
Deriving Classes from Scenarios

in Object-oriented Design

(Preliminary version)

Kurt N�rmark

Aalborg University

Denmark�

May 2, 1997

Abstract

Scenarios can be used to model the dynamic aspects in an object-oriented design process.
This is attractive because scenarios allow the designer to specify the way objects interact
at a tangible and concrete level of abstraction. Although scenarios are based on examples,
the scenarios represent a holistic view on the object system in contrast to the fragmented
and decentralized speci�cations in the individual classes. This paper deals with the problem
of extracting static model information (about classes and methods) from a dynamic model
(objects and scenarios in term of message hierarchies). The paper is based on the dynamic
modelling language from DYNAMO, and supported by the set of DYNAMO tools.

1 Introduction

In the object-oriented design process we make a variety of di�erent models of programs. Some of
these models are oriented towards the static structures of the design whereas others are oriented
towards the dynamic structures. Models of static structures include class diagrams, which show
a number of relations among classes, methods, and attributes. Models of dynamic structures
focus on objects, relations among objects, and interactions among objects.

In the work, on which this paper is based, we focus primarily on models of the dynamic struc-
tures. The reason is that we hypothesize that program designers primarily think in terms of
objects, object relations, and object interactions during the creative phases of the design process.
If this is true, it is not optimal to express the design at a static level. This holds in particular
in situations where the designer handles complicated object interplays. Rather, the designer
should be able to express himself or herself in terms of dynamic structures early in the design
process. In that way, it becomes possible to shape the design at a concrete and tangible level
already at the outset of the design e�orts, namely in terms of objects, object relations, and
object interactions.

�Department of Computer Science, Fredrik Bajers Vej 7E, 9220 Aalborg �, Denmark. E-mail: nor-
mark@cs.auc.dk. WWW: http://www.cs.auc.dk/�normark/ | This research was supported by the Danish Nat-
ural Science Research Council, grant no. 9400911.

1

Although it is our hypothesis that models of dynamic structures are easier and more natural to
deal with in certain design situations, it is, of course, attractive and necessary to elaborate models
of the static structures as well. Such `static models' are more abstract than the `dynamic models'
because a number of properites of objects and messages are concentrated to shared properties
of a single class or method. Furthermore, a static model is closer to the source program, which
must be written sooner or later in the development process, and which, after all, is the most
central model at all in the entire develop e�orts.

In this paper we will discuss how to generate automatically some elements of the static models
from the dynamic models. More concrete, we will discuss to which degree it is possible to
generate classes and methods from scenarios. In our context, a scenario is an example of object
interactions, typically crossing the abstraction barriers de�ned by the underlying classes.

Figure 1 shows an informal descrition of a scenario. This particular scenario is related to
the command design pattern [2]. The idea behind the command design pattern is to turn
interactive commands (such as a `cut' and `paste' editing commands) into objects, and to install
such command objects in invoker objects (such as in pop menu items). When the command is
installed, it receives information about a receiver object (such as the document being edited),
which will be a�ected by executing a command.

* Request command execution in a client object.

* This leads to a request about command execution in the

invoker object.

* In turn, this leads to execution of the command object,

which is associated with the invoker.

* The command object stores undo information in itself,

hereby preparing a subsequent undo operation.

* The command object executes itself by changing

the state of the receiver object.

Figure 1: An informal description of a scenario.

Because of the duality between classes and objects, methods and messages, and object relations
and class relations, it is should not come as a surprise that certain static OOD structures can
be generated from dynamic structures, as present in a set of scenarios.

In the extreme, one could propose automatic generation of an object-oriented source program
from examples. We do not, however, believe that this is an e�ective way of producing high quality
programs. But we do believe that an automatic synthesis of classes are valuable summaries of
a (possibly) great number of scenarios, which cover a number of essential examples of object
interplays. Furthermore, we think that the automatically generated classes, on the assumption
of some basic forward and reverse engineering properties (discussed further in section 7) can be
used as a skelleton in a re�nement process on the way towards the �nal source program.

We do not focus on a particular programming language when we have to present the result
of the class derivation. Instead, we support a range of di�erent object-oriented programming
languages, which can be selected as the target of the class and method derivations. It should be
noticed that the selection of programming language is more than just di�erent ways of pretty
printing a number of �xed constituents. The inherent di�erences among the languages a�ect
the task of expressing the derived classes and methods.

In this paper we will �rst describe the scenario concept. This is the foundation of the rest of the
paper, because the derived classes and methods depend exclusively on the information which
is present in the scenarios. In section 3 we explain in details how we derive methods from one

2

or more messages in a set of scenarios. In section 4 we continue with the derivation of classes.
Prior to the conclusions and the discussion of similar work we brie
y outline the tool support
for method and class derivation in DYNAMO.

2 The scenario concept.

The scenario concept of DYNAMO is simple and straightforward compared to similar concepts
from other work, such as the SCED system [4]. The main reason is that we keep the scenarios
clean from control mechanisms such as selection and iterations. One of the main points in this
paper will be to demonstrate how method outlines (containing control structures for selection
and/or iteration) can be derived from a set of simple scenarios.

A scenario is described in terms of a message from the \surrounding" to a receiver object R.
The receiver, may in turn, send a number of messages to other objects (including R), and so on
recursively. Thus, a scenario can be thought of as a tree of messages.

A message M is characterized by:

� A receiver object, which we call receiver(M).

� The actual parameters of M.

� The situation pre-situation(M) which occurs just after the parameters have been passed
(see below).

� A general understanding, which explains M in general.

� A speci�c understanding of the particular example of the message.

� The objects provided by M (see below).

� The messages sent from receiver(M) to other objects.

� The result of the message, when sent to receiver(M).

� The situation post-situation(M) which occurs just before M is completed, and is about to
gain control to the sender.

The pre-situation and post-situation are assertions, which describe the situations at some given
points of time during a scenario. The assertions, which in the current version of DYNAMO are
supported as an informal element, are situational in contrast to prerequisitional. This means that
a pre-situation or a post-situation assertion describe the situation per se, at the point where it
is located. A prerequisitional assertion expresses a requirement to the state of the computation.
As an example, prerequisitional assertions are used in the programming language Ei�el [5] as
pre-conditions of operations.

Objects enter the scene (the set of objects which exist at a given point in time) via a mechanism
called object provision. Relative to a message, an object may be provided in the parameter list,
in its list of object provisions, and as part of the result. An object provision is a convenient
mechanism which states the relevance of an object exactly at the time it is needed by the
designer. In some cases a provided object may actually have existed for a some time, but in the
current scenario it �rst becomes relevant at `object provision time'. In other situations it may
be the intention of the designer to actually create the object at the provision time. In these
situations, object provision is identical to object creation. Anyway, an object provision claims

3

Send message REQUEST-COMMAND-EXECUTION() to A-CLIENT.

Send message REQUEST-COMMAND-EXECUTION() to INV.

Provide CMD [ass from INV] as cmd is the object which,

via setup, has been associated from the invoker

Send message EXECUTE() to CMD.

Provide REC [ass from CMD] as the object on which the command

ultimately is carried out

Send message SAVE-UNDO-INFORMATION() to CMD.

RESULT: undo information has been saved

Send message DO-ACTIONS() to REC.

RESULT: command has been effected

RESULT: the effect of command has taken place

Send message ADD(CMD) to COMMAND-HISTORY.

RESULT: the parameter has been added to the list

RESULT: The command has been executed

RESULT: Done

Figure 2: A trace of the informal scenario from �gure 1.

the existence of an object which possess certain relationships to the already existing objects on
the scene. As a simple and practical convention, all objects on the scene have a unique name
through which they can be referred to during a scenario. Other kinds of object handles (such
as dot notation and references) are considered irrelevant for design purposes. In addition, the
class of an object is also registered.

The understandings are informal descriptions, in pure text. The understandings are crucial in
order to freeze and maintain the designer's intuition about the message.

The result of a message is an informal description of the e�ect in case the message activates a
procedural abstraction. If the message activates a functional abstraction, the result may be an
existing object being returned, a provision of an object to be returned, or a non class-bassed
value.

A scenario can be used to describe object interaction across the usual abstraction barriers. These
abstraction barriers are carefully protected in the static, class-based models as well as in the
implementation phase of the program development. However, in the early design phase it is
often useful to describe the interaction across these barriers, because such interaction may give
a better picture of the way we intend to solve a problem.

Each example of a message m to some C-object (some object of class C) will in the sequel be
called a message case for m in C. When talking about message cases we do not care whether
the message is sent at the outer level of a scenario, or some place deeper in a scenario.

A more complete and thorough description of scenarios, messages, objects, scenes, object-
provisions and other DYNAMO concepts can be found in [6].

Figure 2 shows an example of a scenario (the one described informally in section 1). We here
present the scenario as a trace of the most important information in the scenario. A trace is
roughly a pre-order traversal of the tree of messages in the scenario. The trace is generated by
the DYNAMO environment.

In section A.1 of the appendix we give an abstract grammar of a dynamic model. The stu� in
the appendix therefore complements the description above.

4

3 Deriving methods.

In this section we will discuss how to derive information about a method in a class on the basis
of a number of scenarios.

3.1 Basic method derivation.

Let us assume that we are interested in generating an outline of the method M in the class C.
In the simple case, the set of scenarios, on which we are based, only contain a single message
case mc for m in C. I.e., the entire set of scenarios only contain one example of an m-message
to a C-object. Consequently, the method needs to be generated from a single example.

There is a number of elementary informations in mc, which can be used when generating the
outline of the method, which we here call M:

� The name of the message can be used as the name of the method.

� The actual parameters can be used to conjecture some similar formal parameters together
with the classes of these.

� The general message understanding is suitable as the method comment. We also support
a speci�c message understanding, which intented to explain the particular message case.
This information is not appropriate here.

� Based on the result of the message it may be derived whether the method is procedure-like
or function-like. In some programming language this gives rise to di�erent renderings of
the method. In case of a function-like method, we can extract information about the type
of the object which will be returned from the method. This is relevant for programming
languages with static typing.

� The pre-situation and post-situation assertions of a message may, in some circumstances,
be turned into method pre-conditions and post-conditions, respectively. However, the
di�erences between situational and prerequisitional assertions (cf. the discussion in section
2) must be taken into consideration when doing so. Depending the programming language
in which we render the method, this may be a formal element, or just part of a method
comment.

In case there are local object provisions in mc, these can be translated to declarations of local
variables of the method M, which refers to appropriate objects. Thus, object provisions of local
objects leads both to declaration of local variables and to initialization of these variables to
objects. The latter aspect is, in general, the most problematic with respect to `code generation'.

In the most elementary situation, the message case does not prescribe messages to other objects
on the scene. We say that the message is terminal. This is either because no additional com-
munication is necessary in order to full�l the obligations of the underlying method, or because
the additional communication from receiver(m) to other objects is irrelevant for the model we
are building. Needless to say, it is not possible to generate a method body based on a terminal
message case.

Let us now consider the case where we have a single, non-terminal message case mc for m in C.
Thus, m sends messages from receiver(m) to a number of other objects (locally provided objects,
parameters, or globally available obejcts) and/or to itself.

5

Request-Command-Execution IS

--The invoker wants to execute its command

DO

Cmd.execute;

Command-History.add(Cmd);

ENSURE The command has been executed

END;

Figure 3: Derivation of a method from a non-terminal message based on a single message case.

Figure 3 shows a simple example of deriving a method from the message request-command-execution
to an invoker (the inner-most request-command-executionmessage in �gure 2). This messages
happens to represent the only message case of the message request-command-execution in the
class Invoker in this particular dynamic model. As it appears from the �gure we show the mes-
sage in an Ei�el-like syntax. The derivation of the method is taken directly from the DYNAMO
environment.

3.2 Conditional method derivation.

Let us now assume that there are two or more message cases that contribute to the method we
are deriving from the scenarios. The challenge is here how to subsume a number of examples
(found at various places in the scenarios) into a single description (a method body), which in
some sense covers all the examples.

To be concrete, we will assume that there are n message cases mc1, mc2, ..., mcn of the message
m in a class C. Each message case involves a message m to some instance oi of C. Message case
mci, in turn, sends the messages

mi;1, mi;2, mi;ni

from oi to the objects oi;j, i = 1:::n, j = 1:::ni. A concrete example, for three message cases is
shown in �gure 4. 1

m1

mc1

m1,1

m1,2

m1,3

o1

mc2

o3

m3

mc3

m3,1

m3,2

m2
m2,1

m2,2

m2,3

o2oA oB oA oB oC oA

Figure 4: Three message cases for m in a class C.

For our purposes in this section, the pre-situation and the post-situation of a message play
important roles. Recall that each message m, together with each message sent from receiver(m)

1In the �gure, the following equations relate the notation in the �gure to the general notation: m1 = m2 =
m3 = m, n1 = n2 = 3, n3 = 2, o1;1 = o2;1 = o3;1 = oA, O1;2 = o2;2 = oB , and o2;3 = oC .

6

C1

M

C2

M

C3

M

Cn

M

. . .

C

M

Figure 5: A number of methods arranged in an inheritance hierarchy.

to other objects, have pre-situations and post-situations. Thus, the message case mci gives rise
to the following \Hoare statements" for i = 1; :::n:2

� fPig oi.m fQig

� fPi;1g oi;1.mi;1 fPi;2g oi;2.mi;2 ... fPi;nig oi;ni .mi;ni fPi;ni+1g

Here Pi = pre-situtation(mi), Qi = post-situation(mi), Pi;j = pre-situation(mi;j), and Pi;j+1 is
implied by post-situation(mi;j), i = 1:::n, j = 1:::ni.

It may be the case that the classes of the receivers of mi, i = 1::n, are subclasses of C and that
C contains a virtual method which \covers" all the message cases. This is illustrated in �gure 5.
In that situation, a specialized method is selected based on the class of the receiver object. As a
consequence of this, it seems best to generate a number of di�erent methods (up to n di�erent
methods) in subclasses of C. But as already discussed, we do not synthesize class hierarchies
in our current work. Therefore we will in the following discussion assume that the n di�erent
message cases should be merged into a single method in C.

As a rough beginning, the method body of M in C is a n-way selection of one of the message
cases. Given the three message cases from �gure 4, the body of the derived method M goes like

if pre-situation(m1)
then oA.m1,1; oB.m1,2; oA.m1,3
else if pre-situation(m2)
then oA.m2,1; oB.m2,2; oC.m2,3
else if pre-situation(m3)
then oA.m3,1; self.m3,2

[1]

Notice that we capture and re
ect the situations where a message is sent to the \current object".
In DYNAMO all objects are named. In case a message m1 is sent to an object a, which in turn
sends a sub-message m2 to a, the latter message is rendred as \self.m2" (all depending of the
concrete syntax of the renderng, of course).

The n-way selection above is not always the outcome we want from the method synthesis. In
some situations the message cases are variations of each other. One of the cases may re
ect a
normal case, the remaining may be abnormal cases. As an example, all the cases may share a
common pre�x but di�er mutually in the su�xes.

2In the Hoare statements we ignore the actual parameters of the messages.

7

In order to illustrate this we can assume that m1;1 = m2;1 = m3;1 in �gure 4. In this context,
two messages are equal if they have the same name and if their receiver objects are identical.3

Let us call this message m�;1. Thus, in any case we send the message m�;1 before sending any
other message in M. Consequently, a more appropriate method derivation looks like:

oA.m*,1 ;
if pre-situation(m1,2)
then oB.m1,2; oA.m1,3
else if pre-situation(m2,2)
then oB.m2,2; oC.m2,3
else if pre-situation(m3,2)
then self.m3,2

[2]

Notice that the conditions in the if-then-else control structure have been changed from the pre-
situations of the original message cases to the pre-situations of the second \sub-message" of each
message case. These new conditions are far more realistic in an implementation of M. We may
say that the pre-situations in the �rst derivation (pre-situation(mi), i = 1; 2; 3) are oracular

assertions which predicts what happens in one of the sub-messages.

Let us now assume that all but one of m1;2, mn;2 are equal (in the same sense as above). We
talk about a semi-pre�x if a sequence of messages is a pre�x of all but one of a set of scenarios.
In terms of our example from �gure 4, where n = 3, we will assume that m1;2 = m2;2 = m�;2. A
typical set of scenarios leading to this situation sends m�;2 in the case that m�;1 succeeds; m3;2

is sent in case m�;1 fails:
4

oA.m*,1 ;
if post-situation(m*,1)
then oB.m*,2;
 if pre-situation(m1,3)
 then oA.m1,3
 else oC.m2,3
else self.m3,2

[3]

Notice that we take success and failure from the post-situation of m�;1 rather than from the
pre-situations of m�;2. In practical situations this does not lead to any di�culties, because the
designer is not likely to specify both a pre-situation of mi;2 and a post-situation of mi;1.

As an example we will study a set of scenarios of a simple programming environment. In this
environment, there are three di�erent scenarios of compiling a source program:

1. Complete compilation.

2. Non-complete compilation because of syntax errors.

3. Non-complete compilation because of type errors.

The traces of the three scenarios are shown in �gure 6. The �rst of these scenarios represent
the normal case, and the two others are abnormal. Notice that the two abnormal cases share

3We do, in addition, expect the messages to have similar or congruent parameter lists. However, this is an
assumption which is not part of this kind of message-equality.

4In a more conservative program generation we would substitute the two \else" clauses with \else if" clauses.

8

Send message COMPILE(OBJECT-PROVISION UC: USER-COMMUNICATION [local]) to SOURCE.

Send message LEX-ANALYZE() to SOURCE.

RESULT: Provide TS [floating] as a list of tokens, as produced by a lexical analysis.

Send message PARSE() to TS.

RESULT: Provide AST [floating] as an abstract syntax tree as proced by the parser.

Send message CHECK() to AST.

RESULT: No fatal errors found

Send message GENERATE-CODE() to AST.

RESULT: Provide CODE [floating] as an program object which may be directly executed

Send message SAVE(OBJECT-PROVISION NAME: STRING [part of SOURCE]) to CODE.

RESULT: Code has been saved in the database

Send message WRITE(DONE) to UC.

RESULT: Compilation done and code saved.

RESULT: CODE

Send message COMPILE(OBJECT-PROVISION UC: USER-COMMUNICATION [local]) to SOURCE.

Send message LEX-ANALYZE() to SOURCE.

RESULT: Provide TS [floating] as a list of tokens, as produced by a lexical analysis.

Send message PARSE() to TS.

RESULT: Provide ERROR-AST [floating] as an error AST which represents a program which

could not be parsed

Send message WRITE(PARSE-PROBLEMS) to UC.

RESULT: Encountered a context free syntax error.

RESULT: Provide ERROR-CODE [floating] as an object which represents impossible code

Send message COMPILE(OBJECT-PROVISION UC: USER-COMMUNICATION [local]) to SOURCE.

Send message LEX-ANALYZE() to SOURCE.

RESULT: Provide TS [floating] as a list of tokens, as produced by a lexical analysis.

Send message PARSE() to TS.

RESULT: Provide AST [floating] as an abstract syntax tree as proced by the parser.

Send message CHECK() to AST.

RESULT: No fatal errors found

Send message WRITE(CHECK-PROBLEM) to UC.

RESULT: Encountered a context sensitive error.

RESULT: Provide ERROR-CODE [floating] as an object which represents impossible code

Figure 6: Traces of three di�erent compilation scenarios.

9

Compile(Uc: User-Communication): Intermediate-Code IS

--Try to compile the SOURCE object to an executable representation

DO

Ts := Current.lex-analyze;

Ast := Ts.parse;

IF parsing ok THEN

Some-var := Ast.check;

IF checking ok THEN

Code := Ast.generate-code;

Code.save(Name);

Uc.write(Done);

ELSEIF SOURCE cannot be checked successful THEN

Uc.write(Check-Problem);

END

ELSEIF Source cannot be parsed THEN

Uc.write(Parse-Problems);

END

Result := Code;

END;

Figure 7: The method derived from the three senarios in �gure 6.

the message PARSE to TS. The method derived from the three messages is shown in �gure 7,
again rendered in an Ei�el-like syntax. The method in the �gure is generated by the DYNAMO
environment from the three scenarios.

The derivations discussed above are, of course, not universal. We capture common pre�xes and
common \semi pre�xes". There may be many other patterns, e.g., common su�xes instead of
common pre�xes. Our approach may be characterized as purely syntactical.

From an algorithmic point of view we represent a method body as a conditional regular expres-

sion. The �rst such expression is formed from all the message cases of m in C. Subsequently we
make a number of transformations on the expresssion. First we �nd out if there exists a common
pre�x of mi;1, mi;2, mi;ni, i = 1:::n. In other words we �nd j such that m1;1=m2;1=...=mn;1, ...,
m1;j=m2;j=...=mn;j. I j > 0 the pre�x exists, and we factor the pre�x out of the selection. If
j = 0 we look for an element in fm1;1,m2;1, ..., mn;1g which only occurs once. If we assume that
mj;i is such an element we look for a common pre�x in fm1;1,mj�1;1, mj+1;1 ..., mn;1g. More
algorithmic details can be found in appendix A.2.

3.3 Iterational method derivation.

As we have seen in the previous section, selections (if-then-else's) are obtained from multiple
and di�erent message cases extracted from a set of scenarios. In this section we will discuss how
to derive methods with iterations.

The basic idea in this part of the work is to conjecture elements of iteration based on repetition
in a single scenario. As a concrete example we will �rst study scenario 1 in �gure 8.

Let us assume that

� m1;2 = m1;4

� m1;3 = m1;5

� pre-situation(m1;2) = pre-situation(m1;4)

10

m1

Scenario 1

m1,1

m1,2

m1,3

o1 oA oB

m1,4

m1,5

m1,6

m2

Scenario 2

m2,1

m2,2

m2,3

o1 oA oB

m2,4

Figure 8: Two scenarios with repetitions.

In this context, two messages are equal if their message names are equal, if the receiver objects
have the same name, and if the parameter lists are equal. Two parameter lists are equal if they
are the same lenghts, and if the parameters are equal pairwise (comparing actual parameter
names and classes in case we compare two object-provision parameters). Notice that the equality
applied here is stronger than the equality applied in section 3.2 with the purpose of �nding
common pre�xes.

Given scenario 1, and the assumptions from above, we will conjecture that the sequence oB .m1;2;
oA.m1;3 is repeated. The rationale behind this conjection is that the situation P before each
repetion is the same; thus it is tempting propose a generalization of scenario 1 which embed
oB .m1;2; oA.m1;3 into a loop, which runs while P is true. The method derived by DYNAMO
from scenario 1 in �gure 8 is the following:

oA.m1,1;
while pre-situation(m1,2)
do begin
 oB.m1,2 ;
 oA.m1,3
 end;
oB.m1,6

[4]

The conjecture of the loop above is based on the observation of a complete repetiton. In DY-
NAMO we also support conjectures of loop based on incomplete repetitions, but only at the
end of a scenario. Scenario 2 in �gure 8 is an example, in which we assume that m2;2 = m2;4

in the same sense as above. Furthermore, we will assume that pre-situation(m2;2) and pre-
situation(m2;4) are the samme. This leads us to conjecture that m2;4 is the start of a repetion of
m2;2 and m2;3. This facility is in particular useful if the repeated sequence is lengthy, because we
hereby avoid duplication of many messages. Below we show the body of the method conjectured
from scenario 2 of �gure 8.

11

oA.m2,1;
while pre-situation(m2,2)
do begin
 oB.m2,2 ;
 oA.m2,3
 end

[5]

Let us �nally discuss scenario 3 in �gure 9 which is more di�cult with respect to loop conjec-
turing.

m3

Scenario 3

m3,1

m3,2

m3,3

o1 oA oB

m3,4

m3,5

m3,6

m3.7

m3,8

m3,9

m3,10

m3,11

m3.12

m3

Scenario 3’

m3,1

mX

mY

o1 oA oB

mX

mY

mZ

mX

mY

mX

mY

mZ

m3.12

Figure 9: Scenarios with repetition.

We will assume that:

� m3;2 = m3;4 = m3;7 = m3;9 = mX

� m3;3 = m3;5 = m3;8 = m3;10 = mY

� m3;6 = m3;11 = mZ

These assumptions are made clear in scenario 3' of the �gure, where we have introduced the mx,
my and mz messages. Furthermore, we will assume that the preconditions on all mX messages
coincide.

Below we show two, possible conjecturings of method bodies based on scenario 3.

12

oA.m3,1;
while pre-situation(mX)
do begin
 while pre-situation(mX)
 do begin
 oB.mX;
 oA.mY
 end;
 oB.mZ
 end;
oA.m3,12

oA.m3,1;
while pre-situation(mX)
do begin
 oB.mX;
 oA.mY;
 end;
oB.mZ
while pre-situation(mX)
do begin
 oB.mX;
 oA.mY;
 end;
oB.mZ;
oA.m3,12

The one to the left is the result if we grap the �rst encountered repetition in the systematic
scanning of the scenario. The one to the right will be the result if we grap the longst repetition
of the scenario, and threre after, recursively, apply the same scanning in the body of the loop. In
DYNAMO we search for the longest repetition �rst. Thus, DYNAMO will deliver the method
body to the right. Notice, by the way, that we generate the same loop control condition in
the outer and inner loops. This is a reminiscence of a more general problem of applying the
pre-situations as loop control condition (discussed next).

The use of the precondition P of the �rst repeated message as the loop control condition is
problematic in general. The situation before m3;2 and m3;4 in �gure 8 may be di�erent, but
still we may want to iterate. The problem is that we cannot easily identify the loop invariant

relevant part of the assertion. P re
ects, in principle, the total, computational situation before
m3;2 and m3;4. Consequently, the pre-situations and post-situations, as used in the messages of
the DYNAMO scenarios, are not ideal as the basis for discovering loops.

As another caveat, the derivation of loops from a complete or incomplete repetition can only
represent a guess. We may very well encounter situations where we conjecture a loop, but
semantically we simply had to do the same thing (exactly) twice.

From an algorithmic point of view the challenge here is to determine the longest repetition
among the sub-scenarios of a scenario; subsequently to identify an incomplete repetition at the
end of a scenario. Some of the details can be found in appendix A.3.

4 Deriving classes.

In this section we will discuss the derivation of a class C from a set of scenarios which involves
objects that are instances of C. The discussion will include the following aspects of a class:

� Class protocol, including visibility issues.

� Inheritance from other classes.

� Details about attributes.

� Details about methods.

13

Notice here that the derivation of method bodies already has been treated in depth in section
3.

Scenario-based dynamic models describe the interaction among objects. In DYNAMO objects
are characterized by

� a unique object name,

� the name of the class, and

� a so-called object keeping.

The sole purpose of the classes is to relate the set of objects which are instances of the same
class and as such share a number of properties. In the current version of the modelling language
there are no further information available on the classes.

The object keeping specify how objects are related to their context. Objects may be available
at global basis, local to a method behind a message, passed around via parameters and function
results (such object are called
oating), part of another object, or associated from another object.
For more details on the dynamic modelling language see [6].

4.1 Deriving information about the class protocol.

The class protocol is the set of properties (methods and attributes) which are available to clients
of the class.

Information about method signatures (names and formal parameters) and method comments
can relatively easy be extracted from the messages in the scenarios. If there, somewhere in the
set of scenarios, exists a message case of m in C there must exist a method M corresponding to
m in C, or in one of the superclasses of C. We conjecture that M is private if the sender and
receiver of m are identical objects5 for all available messages m in the scenario set. This is a
guess based on the evidence from the scenarios.

The attributes (instance variables) of the class C can be found be locating the following object
provisions of the dynamic model:

1. An object provision which provides an object X (say of class D) as part of Y, and further-
more assuming that Y is an object of class C.

2. An object provision which provides an object X (say of class D) as associated from Y, and
furthermore assuming that Y is an object of class C.

In the �rst case we can conclude that class C aggregates a D-part, and in the second that C
associates a D-object.

We are, in addition, interested in infering the subset of the attributes being public. To that end
we use the heuristic that an attribute X is private it is provided in a context of a message to a
C-object. Objects provided in other contexts are estimated as being public, thus contributing
to the class protocol of the class C. Again, these are guesses based on the evidence provided in
the set of scenarios.

5In more pratical terms, any m message is sent to self, the current object.

14

4.2 Deriving information about class inheritance.

One of the interesting questions is whether, or to which degree, information about inheritance
can be derived from a set of scenarios. Inheritance between classes is speci�ed at class level. Our
starting point is a set of objects, messages between the objects, and association and aggreation
relations among the objects.

Given the informations about objects from above, it turns out to be di�cult to extract knowledge
about the inheritance relations between the underlying classes. It might, however, be possible to
compare classes with respect to their class protocols. Let us brie
y develop a concrete proposal
along these lines.

Let C1 and C2 be two di�erent classes, and let PC1
and PC2

be the class protocols of C1

and C2 respectively. We may conjecture that C2 inherit from C1 if PC1
� PC2

.6 This is
based on the heuristics that a subclass (C2) extends the set of features which are inherited
from its superclass (C1). This is typically case, but not necessarily true in all object-oriented
programming languages (Ei�el being one of the exceptions).

In the current version of DYNAMO we do not attempt to infer inheritance relationships among
classed based on the ideas from above. The main reason is that we believe that inheritance
should not be discoved from accidential coincidence (in the sense from above) of class protocols.
Rather, inheritance should be formulated directly by the designer. Given our focus on pure
dynamic models, this is not possible in DYNAMO. However, in a future version of DYNAMO
we may want to specify the dynamic models and part of the static models side by side.

5 Tool support in DYNAMO.

The DYNAMO tools7 make it possible to create and explore dynamic models.

The overall message structure of a scenario may be created and edited in the interaction diagram

editor. In this editor, scenarios are shown as UML-like sequence diagrams (where vertical lines
represent objects and horizontal lines represent messages between objects). Besides the interac-
tion diagram editor there are a number of browsers via which it is possible to edit the details of
dynamic models, messages and objects. The dynamic model browser allows editing of the initial
scene and the message structure of the scenarios. (As such, the dynamic model browser and the
interaction diagram editor are overlapping). The message browser allows editing of the details
of a single message. The object browser allows editing of the details of an object.

The result of a program synthesis is shown in a DYNAMO static model browser. The static
model browser may be activated on a dynamic model, or on a single scenario in the model. Figure
10 shows an example of the static model browser. The class list of the browser enumerates the
classes of which there exists instances in the analyzed dynamic model. When selecting a class in
the class list the list of the synthesized methods are shown in the method list. When activating
one of the buttons \Generate class" or \Generate method" a the synthesized program element
is shown in a new text window.

It is possible to �lter the method list by selecting/de-selecting items in the \Methods to list"
section of the browser. We may, for instance, decide that we only want to deal with public
methods which contains selective or iterative control structures in the synthesized bodies.

6In an implementation of this rule we have to decide when two methods are equal with respect to the subset
test. This may involve identical names and identical parameter lists.

7It is possible to see examples of all the DYNAMO tools via the World Wide Web on
http://www.cs.auc.dk/�normark/dyn-models/tool-tour/all.htm.

15

Figure 10: The static model browser.

It is, in addition, possible to chose the concrete syntax and the level of abstraction which is used
to present the result of the synthesized classes and methods. We support the syntaxes of a wide
variety of di�erent object-oriented programming languages in order to make the designers more
comfortable with the result of the synthesis process.

6 Similar work.

To appear in a later version of the paper.

7 Conclusions.

The goal of the DYNAMO project is to conclude on the hypothesis which states that dynamic

models may play an important role as the \�rst model" in the object-oriented design process.

The goal of the work discussed in this paper is to conclude on the sub-hypothesis which states
that outlines of classes and methods can be synthesized from a DYNAMO dynamic model. The
con�rmation of this hypothesis will clearly contribute to the main hypothesis of the project. (If
we are able to derive parts of the static model from an appropriate dynamic model it is more
realistic to take a dynamic model as our starting point).

The DYNAMO project is still in progress, and it is not possible to come forward with any
de�nitive conclusions yet. Here we will therefore restrict ourselves to a discussion of our approach
and compare it brie
y with similar approaches.

Synthesis of program-like descriptions have been attempted in several contexts. In a paper from
the mid seventies Biermann et al. describe how to construct programs from example executions
[1]. Based on a number of condition/instruction traces the algorithm of Biermann et al. generates
a minimal program, which is able to execute all the traces. The algorithm basically searches
through all possible programs which can be formed on the given traces. The order of the search
guarantees that the smallest possible program will come out as the result. The program is
represented as a transition graph, where the nodes are instructions and the edges are conditions.
Kosmimies et al. discuss how to utilize the Biermann approach to synthesize state machines from

16

scenarios [3]. Notice that a state machine can be regarded as transition graph too. It may be
a challenge in its own right to generate conventional object-oriented program text from such
transition graphs.

In contrast, we generate classes and methods in a programming language like notation from a set
of DYNAMO scenarios. Thus, we emphasize that the result of the synthesis should comply with
the usual object-oriented program structure in terms of classes, class relations (inheritance,
associations, aggregation), and methods. Following our approach, we carry out a number of
abstract syntactic transformations on a collected subset of the scenarios in order to synthesize
the method bodies. We are looking for a number of patterns in the set of relevant of scenarios.
We are con�dent that the existing patterns are useful, but several additional patterns may exist.
This approach is both a strength (because of simplicity) and a weakness (because of its inherent
incompleteness).

It may be possible to apply the synthesis techniques of the Biermann and the Koskimies groups
in our setting as well. This may be a theme in our continued research.

Besides the synthesis of method bodies we also care about class protocols (visibility of attributes
and methods) and relations among classes. We have demonstrated that it is possible to estimate
the visibility of methods in a class from the scenarios. It is harder to infer contributions to the
generalization/specialization structures among classes from the scenarios. In addition, we have
in this paper questioned whether it is worthwhile to to so at all.

A Algorithms and datastructures

In this appendix we will describe the algorithmic aspects of our work. DYNAMO is implemented
in Common Lisp and CLOS using Allegro Common Lisp for Windows (on a PC platform). For
the sake of this appendix, however, we will describe the algorithms and data structures in a
language neutral way.

A.1 The abstract grammar

As a data structure, a dynamic model is probably best understood as a tree derived from the
abstract grammar shown below:8

<dynamic-model> ::= <initial-scene> <scenario>-list

<scenario> ::= <object> <activation>

<object-provision>-list

<scenario>-list

<result>

<activation> ::= <operation> <actual-parameter>-list

<pre-situation>

<general-understanding> <specific-understanding>

<object-provision> ::= <class> <object-id> <keeping> <object-understanding>

<keeping> ::= <keep-as-part> | <keep-as-associated> | <global> |

<local> |<floating>

<result> ::= <effect> | <object-id> | <object-provision>

<initial-scene> ::= <object-provision>-list

<actual-parameter> ::= <object-id> | <object-provision> | <informal-parameter>

8The <activation> constructor might as well be folded into the scenario constructor.

17

The meaning of syntactic categories is discussed in section 2 of this paper. The Syntactic cate-
gories (nonterminals) without a left-hand-side are either strings/symbols or just atomic termi-
nal informations. The syntactic categories with a left-hand-side de�nition corresponds to either
CLOS classes that aggregates other syntactic categories (constructors) or CLOS (super)classes
with a number of specializations (alternatives).

In addition to the abstract grammar of the dynamic modelling language we introduce a simple
language for conditional regular expression. This term covers regular expressions in which each
alternative in a selection is controlled by a condition, and in which iteration is controlled by a
single condition (repeat as long the the condition holds). The terminal elements of conditional
regular expressions are objects of the syntactic categori scenario.

<regular-expression> := <regular-sequence> | <regular-selection> | <regular-iteration>

<regular-sequence> := <regular-element>-list

<regular-selection> := <regular-element>-list <predicate>-list

<regular-iteration> := <predicate> <regular-element>

<regular-element> := <scenario> | <regular-expression>

In a regular-selection there must be a regular-element for each predicate, and vise versa.
Thus, the regular-element list and the predicate list must have the same lengths.

It will be made clear below how we use conditional regular expressions as a representation of a
method body that consists of several messages cases of a message m in a class C.

A.2 Conditional method derivation

In this section we will describe the algorithm behind the derivation of method bodies with
conditionals, as discussed in section 3.2. The starting point is a dynamic model in terms of
an initial scene and a set of scenarios. The input is a message m and a class C. The desired
result is a method body of M. The function with this input-output characteristics is called
synthesize-method-body:

synthesize-method-body(m: method-name, C: class-name): regular-expression

let mc-list = collect all message cases for m in C in the scenario set

mc-list-1 = the filtering terminal messages out of mc-list

mc-list-2 = if empty(mc-list-1) then list(first(mc-list)) else mc-list-1

mc-list-3 = the filtering duplicates out of mc-list-2

mc-list-4 = map propagate-post-to-pre on mc-list-3

reg-exp-1 = regularize(mc-list-4)

in

simplify-regular-expression(reg-exp-1)

end.

Recall that a message case (a scenario) is terminal if it contains no submessages (its scenario-list
is empty), see 3.1. If all messages cases for m in C are empty we see that mc-list-2 becomes
the list of one of the terminal message cases.

The function propagate-post-to-pre overwrites a trivially true pre-situation with the pre-
decessing post-situations, if the post-situation is non-trivival. In terms of the notation from
section 3.2, pre-situation(mi;j) becomes post-situation(mi;j�1) in case the presituation of mi;j

is trivially true. This is convenient because it allows the designer to state the assertions where
it is most natural in a scenario, without having too much redundancy between a pre-situations
and the post-situations of the previous message in the scenario.

18

The function regularize transforms a list of scenarios to a regular-expression. In case the
list contains more than one element a regular-selection is returned, which selects among the
sequences of sub-scenarios of the scenarios parameter.

regularize(scenarios: list of message-cases): regular-expression

if length(mcl) = 1

then make-regular-sequence(scenario-list(first(mcl)))

else let sequences = map (make-regular-sequence on scenario-list of each scenario) on scenarios

predicates = map (pre-situation of activation of each scenario) on scenarios

in make-regular-selection(sequences, predicates)

The function simplify-regular-expression is central because it is the function that extract
a common pre�x or a common semi-pre�x from a set of scenarios, represented as a regular-
selection. Thus, simplyfy-regular-expression is the function which transforms the body of
the method to a form that is more implementation-like:

simplify-regular-expression(sel: regular-selection): regular-expression

let sel-1 = remove-empty-alternatives(sel)

prefix = common-prefix(sel-1)

in if length(prefix) > 0

then make-regular-sequence(prefix, remove-prefix(prefix,sel-1))

else simplify-regular-expression-1(sel1)

We �rst remove empty alternatives from the regular-selection. The function common-prefix

identi�es the longest pre�x of the scenarios in sel-1. Let us assume that sel-1 is selection
among n sequences s1, s2, ..., sn. Each of sequence si consists of the \elements" si;1, si;2, ...
si;ji. It is straightforward to make a recursive function common-prefix-2 which �nds a common
pre�x of two sequences (not shown here). First we �nd the common pre�x, p1, of s1 and s2. Next
we �nd the common pre�x of p1 and s3, and so on until all n sequences have been processed.

If a common pre�x is found, we form a sequence of the pre�x and the remaining regular-
selection, which is returned by remove-prefix(prefix,sel-1). An example illustrating this
transformation can be seen on page 7, where method body [1] is transformed in method body
[2].

If no common pre�x is found, we call simplify-regular-expression-1 in order to possibly
�nd a semi-pre�x.

simplify-regular-expression-1(sel: regular-selection): regular-expression

if number of alternatives in sel > 2

then let odd-alternative = find-odd-alternative(sel)

other-alteratives = all-alternatives-but(odd-alternative, sel)

in if odd-alternative

then make-regular-selection(

list(simplify-regular-expression(

make-regular-selection(other-alternatives, appropriate conditions))

odd-alternative)

appropriate conditions)

else sel

else sel

We �rst identify the possible single alternative which hinders the identi�cation of a common
pre�x. If such a one exists we form a new selection between the \odd alternative" and the
remaning case. In the remaining case we activate simplify-regular-expression recursively
in order to extract the common pre�x of the \non odd alternatives". Notice that in the func-
tion above we does not describe in precise terms how to handle the conditions of the involved

19

regular-selections. As an illustrative examle the function simplify-regular-expression-1 is
responsible for transforming method body [2] to method body [3] on page 8.

What is left is now to determine a possible \odd alternative" among the n alternatives in a
regular selection. Let us again look at the n alternatives s1, s2, ..., sn from above. We now take
a closeer look at s1;1, s2;1, ..., sn;1. We want the �nd i such that si;1 only appears once in the
set fs1;1, s2;1, ..., sn;1g. The scenario si is the \odd alternative".

Some statement about the complexity.

A.3 Iterational method derivation

In this section we will describe how we identify a repeting subsequence among the sub-scenarios
of a given scenario. Let us study the scenario s, as represented by the message case mc, which
sends the messages m1, m2, mk. The problem is to �nd a repetition in this sequence of messages.
The function find-and-transform-repetitions does the job:

find-and-transform-repetitions(seq: regular-sequence): regular-expression

let rep = repetition(the elements of seq)

in if rep

then aggregate-iteration(split-sequence(seq,rep))

else seq

The function repetition searches for a repetitional subsequence of seq.

repetition(scenarios: list of scenario): list of scenario

if empty(scenarios)

then empty-list

else let immediate-rep = prefix-repetition(scenarios)

in if immediate-rep

then immediate-rep

else repetition(tail(scenarios))

The function prefix-repetition searches for a repetition starting with the �rst element of the
list. As an example the list (a b) is repeated immediately in (a b a b c a b a b c d e).
However, the function does not return (a b), but instead (a b a b c) because this list is a
longer pre�x repetition.

prefix-repetition(scenarios: list of scenario): list of scenario

find-prefix-repetition(list(first(scenario)), tail(scenario)).

find-prefix-repetition(prefix, rest: list of scenario): list of scenario

if empty(rest)

then empty-list

else if prefix-repeated-immediately(prefix,rest) and

not find-prefix-repetition(append(prefix, first(rest)), tail(rest))

then prefix

else find-prefix-repetition(append(prefix, first(rest)), tail(rest)).

The function prefix-repeated-immediately is a straightforward function (not shown here)
which tests whether its �rst parameter coincide with the �rst \few" elements of the second
parameters. In the actual DYNAMO implementation, find-prefix-repetition handles the
additional case of incomplete repetitions (as discussed in section 3.3).

Now having explained how to �nd the wanted repetition, we must deal with how to split the
original sequence into a pre�x, a repeating part, and a su�x. This is the job of the function

20

aggregate-iteration. But �rst split-sequence is invoked on the original sequence and
located pre�x.

split-sequence(seq,rep: list of scenarios): three lists of scenarios

let prefix = the elements before rep occurs in seq

rep = the elements of the repetitions, as many times as possible

suffix = the remaining elements of seq

in (prefix, rep, suffix).

aggregate-iteration(prefix,repetition,suffix: list of scenario): regular-sequence

make-regular-sequence(

append(find-and-transform-repetitions (make-regular-sequence(prefix))),

make-regular-iteration(

find-and-transform-repetitions(make-regular-sequence(repetition)),

appropriate condition),

find-and-transform-repetitions (make-regular-sequence(suffix))).

Again, we do not explain in details how �nd the \appropriate conditions". As an interesting
detail, notice how the search for repetitions is activated recursively in the function above.

As an example of an application of �nd-and-transform-repetions please take a look at method
body [4] on page 11.

Some statement about the complexity.

Finally, we have to deal with how find-and-transform-repetitions must be called from
simplify-regular-expression, which we discussed in section A.2. We will not go into these
details in the present paper. However, it should be noticed as a general remark that the combina-
tion of the supported transformations very well may turn out to be an issue of great importance
if we look for other patterns than common pre�xes, common semi-pre�xes, and repetitions.

References

[1] A. W. Biermann and R. Krishnaswamy. Constructing programs from example computations. IEEE

Transactions on Software Engineering, SE-2:141{153, 1976.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-

oriented Software. Addison Wesley, Reading, 1996.

[3] Kai Koskimies and Erkki M�akinen. Automatic synthesis of state machines from trace diagrams.
Software - Practice and Experience, 24(7):643{658, July 1994.

[4] Kai Koskimies, Tatu M�annist�a, Tarja Syst�a, and Jyrki Tuomi. SCED: A tool for dynamic modelling
of object systems. Technical Report A-1996-4, Department of Computer Scienece, University of
Tampere, Finland, 1996.

[5] Bertrand Meyer. Ei�el the Language. Prentice Hall, 1992.

[6] Kurt N�rmark. Towards an abstract language for dynamic modelling in object-oriented design. In
TOOLS'97, 1997.

21

