In XMAS

15

we use a simplified an compact diagram called a block diagram, which shows
messages and levels of interaction, but no objects, see figure 9.

There is only little literature on “proactive application” of animation rela-
tive to the implementation of a design. The book Software Visualization [26]
contains papers on a number of relevant and similar works. Algorithm ani-
mation is one such neighbor area which is covered extensively in the book [3,
4]. Some general animation techniques is also described [25].

Shilling and Statsko have made a system called GROOVE [23, 24], which
is based on animation in a similar way as XMAS. GROOVE can be used in an
object-oriented design process as well as for visualization of a running program.
In GROOVE, the dynamic model is presented side by side with elements of
the static model. GROOVE is primarily oriented towards design and run-time
visualization of C++ programs. In comparison, no bindings to a particular
programming language is found in DYNAMO or XMAS.

In addition to the work on GROOVE, Salmela et al. have described some
ideas of animating real-time object-oriented software [22].

5 Status and conclusions

In this paper we have discussed two particular diagrams as the basis for presen-
tation and editing of dynamic models. We have been concerned with the scale
up problem, the problem of clear and unambiguous presentations of dynamic
models, and the problem of presenting time in a natural way.

If we want to present time graphically, we recommend the use of interaction
diagrams. We also recommend a variant of interaction diagrams, which shows
the message tree in an unambiguous way. The details of such a variant has
been described in this paper.

If we want a temporal presentation of time, we recommend the use of object
graphs instead of interaction diagrams. This leads to animated diagrams, and it
suppports a ‘design by animation’ process. The main challenges in dealing with
animated diagrams are to come up with genuine patterns of animations, and
to allow for natural ways of editing an animation. We have proposed specific
animation patterns in this paper. With respect to editing of animations, our
work is still in an early phase.

References

[1] A. W. Biermann and R. Krishnaswamy. Constructing programs from ex-
ample computations. [IEEE Transactions on Software Engineering, SE-
2:141-153, 1976.

[2] Grady Booch. Object-oriented analysis and design with applications, second
edition. The Benjamin/Cummings Publishing Company Inc., 1994.

(3] Marc H. Brown and John Hershberger. Fundamental techniques for al-
gorithm animation displays. In John Stasko, John Domingue, Marc H.

16

[6]

[7]

Brown, and Blaine A. Price, editors, Software Visualization - Programming
as a multimedia experience, chapter 7, pages 81-102. The MIT Press, 1998.

Peter A. Gloor. User interface issues for algorithm animation. In John
Stasko, John Domingue, Marc H. Brown, and Blaine A. Price, editors,
Software Visualization - Programming as a multimedia experience, chap-
ter 11, pages 145-152. The MIT Press, 1998.

Ioannis ” Yanni” G. Gollis. Graph drawing and information visualization.
ACM Computing Surveys, 28A(4), December 1996.

Lars Iversen and Per Madsen. Design by animation. Master’s thesis, De-
partment of Computer Science, Aalborg University, Denmark, June 1998.
In Danish.

Lars Iversen and Per Madsen. The WWW home page of the XMAS project.
http://www.cs.auc.dk/~normark/xmas/, June 1998.

Lars Iversen and Per Madsen. XMAS - experimental modelling with an-
imated scenarios (in danish). Master’s thesis, Department of Computer
Science, Aalborg University, Denmark, january 1998.

Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar Over-
gaard. Object-Oriented Software Engineering — A Use Case Driven Ap-
proach. Addison-Wesley Publishing Company and ACM Press, 1992.

Dean F. Jerding, John T. Stasko, and Thomas Ball. Visualizing message
patterns in object-oriented program executions. Technical Report GIT-
GVU-96-15, Georgia Institute of Technology, may 1996.

K. Koskimies and H. Mossenbock. Scene: Using scenario diagrams and
active text for illustrating object-oriented programs. In Proceedings of the
18th international conference on software engineering, Berlin, Germany,
March 1996., March 1996.

Kai Koskimies and Erkki Makinen. Automatic synthesis of state machines
from trace diagrams. Software - Practice and Ezperience, 24(7):643—-658,
July 1994.

Kai Koskimies, Tatu Méannista, Tarja Systa, and Jyrki Tuomi. SCED - an
environment for dynamic modeling in object-oriented software construc-
tion. In Boris Magnusson et al., editor, Proceedings of the Nordic Work-

shop on Programming Environment Research, NWPER’94, Lund, pages
217-230, 1994.

Kai Koskimies, Tatu Mannistd, Tarja Systa, and Jyrki Tuomi. On the
role of scenarios in object-oriented software design. In Lars Bendix, Kurt
Ngrmark, and Kasper Osterbye, editors, Proceedings of the Nordic Work-
shop on Programming Environment Research, NWPER’96, pages 53—69.
Department Computer Science, Institute for Electronic Systems, Aalborg
University, R-96-2019, May 1996 1996. http://www.cs.auc.dk/~normark /-
NWPER96/proceedings/proceedings.html.

17

[15]

[16]

[17]

[18]

Kai Koskimies, Tatu Mannista, Tarja Systa, and Jyrki Tuomi. SCED: A
tool for dynamic modelling of object systems. Technical Report A-1996-4,
Department of Computer Scienece, University of Tampere, Finland, 1996.

Kurt Ngrmark. Towards an abstract language for dynamic modelling
in object-oriented design. In Raimund Ege, Madhu Singh, and Betrand
Meyer, editors, Tools 23, pages 120 — 131. IEEE Computer Society Press,
1997.

Kurt Ngrmark. The WWW home page of the DYNAMO project. http:-
//www.cs.auc.dk/~normark/dynamo.html, 1997.

Kurt Ngrmark. Synthesis of program outlines from scenar-
ios in DYNAMO. Submitted for publication, 1998. Avail-
able from http://www.cs.auc.dk/~normark/dyn-models/static-models/-
synpooutl.pdf.

Stephen North. Visualizing graph models of software. In John Stasko,
John Domingue, Marc H. Brown, and Blaine A. Price, editors, Software
Visualization - Programming as o multimedia experience, chapter 5, pages
63-72. The MIT Press, 1998.

Rational Software Coorporation. UML notation guide 1.1. Available from
http://www.rational.com, September 1997.

James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy,
and William Lorensen. Object-oriented Modeling and Design. Prentice-
Hall International, 1991.

Marko Salmela, Marko Heikkinen, Petri Pulli, and Reijo Savola. A visu-
alisation schema for dynamic object-oriented models of real-time software.
In Boris Magnusson et al., editor, Proceedings of the Nordic Workshop
on Programming Environment Research, NWPER’9), Lund, pages 73-86,
1994.

John J. Shilling and John T. Stasko. Using animation to design, doc-
ument and trace object-oriented systems. Technical Report GIT-GVU-
92-12, Graphics, Visualization, and Usability center, Georgia Institute of
Technology, 1992.

John J. Shilling and John T. Stasko. Using animations to design object-
oriented systems. Object oriented systems, 1(1):5-19, September 1994.

John Stasko. Smooth, continuous animation for portraying algorithms and
processes. In John Stasko, John Domingue, Marc H. Brown, and Blaine A.
Price, editors, Software Visualization - Programming as a multimedia ex-
perience, chapter 8, pages 103—-118. The MIT Press, 1998.

John Stasko, John Domingue, Marc H. Brown, and Blaine A. Price. Soft-
ware Visualization - Programming as a multimedia experience. The MIT
press, 1998.

18

[27] International Telecommunication Union. Message sequence chart. Techni-
cal Report 7.120, International Telecommunication Union, 1996.

(28] Kim Walden and Jean-Marc Nerson. Seamless Object-Oriented Software
Architecture - Analysis and Design of Reliable Systems. Prentice Hall,
1995.

[29] David Wolber. Reviving functional decomposition in object-oriented de-
sign. Journal of object-oriented programming, 10(6):31-38, October 1997.

19

