
Synthesis of Program Outlines

from Dynamic Models in DYNAMO

Kurt N�rmark

Aalborg University

Denmark�

April 23, 1997

Abstract

Scenarios can be used to model the dynamic aspects in an object-oriented design process.
This is attractive because scenarios allow the designer to specify the way objects interact
at a tangible and concrete level of abstraction. Although scenarios are based on examples
the scenarios represent a holistic view on the object system in contrast to the fragmented
and decentralized speci�cations in the individual classes. This paper deals with the problem
of extracting static model information (about classes and methods) from a dynamic model
(objects and scenarios in term of message hierarchies). The paper is based on the dynamic
modelling language from DYNAMO and supported by the set of DYNAMO tools.

1 Introduction

In the object-oriented design process we make a variety of di�erent models of programs. Some of
these models are oriented towards the static structures of the design whereas others are oriented
towards the dynamic structures. Models of static structures include class diagrams, which show
a number of relations among classes, methods, and attributes. Models of dynamic structures
focus on objects, relations among objects, and interactions among objects.

In the work, on which this paper is based, we focus primarily on models of the dynamic struc-
tures. The reason is that we hypothesize that program designers primarily think in terms of
objects, object relations, and object interactions during the creative phases of the design process.
If this is true, it is not optimal to express the design at a static level. This holds in particular
in situations where the designer handles complicated object interplays. Rather, the designer
should be able to express himself or herself in terms of dynamic structures early in the design
process. In that way it becomes possible to shape the design at a concrete and tangible level
already at the outset of the design e�orts, namely in terms of objects, object relations, and
object interactions.

Although it is our hypothesis that models of dynamic structures are easier and more natural to
deal with in certain design situations, it is, of course, attractive and necessary to elaborate models
of the static structures as well. Such `static models' are more abstract than the `dynamic models'
because a number of properties of objects and messages are concentrated to shared properties

�Department of Computer Science, Fredrik Bajers Vej 7E, 9220 Aalborg �, Denmark. E-mail: nor-
mark@cs.auc.dk. WWW: http://www.cs.auc.dk/�normark/ | This research was supported by the Danish Nat-
ural Science Research Council, grant no. 9400911.

1

of a single class or method. Furthermore, a static model is closer to the source program, which
must be written sooner or later in the development process, and which, after all, is the most
central model at all in the entire development e�orts.

It is one of our sub-hypotheses that signi�cant parts of a static model can be synthesized from
the information which is present in a dynamic model, as supported by DYNAMO. In this paper
we will discuss to which degree it is possible to generate outlines of classes and methods from
scenarios. In our context a scenario is an example of object interactions, typically crossing the
abstraction barriers de�ned by the underlying classes. These abstraction barriers are carefully
protected in the static, class-based models as well as in the source programs of implementation
phase. However, in the early design phase it is often useful to describe the interaction across
these barriers because such interaction may give a better picture of the way we intend to solve
a problem. In that way a scenario gives a useful holistic view of the ways objects interact with
each other.

In the extreme, one could propose automatic generation of an object-oriented source program
from examples. We do not, however, believe that this is an e�ective way of producing high quality
programs. But we do believe that an automatic synthesis of classes are valuable summaries of
a (possibly) great number of scenarios, which cover a number of essential examples of object
interplays. Furthermore, we think that the automatically generated classes can be used as
skeletons in a re�nement process on the way towards the �nal source program.

In this paper we will �rst describe the scenario concept. This is the foundation of the rest of
the paper, because the synthesized classes and methods depend exclusively on the information
which is present in the scenarios. Following that we discuss how to synthesize various aspects
of classes and methods. Most of discussion is oriented towards synthesis of method bodies with
either selection or iteration.

2 The scenario concept in DYNAMO.

The scenario concept of DYNAMO is simple and straightforward. The main reason is that we
keep the scenarios clean from control mechanisms such as selection and iterations. This is in
contrast to the algorithmic scenarios, as found in [3].

A scenario is described in terms of a message from the \surrounding" to a receiver object r.
The receiver, may in turn, send a number of messages to other objects (including r), and so on
recursively. Thus, a scenario can be thought of as a tree of messages.

A message m is characterized by a receiving object (called receiver(m)), some actual parameters,
a pre-situation assertion, an informal understanding of the message, a list of object provisions, a
list of sub-messages to other objects, a result (describing the e�ect of the message or the object
which is returned by the message), and a post-situation assertion.

The pre-situation and post-situation are assertions that describe the situations at some given
points in time during a scenario. The assertions are informal elements which describe the
situation per se, at the point where they is located in a scenario.

Objects enter the scene (the set of objects which exist at a given point in time) via a mechanism
called object provision. Relative to a message an object may be provided in the parameter list,
in its list of object provisions, and as part of the result. An object provision is a convenient
mechanism which states the relevance of an object exactly at the time it is needed by the designer.
An object provision claims the existence of an object which possess certain relationships to the
already existing objects on the scene. As a simple and practical convention, all objects on the

2

scene have a unique name through which they can be referred to during a scenario. In addition,
the class name of an object is also registered. In the current version of DYNAMO all objects
are passive.1

The object keeping specify how objects are related to their context. Objects may be available on
global basis, local to a message, passed around via parameters and function results (such object
are called
oating), part of another object, or associated from another object.

The result of a message is an informal description of the e�ect in case the message activates a
procedural abstraction. If the message activates a functional abstraction, the result may be an
existing object being returned, a provision of an object to be returned, or a non class-bassed
value.

A more complete and thorough description of scenarios, messages, objects, scenes, object-
provisions and other DYNAMO concepts can be found in [6].

3 Class Synthesis.

In this section we will discuss the synthesis of a class C from a set of scenarios which involves
objects that are instances of C. The discussion will include visibility issues (private vs. public
attributes/methods), inheritance issues, attributes, and methods.

Each example of a message m to some C-object (some object of class C) will hereafter be called
a message case for m in C.

As a matter of notation, lower case letters will in the sequel be used for elements of the dynamic
model (objects and messages) whereas upper case letters will be used for elements of the static
model (classes and methods).

Synthesis of the class protocol

The class protocol is the set of properties (attributes and methods) which are available and
relevant to clients of the class.

Information about method signatures (names and formal parameters) and method comments
can relatively easy be extracted from the messages in the scenarios. If there, somewhere in the
set of scenarios, exists a message case for m in C there must exist a method M corresponding
to m in C, or in one of the superclasses of C. We conjecture that M is private if the sender and
receiver of m are identical objects2 for all available messages m in the scenario set. This is a
guess based on the evidence from the scenarios. The thoughts behind the guess is that \if all
messages m goes to the current object, there is no reason to include the underlying method M
in the class protocol of C".

Later in this section we will discuss how to synthesize outlines of method bodies.

1It will be an obvious extension also to consider active objects. However, this will a�ect the entire dynamic
modelling language. We consider such an extension as a natural next step in the research process.

2In more practical terms, any m message is sent to self, the current object.

3

Synthesizing class inheritance information

Inheritance between classes is speci�ed at class level. Our starting point is a set of objects,
messages between the objects, and association and aggreation relations among the objects.

Given the informations about objects from above, it turns out to be di�cult to extract knowledge
about the inheritance relations between the underlying classes. It might, however, be possible to
compare classes with respect to their class protocols. Let us brie
y develop a concrete proposal
along these lines.

Let C1 and C2 be two di�erent classes, and let PC1
and PC2

be the class protocols of C1

and C2 respectively. We may conjecture that C2 inherit from C1 if PC1
� PC2

.3 This is
based on the heuristics that a subclass (C2) extends the set of features which are inherited
from its superclass (C1). This is typically case, but not necessarily true in all object-oriented
programming languages (Ei�el [4] being one of the exceptions).

In the current version of DYNAMO we do not attempt to infer inheritance relationships among
classed based on the ideas from above. The main reason is that we believe that inheritance
should not be discoved from accidential coincidence (in the sense from above) of class protocols.
Rather, inheritance should be formulated directly by the designer. Given our focus on pure
dynamic models, this is not possible in DYNAMO. However, in a future version of DYNAMO
we may want to specify the dynamic models and part of the static models side by side.

Synthesis of simple method bodies

Let us assume that we are interested in generating an outline of the method M in the class C.
In the simple case the set of scenarios, on which to base M, only contains a single message case
mc for m in C. I.e., the entire set of scenarios only contains one example of an m-message to a
C-object. Consequently, the method needs to be generated from a single example.

In the most elementary situation, the message case does not have any sub-messages. We say
that the message is terminal. This is either because no additional communication is necessary in
order to ful�l the obligations of the underlying method, or because the additional communication
from receiver(m) to other objects is irrelevant for the model we are building. Needless to say, it
is not possible to generate a method body based on a terminal message case.

Let us now consider the case where we have a single, non-terminal message case mc for m in C.
Thus, m sends messages from receiver(m) to a number of other objects (locally provided objects,
parameters, or globally available objects) and/or to itself. It is possible, in a straightforward
way, to transform the available information about mc into an outline of the method M. The
method name comes from the name of the message, the formal parameter list of the method
is constructed from the actual parameters of the message (where we know the classe of the
involved objects), the method comment stems from the message understanding, and the list of
commands in the method body comes from the list of direct sub-messages of m.

Synthesis of method bodies with selection

A more interesting situation arises when two or more message cases contribute to the method
we are synthesizing from scenarios. The challenge is here how to subsume a number of examples

3In an implementation of this rule we have to decide when two methods are equal with respect to the subset
test. This may involve identical names and identical parameter lists.

4

m1

mc1

m1,1

m1,2

m1,3

o1

mc2

o3

m3

mc3

m3,1

m3,2

m2
m2,1

m2,2

m2,3

o2oA oB oA oB oC oA

Figure 1: Three message cases for m in a class C.

(found at various places in the scenarios) into a single description (a method body), which in
some sense covers all the examples.

To be concrete, we will assume that there are n message cases mc1, mc2, ..., mcn of the message
m in a class C. Each message case involves a message m to some instance oi of C. Message case
mci, in turn, sends the messages

mi;1, mi;2, mi;ni

from oi to objects which we may call oi;j, i = 1:::n, j = 1:::ni. A concrete example, for three
message cases is illustrated in �gure 1.4

For our purposes in this section, the pre-situation and the post-situation of a message play
important roles. Recall that each message m, together with each message sent from receiver(m)
to other objects, have pre-situations and post-situations. Thus, the message case mci gives rise
to the following \Hoare statements" for i = 1; :::n:5

� fPig oi.m fQig

� fPi;1g oi;1.mi;1 fPi;2g oi;2.mi;2 ... fPi;nig oi;ni .mi;ni fPi;ni+1g

Here Pi = pre-situation(mi), Qi = post-situation(mi), Pi;j = pre-situation(mi;j), and Pi;j+1 is
implied by post-situation(mi;j), i = 1:::n, j = 1:::ni.

It may be the case that the classes of the receivers of mi are subclasses of C and that C contains
a virtual method which \covers" all the message cases. In that situation a specialized method
is selected based on the class of the receiver object. As a consequence of this it seems best to
generate a number of di�erent methods (up to n di�erent methods) in subclasses of C. But as
already discussed we do not synthesize class hierarchies in our current work. Therefore we will
in the following discussion assume that the n di�erent message cases should be merged into a
single method in C.

As a rough beginning, the method body of M in C is a n-way selection of one of the message
cases. Given the three message cases from �gure 1, the body of the synthesized method M
becomes the following construct:

4In the �gure, the following equations relate the notation in the �gure to the general notation: m1 = m2 =
m3 = m, n1 = n2 = 3, n3 = 2, o1;1 = o2;1 = o3;1 = oA, O1;2 = o2;2 = oB , and o2;3 = oC .

5In the Hoare statements we ignore the actual parameters of the messages.

5

if pre-situation(m1)
then oA.m1,1; oB.m1,2; oA.m1,3
else if pre-situation(m2)
then oA.m2,1; oB.m2,2; oC.m2,3
else if pre-situation(m3)
then oA.m3,1; self.m3,2

However, this is not always the outcome we want from the method synthesis. In some situations
the message cases are variations of each other. One of the cases may re
ect a normal case, the
remaining may be abnormal cases. As an example, all the cases may share a common pre�x but
di�er mutually in the su�xes.

In order to illustrate this we can assume that m1;1 = m2;1 = m3;1 in �gure 1. In this context,
two messages are equal if they have the same name and if their receiver objects are identical.6

Let us call this message m�;1. Thus, in any case we send the message m�;1 before sending any
other message in M. Consequently, a more appropriate synthesis of the method looks like:

oA.m*,1 ;
if pre-situation(m1,2)
then oB.m1,2; oA.m1,3
else if pre-situation(m2,2)
then oB.m2,2; oC.m2,3
else if pre-situation(m3,2)
then self.m3,2

Notice that the conditions in the if-then-else control structure have been changed from the pre-
situations of the original message cases to the pre-situations of the second sub-message of each
message case. These new conditions are far more realistic in an implementation of M. We may
say that the pre-situations in the �rst derivation (pre-situation(mi), i = 1; 2; 3) are oracular

assertions which predicts what happens in one of the sub-messages.

Let us now assume that all but one of m1;2, mn;2 are equal (in the same sense as above). We
talk about a semi-pre�x if a sequence of messages is a pre�x of all but one of a set of scenarios.
In terms of our example from �gure 1, where n = 3, we will assume that m1;2 = m2;2 = m�;2

. A typical set of scenarios leading to this situation sends m�;2 in the case that m�;1 succeeds;
m3;2 is sent in case m�;1 fails:

7

oA.m*,1 ;
if post-situation(m*,1)
then oB.m*,2;
 if pre-situation(m1,3)
 then oA.m1,3
 else oC.m2,3
else self.m3,2

Notice that we take success and failure from the post-situation of m�;1 rather than from the

6We do, in addition, expect the messages to have similar or congruent parameter lists. However, this is an
assumption which is not part of this kind of message-equality.

7In a more conservative program generation we would substitute the two \else" clauses with appropriate \else
if" clauses.

6

m1

Scenario 1

m1,1

m1,2

m1,3

o1 oA oB

m1,4

m1,5

m1,6

m2

Scenario 2

m2,1

m2,2

m2,3

o1 oA oB

m2,4

Figure 2: Two scenarios with repetitions.

pre-situations of m�;2. In practical situations this does not lead to any di�culties, because the
designer is not likely to specify both a pre-situation of mi;2 and a post-situation of mi;1.

Synthesis of method bodies with iteration

The main point in the discussion until now has been the synthesis of a single method with
selection from multiple message cases. We will now direct our interests towards a single scenario
with patterns of repetition. Let us assume that

� m1;2 = m1;4

� m1;3 = m1;5

� pre-situation(m1;2) = pre-situation(m1;4)

in scenario 1 of �gure 2.

Given scenario 1, and the assumptions from above, we will conjecture that the sequence oB .m1;2;
oA.m1;3 is repeated. The rationale behind this conjecture is that the situation P before each
repetition is the same; thus it is tempting propose a generalization of scenario 1 which embed
oB .m1;2; oA.m1;3 into a loop, which runs while P is true. The method derived by DYNAMO
from scenario 1 in �gure 2 is the following:

oA.m1,1;
while pre-situation(m1,2)
do begin
 oB.m1,2 ;
 oA.m1,3
 end;
oB.m1,6

7

Figure 3: The static model browser.

The conjecture of the loop above is based on the observation of a complete repetition. In
DYNAMO we also support conjectures of loop based on incomplete repetitions, but only at
the end of a scenario. Scenario 2 in �gure 2 is an example, in which we assume that m2;2 =
m2;4 in the same sense as above. Furthermore, we will assume that pre-situation(m2;2) and pre-

situation(m2;4) are the same. This leads us to conjecture that m2;4 is the start of a repetition of
m2;2 and m2;3. This facility is in particular useful if the repeated sequence is lengthy, because we
hereby avoid duplication of many messages. Below we show the body of the method conjectured
from scenario 2 of �gure 2.

oA.m2,1;
while pre-situation(m2,2)
do begin
 oB.m2,2 ;
 oA.m2,3
 end

4 Tool support in DYNAMO.

The DYNAMO tools8 make it possible to create and explore dynamic models.

The overall message structure of a scenario may be created and edited in the interaction diagram

editor. In this editor, scenarios are shown as UML-like sequence diagrams (where vertical lines
represent objects and horizontal lines represent messages between objects). Besides the interac-
tion diagram editor there are a number of browsers via which it is possible to edit the details of
dynamic models, messages and objects. The dynamic model browser allows editing of the initial
scene and the message structure of the scenarios. (As such, the dynamic model browser and the
interaction diagram editor are overlapping). The message browser allows editing of the details
of a single message. The object browser allows editing of the details of an object.

The result of a program synthesis is shown in a DYNAMO static model browser. The static

8It is possible to see examples of all the DYNAMO tools via the World Wide Web on
http://www.cs.auc.dk/�normark/dyn-models/tool-tour/all.htm.

8

model browser may be activated on a dynamic model, or on a single scenario in the model.
Figure 3 shows an example of the static model browser. The class list of the browser enumerates
the classes of which there exists instances in the analyzed dynamic model. When selecting a
class in the class list the list of the synthesized methods are shown in the method list. When
activating one of the buttons \Generate class" or \Generate method" a the synthesized program
element is shown in a new text window.

It is possible to �lter the method list by selecting/de-selecting items in the \Methods to list"
section of the browser. We may, for instance, decide that we only want to deal with public
methods which contains selective or iterative control structures in the synthesized bodies.

It is, in addition, possible to chose the concrete syntax and the level of abstraction which is used
to present the result of the synthesized classes and methods. We support the syntaxes of a wide
variety of di�erent object-oriented programming languages in order to make the designers more
comfortable with the result of the synthesis process.

5 Conclusions.

The goal of the DYNAMO project is to conclude on the hypothesis which states that dynamic

models may play an important role as the \�rst model" in the object-oriented design process.

The goal of the work discussed in this paper is to conclude on the sub-hypothesis which states
that outlines of classes and methods can be synthesized from a DYNAMO dynamic model. The
con�rmation of this hypothesis will clearly contribute to the main hypothesis of the project. (If
we are able to derive parts of the static model from an appropriate dynamic model it is more
realistic to take a dynamic model as our starting point).

The DYNAMO project is still in progress, and it is not possible to come forward with any
de�nitive conclusions yet. Here we will therefore restrict ourselves to a discussion of our approach
and compare it brie
y with similar approaches.

Synthesis of program-like descriptions have been attempted in several contexts. In a paper from
the mid seventies Biermann et al. describe how to construct programs from example executions
[1]. Based on a number of condition/instruction traces the algorithm of Biermann et al. generates
a minimal program, which is able to execute all the traces. The algorithm basically searches
through all possible programs which can be formed on the given traces. The order of the search
guarantees that the smallest possible program will come out as the result. The program is
represented as a transition graph, where the nodes are instructions and the edges are conditions.
Kosmimies et al. discuss how to utilize the Biermann approach to synthesize state machines from
scenarios [2]. Notice that a state machine can be regarded as transition graph too. It may be
a challenge in its own right to generate conventional object-oriented program text from such
transition graphs.

In contrast, we generate classes and methods in a programming language like notation from a set
of DYNAMO scenarios. Thus, we emphasize that the result of the synthesis should comply with
the usual object-oriented program structure in terms of classes, class relations (inheritance,
associations, aggregation), and methods. Following our approach, we carry out a number of
abstract syntactic transformations on a collected subset of the scenarios in order to synthesize
the method bodies. We are looking for a number of patterns in the set of relevant of scenarios.
We are con�dent that the existing patterns are useful, but several additional patterns may exist.
This approach is both a strength (because of simplicity) and a weakness (because of its inherent
incompleteness). In this paper we have described the outcome of these transformations. In a
more complete companion paper [5], more examples are given (including examples taken directly

9

from DYNAMO). Moreover, we describe the algorithmic principles behind the transformations
in the companion paper.

It may be possible to apply the synthesis techniques of the Biermann and the Koskimies groups
in our setting as well. This may be a theme in our continued research.

Besides the synthesis of method bodies we also care about class protocols (visibility of attributes
and methods) and relations among classes. We have demonstrated that it is possible to estimate
the visibility of methods in a class from the scenarios. It is harder to infer contributions to the
generalization/specialization structures among classes from the scenarios. In addition, we have
in this paper questioned whether it is worthwhile to to so at all.

References

[1] A. W. Biermann and R. Krishnaswamy. Constructing programs from example computations. IEEE

Transactions on Software Engineering, SE-2:141{153, 1976.

[2] Kai Koskimies and Erkki M�akinen. Automatic synthesis of state machines from trace diagrams.
Software - Practice and Experience, 24(7):643{658, July 1994.

[3] Kai Koskimies, Tatu M�annist�a, Tarja Syst�a, and Jyrki Tuomi. SCED: A tool for dynamic modelling
of object systems. Technical Report A-1996-4, Department of Computer Scienece, University of
Tampere, Finland, 1996.

[4] Bertrand Meyer. Ei�el the Language. Prentice Hall, 1992.

[5] Kurt N�rmark. Deriving classes from scenarios in object-oriented design. Forthcoming paper, 1997.
Preliminary version available on http://www.cs.auc.dk/�normark/dynamo.html.

[6] Kurt N�rmark. Towards an abstract language for dynamic modeling in object-oriented design. In
TOOLS'97, 1997.

10

