
Martin Zimmermann
Aalborg University

Synthesis of Infinite-state Systems

UniVr/UniUd Summer School on Formal Methods for
Cyber-Physical Systems, Udine, August 29, 2023

Let’s Play a Game

1. I pick a number m > 0.

2. You pick a number a ≥ m.

3. I pick a number d ∈ {2, 3, 5, 7}.
4. You win if a mod d = 0, otherwise I win.

A winning strategy for you:
Given my choice m > 0, pick a = 210m. This is winning,
as we have 210m mod d = 0 for every d ∈ {2, 3, 5, 7}.

1

Let’s Play a Game

1. I pick a number m > 0.

2. You pick a number a ≥ m.

3. I pick a number d ∈ {2, 3, 5, 7}.
4. You win if a mod d = 0, otherwise I win.

A winning strategy for you:
Given my choice m > 0, pick a = 210m. This is winning,
as we have 210m mod d = 0 for every d ∈ {2, 3, 5, 7}.

1

Let’s Play a Game

1. I pick a number m > 0.

2. You pick a number a ≥ m.

3. I pick a number d ∈ {2, 3, 5, 7}.
4. You win if a mod d = 0, otherwise I win.

A winning strategy for you:
Given my choice m > 0, pick a = 210m. This is winning,
as we have 210m mod d = 0 for every d ∈ {2, 3, 5, 7}.

1

Let’s Play a Game

1. I pick a number m > 0.

2. You pick a number a ≥ m.

3. I pick a number d ∈ {2, 3, 5, 7}.
4. You win if a mod d = 0, otherwise I win.

A winning strategy for you:
Given my choice m > 0, pick a = 210m. This is winning,
as we have 210m mod d = 0 for every d ∈ {2, 3, 5, 7}.

1

Let’s Play a Game

1. I pick a number m > 0.

2. You pick a number a ≥ m.

3. I pick a number d ∈ {2, 3, 5, 7}.
4. You win if a mod d = 0, otherwise I win.

A winning strategy for you:
Given my choice m > 0, pick a = 210m. This is winning,
as we have 210m mod d = 0 for every d ∈ {2, 3, 5, 7}.

1

Let’s Play a Game

1. I pick a number m > 0.

2. You pick a number a ≥ m.

3. I pick a number d ∈ {2, 3, 5, 7}.
4. You win if a mod d = 0, otherwise I win.

A winning strategy for you:
Given my choice m > 0, pick a = 210m. This is winning,
as we have 210m mod d = 0 for every d ∈ {2, 3, 5, 7}.

1

Let’s Play a Game

1. I pick a number m > 0.

2. You pick a number a ≥ m.

3. I pick a number d ∈ {2, 3, 5, 7}.
4. You win if a mod d = 0, otherwise I win.

A winning strategy for you:
Given my choice m > 0, pick a = 210m. This is winning,
as we have 210m mod d = 0 for every d ∈ {2, 3, 5, 7}.

1

Let’s Play a Game

1. I pick a number m > 0.

2. You pick a number a ≥ m.

3. I pick a number d ∈ {2, 3, 5, 7}.
4. You win if a mod d = 0, otherwise I win.

A winning strategy for you:
Given my choice m > 0, pick a = 210m. This is winning,
as we have 210m mod d = 0 for every d ∈ {2, 3, 5, 7}.

1

Let’s Play a Game

1. I pick a number m > 0.

2. You pick a number a ≥ m.

3. I pick a number d ∈ {2, 3, 5, 7}.
4. You win if a mod d = 0, otherwise I win.

A winning strategy for you:
Given my choice m > 0, pick a = 210m. This is winning,
as we have 210m mod d = 0 for every d ∈ {2, 3, 5, 7}.

1

Let’s Play a Game

1. I pick a number m > 0.

2. You pick a number a ≥ m.

3. I pick a number d ∈ {2, 3, 5, 7}.
4. You win if a mod d = 0, otherwise I win.

A winning strategy for you:
Given my choice m > 0, pick a = 210m. This is winning,
as we have 210m mod d = 0 for every d ∈ {2, 3, 5, 7}.

1

Let’s Play a Game

1. I pick a number m > 0.

2. You pick a number a ≥ m.

3. I pick a number d ∈ {2, 3, 5, 7}.
4. You win if a mod d = 0, otherwise I win.

A winning strategy for you:
Given my choice m > 0, pick a = 210m. This is winning,
as we have 210m mod d = 0 for every d ∈ {2, 3, 5, 7}.

1

Reminder: Parity Games

2

3

9 7

1

0 6

4 10

Player 0:
Protagonist,

round vertices,

wins if maximal color seen infinitely
often is even (has parity 0).

Player 1:

Antagonist,

square vertices,

wins if maximal color seen infinitely
often is odd (has parity 1).

A parity game (where we identify vertex names and colors)

, its
winning regions (blue for Player 0, red for Player 1), and
(positional) winning strategies for both players (on their winning
regions).

2

Reminder: Parity Games

2

3

9 7

1

0 6

4 10

Player 0:
Protagonist,

round vertices,

wins if maximal color seen infinitely
often is even (has parity 0).

Player 1:

Antagonist,

square vertices,

wins if maximal color seen infinitely
often is odd (has parity 1).

A parity game (where we identify vertex names and colors), its
winning regions (blue for Player 0, red for Player 1)

, and
(positional) winning strategies for both players (on their winning
regions).

2

Reminder: Parity Games

2

3

9 7

1

0 6

4 10

Player 0:
Protagonist,

round vertices,

wins if maximal color seen infinitely
often is even (has parity 0).

Player 1:

Antagonist,

square vertices,

wins if maximal color seen infinitely
often is odd (has parity 1).

A parity game (where we identify vertex names and colors), its
winning regions (blue for Player 0, red for Player 1), and
(positional) winning strategies for both players (on their winning
regions).

2

Parity Games on One Slide
A parity game (V ,V0,V1,E ,Ω) consists of

a set V of vertices partitioned into
the sets V0 and V1 of vertices of Player 0 and Player 1,
a set E ⊆ V × V of directed edges (we assume that every
vertex has at least one outgoing edge), and
a coloring Ω: V → N of the vertices.

A play: an infinite sequence v0v1v2 · · · ∈ V ω such that
(vn, vn+1) ∈ E for all n.
v0v1v2 · · · is winning for Player 0 (Player 1): parity of the
maximal color seen infinitely often is even (odd).
Strategy for Player i : σ : V ∗Vi → V such that
(v , σ(wv)) ∈ E for all w ∈ V ∗ and v ∈ Vi .
σ is positional: σ(wv) = σ(v) for all w ∈ V ∗ and v ∈ Vi .
v0v1v2 · · · consistent with σ: vn+1 = σ(v0 · · · vn) for all n
with vn ∈ Vi .
σ is winning from v ∈ V : all plays starting in v and
consistent with σ are winning for Player i .

3

Parity Games on One Slide
A parity game (V ,V0,V1,E ,Ω) consists of

a set V of vertices partitioned into
the sets V0 and V1 of vertices of Player 0 and Player 1,
a set E ⊆ V × V of directed edges (we assume that every
vertex has at least one outgoing edge), and
a coloring Ω: V → N of the vertices.

A play: an infinite sequence v0v1v2 · · · ∈ V ω such that
(vn, vn+1) ∈ E for all n.
v0v1v2 · · · is winning for Player 0 (Player 1): parity of the
maximal color seen infinitely often is even (odd).

Strategy for Player i : σ : V ∗Vi → V such that
(v , σ(wv)) ∈ E for all w ∈ V ∗ and v ∈ Vi .
σ is positional: σ(wv) = σ(v) for all w ∈ V ∗ and v ∈ Vi .
v0v1v2 · · · consistent with σ: vn+1 = σ(v0 · · · vn) for all n
with vn ∈ Vi .
σ is winning from v ∈ V : all plays starting in v and
consistent with σ are winning for Player i .

3

Parity Games on One Slide
A parity game (V ,V0,V1,E ,Ω) consists of

a set V of vertices partitioned into
the sets V0 and V1 of vertices of Player 0 and Player 1,
a set E ⊆ V × V of directed edges (we assume that every
vertex has at least one outgoing edge), and
a coloring Ω: V → N of the vertices.

A play: an infinite sequence v0v1v2 · · · ∈ V ω such that
(vn, vn+1) ∈ E for all n.
v0v1v2 · · · is winning for Player 0 (Player 1): parity of the
maximal color seen infinitely often is even (odd).
Strategy for Player i : σ : V ∗Vi → V such that
(v , σ(wv)) ∈ E for all w ∈ V ∗ and v ∈ Vi .
σ is positional: σ(wv) = σ(v) for all w ∈ V ∗ and v ∈ Vi .

v0v1v2 · · · consistent with σ: vn+1 = σ(v0 · · · vn) for all n
with vn ∈ Vi .
σ is winning from v ∈ V : all plays starting in v and
consistent with σ are winning for Player i .

3

Parity Games on One Slide
A parity game (V ,V0,V1,E ,Ω) consists of

a set V of vertices partitioned into
the sets V0 and V1 of vertices of Player 0 and Player 1,
a set E ⊆ V × V of directed edges (we assume that every
vertex has at least one outgoing edge), and
a coloring Ω: V → N of the vertices.

A play: an infinite sequence v0v1v2 · · · ∈ V ω such that
(vn, vn+1) ∈ E for all n.
v0v1v2 · · · is winning for Player 0 (Player 1): parity of the
maximal color seen infinitely often is even (odd).
Strategy for Player i : σ : V ∗Vi → V such that
(v , σ(wv)) ∈ E for all w ∈ V ∗ and v ∈ Vi .
σ is positional: σ(wv) = σ(v) for all w ∈ V ∗ and v ∈ Vi .
v0v1v2 · · · consistent with σ: vn+1 = σ(v0 · · · vn) for all n
with vn ∈ Vi .

σ is winning from v ∈ V : all plays starting in v and
consistent with σ are winning for Player i .

3

Parity Games on One Slide
A parity game (V ,V0,V1,E ,Ω) consists of

a set V of vertices partitioned into
the sets V0 and V1 of vertices of Player 0 and Player 1,
a set E ⊆ V × V of directed edges (we assume that every
vertex has at least one outgoing edge), and
a coloring Ω: V → N of the vertices.

A play: an infinite sequence v0v1v2 · · · ∈ V ω such that
(vn, vn+1) ∈ E for all n.
v0v1v2 · · · is winning for Player 0 (Player 1): parity of the
maximal color seen infinitely often is even (odd).
Strategy for Player i : σ : V ∗Vi → V such that
(v , σ(wv)) ∈ E for all w ∈ V ∗ and v ∈ Vi .
σ is positional: σ(wv) = σ(v) for all w ∈ V ∗ and v ∈ Vi .
v0v1v2 · · · consistent with σ: vn+1 = σ(v0 · · · vn) for all n
with vn ∈ Vi .
σ is winning from v ∈ V : all plays starting in v and
consistent with σ are winning for Player i .

3

Parity Games on One Slide
A parity game (V ,V0,V1,E ,Ω) consists of

a set V of vertices partitioned into
the sets V0 and V1 of vertices of Player 0 and Player 1,
a set E ⊆ V × V of directed edges (we assume that every
vertex has at least one outgoing edge), and
a coloring Ω: V → N of the vertices.

A play: an infinite sequence v0v1v2 · · · ∈ V ω such that
(vn, vn+1) ∈ E for all n.
v0v1v2 · · · is winning for Player 0 (Player 1): parity of the
maximal color seen infinitely often is even (odd).
Strategy for Player i : σ : V ∗Vi → V such that
(v , σ(wv)) ∈ E for all w ∈ V ∗ and v ∈ Vi .
σ is positional: σ(wv) = σ(v) for all w ∈ V ∗ and v ∈ Vi .
v0v1v2 · · · consistent with σ: vn+1 = σ(v0 · · · vn) for all n
with vn ∈ Vi .
σ is winning from v ∈ V : all plays starting in v and
consistent with σ are winning for Player i .

3

Modeling the Game

0 0 0 0 0 0 0 0 0 0 0 · · ·

1 1 1 1 1 1 1 1 1 1 · · ·

1 1 1 1 1 1 1 1 1 1 · · ·

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

0

1

1

· · ·

· · ·

· · ·

· · ·

· · ·

Parity condition: The circle player (i.e., you) wins if either only
gray vertices are visited or a green vertex is visited.

4

Modeling the Game

0 0 0 0 0 0 0 0 0 0 0 · · ·

1 1 1 1 1 1 1 1 1 1 · · ·

1 1 1 1 1 1 1 1 1 1 · · ·

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

0

1

1

· · ·

· · ·

· · ·

· · ·

· · ·

Parity condition: The circle player (i.e., you) wins if either only
gray vertices are visited or a green vertex is visited.

4

Modeling the Game

0 0 0 0 0 0 0 0 0 0 0 · · ·

1 1 1 1 1 1 1 1 1 1 · · ·

1 1 1 1 1 1 1 1 1 1 · · ·

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

0

1

1

· · ·

· · ·

· · ·

· · ·

· · ·

Parity condition: The circle player (i.e., you) wins if either only
gray vertices are visited or a green vertex is visited.

4

Modeling the Game

0 0 0 0 0 0 0 0 0 0 0 · · ·

1 1 1 1 1 1 1 1 1 1 · · ·

1 1 1 1 1 1 1 1 1 1 · · ·

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

0

1

1

· · ·

· · ·

· · ·

· · ·

· · ·

Parity condition: The circle player (i.e., you) wins if either only
gray vertices are visited or a green vertex is visited.

4

Modeling the Game

0 0 0 0 0 0 0 0 0 0 0 · · ·

1 1 1 1 1 1 1 1 1 1 · · ·

1 1 1 1 1 1 1 1 1 1 · · ·

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

0

1

1

· · ·

· · ·

· · ·

· · ·

· · ·

Parity condition: The circle player (i.e., you) wins if either only
gray vertices are visited or a green vertex is visited.

4

Modeling the Game

0 0 0 0 0 0 0 0 0 0 0 · · ·

1 1 1 1 1 1 1 1 1 1 · · ·

1 1 1 1 1 1 1 1 1 1 · · ·

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

0

1

1

· · ·

· · ·

· · ·

· · ·

· · ·

Parity condition: The circle player (i.e., you) wins if either only
gray vertices are visited or a green vertex is visited.

4

Infinity Makes Things Interesting

Attractor computations may take infinitely many steps.
··
·

· · ·

· · ·

· · ·

5

Infinity Makes Things Interesting

Attractor computations may take infinitely many steps.
··
·

· · ·

· · ·

· · ·

5

Infinity Makes Things Interesting

Attractor computations may take infinitely many steps.
··
·

· · ·

· · ·

· · ·

5

Infinity Makes Things Interesting

Attractor computations may take infinitely many steps.
··
·

· · ·

· · ·

· · ·

5

Infinity Makes Things Interesting

Attractor computations may take infinitely many steps.
··
·

· · ·

· · ·

· · ·

5

Infinity Makes Things Interesting

Attractor computations may take infinitely many steps.
··
·

· · ·

· · ·

· · ·

5

Infinity Makes Things Interesting

Attractor computations may take infinitely many steps.
··
·

· · ·

· · ·

· · ·

5

Infinity Makes Things Interesting

Attractor computations may take infinitely many steps.
··
·

· · ·

· · ·

· · ·

5

Infinity Makes Things Interesting

Attractor computations may take infinitely many steps.
··
·

· · ·

· · ·

· · ·

5

Infinity Makes Things Interesting

Attractor computations may take infinitely many steps.
··
·

· · ·

· · ·

· · ·

5

Infinity Makes Things Interesting

Attractor computations may take infinitely many steps.
··
·

· · ·

· · ·

· · ·

5

Infinity Makes Things Interesting

Attractor computations may take infinitely many steps.
··
·

· · ·

· · ·

· · ·

5

Infinity Makes Things Interesting

Attractor computations may take infinitely many steps.
··
·

· · ·

· · ·

· · ·

5

Infinity Makes Things Interesting

Attractor computations may take infinitely many steps.
··
·

· · ·

· · ·

· · ·

5

Infinity Makes Things Interesting

Attractor computations may take infinitely many steps.
··
·

· · ·

· · ·

· · ·

5

Infinity Makes Things Interesting

Attractor computations may take infinitely many steps.
··
·

· · ·

· · ·

· · ·

5

Infinity Makes Things Interesting

Attractor computations may take infinitely many steps.
··
·

· · ·

· · ·

· · ·

5

Infinity Makes Things Interesting

Attractor computations may take infinitely many steps.
··
·

· · ·

· · ·

· · ·

5

Infinity Makes Things Interesting

Attractor computations may take infinitely many steps.
··
·

· · ·

· · ·

· · ·

5

Infinity Makes Things Interesting

Attractor computations may take infinitely many steps.
··
·

· · ·

· · ·

· · ·

5

Infinity Makes Things Interesting

Attractor computations may take infinitely many steps.
··
·

· · ·

· · ·

· · ·

5

Infinity Makes Things Interesting

Attractor computations may take infinitely many steps.
··
·

· · ·

· · ·

· · ·

5

Infinity Makes Things Interesting

Attractor computations may take infinitely many steps.
··
·

· · ·

· · ·

· · ·

5

Infinity Makes Things Interesting

Attractor computations may take infinitely many steps.
··
·

· · ·

· · ·

· · ·

5

Infinity Makes Things Interesting

Attractor computations may take infinitely many steps.
··
·

· · ·

· · ·

· · ·

5

Infinity Makes Things Interesting

Attractor computations may take infinitely many steps.
··
·

· · ·

· · ·

· · ·

5

Infinity Makes Things Interesting

Attractor computations may take infinitely many steps.
··
·

· · ·

· · ·

· · ·

5

Infinity Makes Things Interesting

Attractor computations may take infinitely many steps.
··
·

· · ·

· · ·

· · ·

5

Infinity Makes Things Interesting

Attractor computations may take infinitely many steps.
··
·

· · ·

· · ·

· · ·

5

Infinity Makes Things Interesting

Attractor computations may take infinitely many steps.
··
·

· · ·

· · ·

· · ·

5

Infinity Makes Things Interesting

Attractor computations may take infinitely many steps.
··
·

· · ·

· · ·

· · ·

5

Infinity Makes Things Interesting

Attractor computations may take infinitely many steps.
··
·

· · ·

· · ·

· · ·

5

Infinity Makes Things Interesting

Attractor computations may take infinitely many steps.
··
·

· · ·

· · ·

· · ·

5

Infinity Makes Things Interesting

Attractor computations may take infinitely many steps.
··
·

· · ·

· · ·

· · ·

5

Infinity Makes Things Interesting

Attractor computations may take infinitely many steps.
··
·

· · ·

· · ·

· · ·

5

Infinity Makes Things Interesting

Attractor computations may take infinitely many steps.
··
·

· · ·

· · ·

· · ·

5

More Interesting Things

Set of colors seen infinitely often during a play may be empty.

Parity games might require infinite-memory strategies.

Hence, we will only consider parity games with finitely many colors.
In such games, both players have positional winning strategies,
even if the game graph is infinite.

0

1 3 5 7 9 11 13 15 · · ·

6

More Interesting Things

Set of colors seen infinitely often during a play may be empty.

Parity games might require infinite-memory strategies.

Hence, we will only consider parity games with finitely many colors.
In such games, both players have positional winning strategies,
even if the game graph is infinite.

0

1 3 5 7 9 11 13 15 · · ·

6

More Interesting Things

Set of colors seen infinitely often during a play may be empty.

Parity games might require infinite-memory strategies.

Hence, we will only consider parity games with finitely many colors.
In such games, both players have positional winning strategies,
even if the game graph is infinite.

0

1 3 5 7 9 11 13 15 · · ·

6

More Interesting Things

Set of colors seen infinitely often during a play may be empty.

Parity games might require infinite-memory strategies.

Hence, we will only consider parity games with finitely many colors.
In such games, both players have positional winning strategies,
even if the game graph is infinite.

0

1 3 5 7 9 11 13 15 · · ·

6

Our Goal

Yesterday, (almost) all game graphs were finite.

Today, we want to solve games on infinite graphs.

But how do we represent infinite graphs finitely so that they
can serve as an input to a solution algorithm?

General idea: Use finite “machines” to encode graphs.

”Cautionary” Tale [Thomas 1995]
There is a recursive Büchi game that has no recursive winning
strategies.

So, Turing-complete machines are too strong. Therefore, we
focus on weaker models!

7

Our Goal

Yesterday, (almost) all game graphs were finite.

Today, we want to solve games on infinite graphs.

But how do we represent infinite graphs finitely so that they
can serve as an input to a solution algorithm?

General idea: Use finite “machines” to encode graphs.

”Cautionary” Tale [Thomas 1995]
There is a recursive Büchi game that has no recursive winning
strategies.

So, Turing-complete machines are too strong. Therefore, we
focus on weaker models!

7

Our Goal

Yesterday, (almost) all game graphs were finite.

Today, we want to solve games on infinite graphs.

But how do we represent infinite graphs finitely so that they
can serve as an input to a solution algorithm?

General idea: Use finite “machines” to encode graphs.

”Cautionary” Tale [Thomas 1995]
There is a recursive Büchi game that has no recursive winning
strategies.

So, Turing-complete machines are too strong. Therefore, we
focus on weaker models!

7

Pushdown Systems

qm qa qd

q20 q21

q30 q31 q32

⊥ | ⊥A

A | AA

A | A

A | AA

A | A

A | A

A | A

⊥ | ⊥ ⊥ | ⊥

⊥ | ⊥ ⊥ | ⊥ ⊥ | ⊥

A | ε

A | ε

A | ε A | ε

A | ε

Semantics of a transition
q q′

X | γ
:

In state q with stack symbol X on the top of the stack, transition
to state q′ and replace X by sequence γ of stack symbols.

8

Configuration Graphs

qm qa qd

q20 q21

q30 q31 q32

⊥ | ⊥A

A | AA

A | A

A | AA

A | A

A | A

A | A

⊥ | ⊥ ⊥ | ⊥

⊥ | ⊥ ⊥ | ⊥ ⊥ | ⊥

A | ε

A | ε

A | ε A | ε

A | ε

qm qa qd

q20 q21

q30 q31 q32

⊥ | ⊥A

A | AA

A | A

A | AA

A | A

A | A

A | A

⊥ | ⊥ ⊥ | ⊥

⊥ | ⊥ ⊥ | ⊥ ⊥ | ⊥

A | ε

A | ε

A | ε A | ε

A | ε

(qm,⊥) (qm,⊥A1) (qm,⊥A2) (qm,⊥A3) · · ·

(qa,⊥A1) (qa,⊥A2) (qa,⊥A3) · · ·(qa,⊥)

(qd ,⊥A1) (qd ,⊥A2) (qd ,⊥A3) · · ·(qd ,⊥)

(q20 ,⊥A1) (q20 ,⊥A2) (q20 ,⊥A3) · · ·

(q21 ,⊥) (q21 ,⊥A1) (q21 ,⊥A2) (q21 ,⊥A3) · · ·

(q20 ,⊥)

(q30 ,⊥)

(q31 ,⊥)

(q32 ,⊥)

(q30 ,⊥A1)

(q31 ,⊥A1)

(q32 ,⊥A1)

(q30 ,⊥A2)

(q31 ,⊥A2)

(q32 ,⊥A2)

(q30 ,⊥A3)

(q31 ,⊥A3)

(q32 ,⊥A3)

· · ·

· · ·

· · ·

9

Configuration Graphs

qm qa qd

q20 q21

q30 q31 q32

⊥ | ⊥A

A | AA

A | A

A | AA

A | A

A | A

A | A

⊥ | ⊥ ⊥ | ⊥

⊥ | ⊥ ⊥ | ⊥ ⊥ | ⊥

A | ε

A | ε

A | ε A | ε

A | ε

qm qa qd

q20 q21

q30 q31 q32

⊥ | ⊥A

A | AA

A | A

A | AA

A | A

A | A

A | A

⊥ | ⊥ ⊥ | ⊥

⊥ | ⊥ ⊥ | ⊥ ⊥ | ⊥

A | ε

A | ε

A | ε A | ε

A | ε

(qm,⊥)

(qm,⊥A1) (qm,⊥A2) (qm,⊥A3) · · ·

(qa,⊥A1) (qa,⊥A2) (qa,⊥A3) · · ·(qa,⊥)

(qd ,⊥A1) (qd ,⊥A2) (qd ,⊥A3) · · ·(qd ,⊥)

(q20 ,⊥A1) (q20 ,⊥A2) (q20 ,⊥A3) · · ·

(q21 ,⊥) (q21 ,⊥A1) (q21 ,⊥A2) (q21 ,⊥A3) · · ·

(q20 ,⊥)

(q30 ,⊥)

(q31 ,⊥)

(q32 ,⊥)

(q30 ,⊥A1)

(q31 ,⊥A1)

(q32 ,⊥A1)

(q30 ,⊥A2)

(q31 ,⊥A2)

(q32 ,⊥A2)

(q30 ,⊥A3)

(q31 ,⊥A3)

(q32 ,⊥A3)

· · ·

· · ·

· · ·

9

Configuration Graphs

qm qa qd

q20 q21

q30 q31 q32

⊥ | ⊥A

A | AA

A | A

A | AA

A | A

A | A

A | A

⊥ | ⊥ ⊥ | ⊥

⊥ | ⊥ ⊥ | ⊥ ⊥ | ⊥

A | ε

A | ε

A | ε A | ε

A | ε

qm qa qd

q20 q21

q30 q31 q32

⊥ | ⊥A

A | AA

A | A

A | AA

A | A

A | A

A | A

⊥ | ⊥ ⊥ | ⊥

⊥ | ⊥ ⊥ | ⊥ ⊥ | ⊥

A | ε

A | ε

A | ε A | ε

A | ε

(qm,⊥) (qm,⊥A1)

(qm,⊥A2) (qm,⊥A3) · · ·

(qa,⊥A1) (qa,⊥A2) (qa,⊥A3) · · ·(qa,⊥)

(qd ,⊥A1) (qd ,⊥A2) (qd ,⊥A3) · · ·(qd ,⊥)

(q20 ,⊥A1) (q20 ,⊥A2) (q20 ,⊥A3) · · ·

(q21 ,⊥) (q21 ,⊥A1) (q21 ,⊥A2) (q21 ,⊥A3) · · ·

(q20 ,⊥)

(q30 ,⊥)

(q31 ,⊥)

(q32 ,⊥)

(q30 ,⊥A1)

(q31 ,⊥A1)

(q32 ,⊥A1)

(q30 ,⊥A2)

(q31 ,⊥A2)

(q32 ,⊥A2)

(q30 ,⊥A3)

(q31 ,⊥A3)

(q32 ,⊥A3)

· · ·

· · ·

· · ·

9

Configuration Graphs

qm qa qd

q20 q21

q30 q31 q32

⊥ | ⊥A

A | AA

A | A

A | AA

A | A

A | A

A | A

⊥ | ⊥ ⊥ | ⊥

⊥ | ⊥ ⊥ | ⊥ ⊥ | ⊥

A | ε

A | ε

A | ε A | ε

A | ε

qm qa qd

q20 q21

q30 q31 q32

⊥ | ⊥A

A | AA

A | A

A | AA

A | A

A | A

A | A

⊥ | ⊥ ⊥ | ⊥

⊥ | ⊥ ⊥ | ⊥ ⊥ | ⊥

A | ε

A | ε

A | ε A | ε

A | ε

(qm,⊥) (qm,⊥A1) (qm,⊥A2)

(qm,⊥A3) · · ·

(qa,⊥A1) (qa,⊥A2) (qa,⊥A3) · · ·(qa,⊥)

(qd ,⊥A1) (qd ,⊥A2) (qd ,⊥A3) · · ·(qd ,⊥)

(q20 ,⊥A1) (q20 ,⊥A2) (q20 ,⊥A3) · · ·

(q21 ,⊥) (q21 ,⊥A1) (q21 ,⊥A2) (q21 ,⊥A3) · · ·

(q20 ,⊥)

(q30 ,⊥)

(q31 ,⊥)

(q32 ,⊥)

(q30 ,⊥A1)

(q31 ,⊥A1)

(q32 ,⊥A1)

(q30 ,⊥A2)

(q31 ,⊥A2)

(q32 ,⊥A2)

(q30 ,⊥A3)

(q31 ,⊥A3)

(q32 ,⊥A3)

· · ·

· · ·

· · ·

9

Configuration Graphs

qm qa qd

q20 q21

q30 q31 q32

⊥ | ⊥A

A | AA

A | A

A | AA

A | A

A | A

A | A

⊥ | ⊥ ⊥ | ⊥

⊥ | ⊥ ⊥ | ⊥ ⊥ | ⊥

A | ε

A | ε

A | ε A | ε

A | ε

qm qa qd

q20 q21

q30 q31 q32

⊥ | ⊥A

A | AA

A | A

A | AA

A | A

A | A

A | A

⊥ | ⊥ ⊥ | ⊥

⊥ | ⊥ ⊥ | ⊥ ⊥ | ⊥

A | ε

A | ε

A | ε A | ε

A | ε

(qm,⊥) (qm,⊥A1) (qm,⊥A2) (qm,⊥A3)

· · ·

(qa,⊥A1) (qa,⊥A2) (qa,⊥A3) · · ·(qa,⊥)

(qd ,⊥A1) (qd ,⊥A2) (qd ,⊥A3) · · ·(qd ,⊥)

(q20 ,⊥A1) (q20 ,⊥A2) (q20 ,⊥A3) · · ·

(q21 ,⊥) (q21 ,⊥A1) (q21 ,⊥A2) (q21 ,⊥A3) · · ·

(q20 ,⊥)

(q30 ,⊥)

(q31 ,⊥)

(q32 ,⊥)

(q30 ,⊥A1)

(q31 ,⊥A1)

(q32 ,⊥A1)

(q30 ,⊥A2)

(q31 ,⊥A2)

(q32 ,⊥A2)

(q30 ,⊥A3)

(q31 ,⊥A3)

(q32 ,⊥A3)

· · ·

· · ·

· · ·

9

Configuration Graphs

qm qa qd

q20 q21

q30 q31 q32

⊥ | ⊥A

A | AA

A | A

A | AA

A | A

A | A

A | A

⊥ | ⊥ ⊥ | ⊥

⊥ | ⊥ ⊥ | ⊥ ⊥ | ⊥

A | ε

A | ε

A | ε A | ε

A | ε

qm qa qd

q20 q21

q30 q31 q32

⊥ | ⊥A

A | AA

A | A

A | AA

A | A

A | A

A | A

⊥ | ⊥ ⊥ | ⊥

⊥ | ⊥ ⊥ | ⊥ ⊥ | ⊥

A | ε

A | ε

A | ε A | ε

A | ε

(qm,⊥) (qm,⊥A1) (qm,⊥A2) (qm,⊥A3) · · ·

(qa,⊥A1) (qa,⊥A2) (qa,⊥A3) · · ·(qa,⊥)

(qd ,⊥A1) (qd ,⊥A2) (qd ,⊥A3) · · ·(qd ,⊥)

(q20 ,⊥A1) (q20 ,⊥A2) (q20 ,⊥A3) · · ·

(q21 ,⊥) (q21 ,⊥A1) (q21 ,⊥A2) (q21 ,⊥A3) · · ·

(q20 ,⊥)

(q30 ,⊥)

(q31 ,⊥)

(q32 ,⊥)

(q30 ,⊥A1)

(q31 ,⊥A1)

(q32 ,⊥A1)

(q30 ,⊥A2)

(q31 ,⊥A2)

(q32 ,⊥A2)

(q30 ,⊥A3)

(q31 ,⊥A3)

(q32 ,⊥A3)

· · ·

· · ·

· · ·

9

Configuration Graphs

qm qa qd

q20 q21

q30 q31 q32

⊥ | ⊥A

A | AA

A | A

A | AA

A | A

A | A

A | A

⊥ | ⊥ ⊥ | ⊥

⊥ | ⊥ ⊥ | ⊥ ⊥ | ⊥

A | ε

A | ε

A | ε A | ε

A | ε

qm qa qd

q20 q21

q30 q31 q32

⊥ | ⊥A

A | AA

A | A

A | AA

A | A

A | A

A | A

⊥ | ⊥ ⊥ | ⊥

⊥ | ⊥ ⊥ | ⊥ ⊥ | ⊥

A | ε

A | ε

A | ε A | ε

A | ε

(qm,⊥) (qm,⊥A1) (qm,⊥A2) (qm,⊥A3) · · ·

(qa,⊥A1) (qa,⊥A2) (qa,⊥A3) · · ·

(qa,⊥)

(qd ,⊥A1) (qd ,⊥A2) (qd ,⊥A3) · · ·(qd ,⊥)

(q20 ,⊥A1) (q20 ,⊥A2) (q20 ,⊥A3) · · ·

(q21 ,⊥) (q21 ,⊥A1) (q21 ,⊥A2) (q21 ,⊥A3) · · ·

(q20 ,⊥)

(q30 ,⊥)

(q31 ,⊥)

(q32 ,⊥)

(q30 ,⊥A1)

(q31 ,⊥A1)

(q32 ,⊥A1)

(q30 ,⊥A2)

(q31 ,⊥A2)

(q32 ,⊥A2)

(q30 ,⊥A3)

(q31 ,⊥A3)

(q32 ,⊥A3)

· · ·

· · ·

· · ·

9

Configuration Graphs

qm qa qd

q20 q21

q30 q31 q32

⊥ | ⊥A

A | AA

A | A

A | AA

A | A

A | A

A | A

⊥ | ⊥ ⊥ | ⊥

⊥ | ⊥ ⊥ | ⊥ ⊥ | ⊥

A | ε

A | ε

A | ε A | ε

A | ε

qm qa qd

q20 q21

q30 q31 q32

⊥ | ⊥A

A | AA

A | A

A | AA

A | A

A | A

A | A

⊥ | ⊥ ⊥ | ⊥

⊥ | ⊥ ⊥ | ⊥ ⊥ | ⊥

A | ε

A | ε

A | ε A | ε

A | ε

(qm,⊥) (qm,⊥A1) (qm,⊥A2) (qm,⊥A3) · · ·

(qa,⊥A1) (qa,⊥A2) (qa,⊥A3) · · ·(qa,⊥)

(qd ,⊥A1) (qd ,⊥A2) (qd ,⊥A3) · · ·(qd ,⊥)

(q20 ,⊥A1) (q20 ,⊥A2) (q20 ,⊥A3) · · ·

(q21 ,⊥) (q21 ,⊥A1) (q21 ,⊥A2) (q21 ,⊥A3) · · ·

(q20 ,⊥)

(q30 ,⊥)

(q31 ,⊥)

(q32 ,⊥)

(q30 ,⊥A1)

(q31 ,⊥A1)

(q32 ,⊥A1)

(q30 ,⊥A2)

(q31 ,⊥A2)

(q32 ,⊥A2)

(q30 ,⊥A3)

(q31 ,⊥A3)

(q32 ,⊥A3)

· · ·

· · ·

· · ·

9

Configuration Graphs

qm qa qd

q20 q21

q30 q31 q32

⊥ | ⊥A

A | AA

A | A

A | AA

A | A

A | A

A | A

⊥ | ⊥ ⊥ | ⊥

⊥ | ⊥ ⊥ | ⊥ ⊥ | ⊥

A | ε

A | ε

A | ε A | ε

A | ε

qm qa qd

q20 q21

q30 q31 q32

⊥ | ⊥A

A | AA

A | A

A | AA

A | A

A | A

A | A

⊥ | ⊥ ⊥ | ⊥

⊥ | ⊥ ⊥ | ⊥ ⊥ | ⊥

A | ε

A | ε

A | ε A | ε

A | ε

(qm,⊥) (qm,⊥A1) (qm,⊥A2) (qm,⊥A3) · · ·

(qa,⊥A1) (qa,⊥A2) (qa,⊥A3) · · ·(qa,⊥)

(qd ,⊥A1) (qd ,⊥A2) (qd ,⊥A3) · · ·(qd ,⊥)

(q20 ,⊥A1) (q20 ,⊥A2) (q20 ,⊥A3) · · ·

(q21 ,⊥) (q21 ,⊥A1) (q21 ,⊥A2) (q21 ,⊥A3) · · ·

(q20 ,⊥)

(q30 ,⊥)

(q31 ,⊥)

(q32 ,⊥)

(q30 ,⊥A1)

(q31 ,⊥A1)

(q32 ,⊥A1)

(q30 ,⊥A2)

(q31 ,⊥A2)

(q32 ,⊥A2)

(q30 ,⊥A3)

(q31 ,⊥A3)

(q32 ,⊥A3)

· · ·

· · ·

· · ·

9

Configuration Graphs

qm qa qd

q20 q21

q30 q31 q32

⊥ | ⊥A

A | AA

A | A

A | AA

A | A

A | A

A | A

⊥ | ⊥ ⊥ | ⊥

⊥ | ⊥ ⊥ | ⊥ ⊥ | ⊥

A | ε

A | ε

A | ε A | ε

A | ε

qm qa qd

q20 q21

q30 q31 q32

⊥ | ⊥A

A | AA

A | A

A | AA

A | A

A | A

A | A

⊥ | ⊥ ⊥ | ⊥

⊥ | ⊥ ⊥ | ⊥ ⊥ | ⊥

A | ε

A | ε

A | ε A | ε

A | ε

(qm,⊥) (qm,⊥A1) (qm,⊥A2) (qm,⊥A3) · · ·

(qa,⊥A1) (qa,⊥A2) (qa,⊥A3) · · ·(qa,⊥)

(qd ,⊥A1) (qd ,⊥A2) (qd ,⊥A3) · · ·

(qd ,⊥)

(q20 ,⊥A1) (q20 ,⊥A2) (q20 ,⊥A3) · · ·

(q21 ,⊥) (q21 ,⊥A1) (q21 ,⊥A2) (q21 ,⊥A3) · · ·

(q20 ,⊥)

(q30 ,⊥)

(q31 ,⊥)

(q32 ,⊥)

(q30 ,⊥A1)

(q31 ,⊥A1)

(q32 ,⊥A1)

(q30 ,⊥A2)

(q31 ,⊥A2)

(q32 ,⊥A2)

(q30 ,⊥A3)

(q31 ,⊥A3)

(q32 ,⊥A3)

· · ·

· · ·

· · ·

9

Configuration Graphs

qm qa qd

q20 q21

q30 q31 q32

⊥ | ⊥A

A | AA

A | A

A | AA

A | A

A | A

A | A

⊥ | ⊥ ⊥ | ⊥

⊥ | ⊥ ⊥ | ⊥ ⊥ | ⊥

A | ε

A | ε

A | ε A | ε

A | ε

qm qa qd

q20 q21

q30 q31 q32

⊥ | ⊥A

A | AA

A | A

A | AA

A | A

A | A

A | A

⊥ | ⊥ ⊥ | ⊥

⊥ | ⊥ ⊥ | ⊥ ⊥ | ⊥

A | ε

A | ε

A | ε A | ε

A | ε

(qm,⊥) (qm,⊥A1) (qm,⊥A2) (qm,⊥A3) · · ·

(qa,⊥A1) (qa,⊥A2) (qa,⊥A3) · · ·(qa,⊥)

(qd ,⊥A1) (qd ,⊥A2) (qd ,⊥A3) · · ·(qd ,⊥)

(q20 ,⊥A1) (q20 ,⊥A2) (q20 ,⊥A3) · · ·

(q21 ,⊥) (q21 ,⊥A1) (q21 ,⊥A2) (q21 ,⊥A3) · · ·

(q20 ,⊥)

(q30 ,⊥)

(q31 ,⊥)

(q32 ,⊥)

(q30 ,⊥A1)

(q31 ,⊥A1)

(q32 ,⊥A1)

(q30 ,⊥A2)

(q31 ,⊥A2)

(q32 ,⊥A2)

(q30 ,⊥A3)

(q31 ,⊥A3)

(q32 ,⊥A3)

· · ·

· · ·

· · ·

9

Configuration Graphs

qm qa qd

q20 q21

q30 q31 q32

⊥ | ⊥A

A | AA

A | A

A | AA

A | A

A | A

A | A

⊥ | ⊥ ⊥ | ⊥

⊥ | ⊥ ⊥ | ⊥ ⊥ | ⊥

A | ε

A | ε

A | ε A | ε

A | ε

qm qa qd

q20 q21

q30 q31 q32

⊥ | ⊥A

A | AA

A | A

A | AA

A | A

A | A

A | A

⊥ | ⊥ ⊥ | ⊥

⊥ | ⊥ ⊥ | ⊥ ⊥ | ⊥

A | ε

A | ε

A | ε A | ε

A | ε

(qm,⊥) (qm,⊥A1) (qm,⊥A2) (qm,⊥A3) · · ·

(qa,⊥A1) (qa,⊥A2) (qa,⊥A3) · · ·(qa,⊥)

(qd ,⊥A1) (qd ,⊥A2) (qd ,⊥A3) · · ·(qd ,⊥)

(q20 ,⊥A1) (q20 ,⊥A2) (q20 ,⊥A3) · · ·

(q21 ,⊥) (q21 ,⊥A1) (q21 ,⊥A2) (q21 ,⊥A3) · · ·

(q20 ,⊥)

(q30 ,⊥)

(q31 ,⊥)

(q32 ,⊥)

(q30 ,⊥A1)

(q31 ,⊥A1)

(q32 ,⊥A1)

(q30 ,⊥A2)

(q31 ,⊥A2)

(q32 ,⊥A2)

(q30 ,⊥A3)

(q31 ,⊥A3)

(q32 ,⊥A3)

· · ·

· · ·

· · ·

9

Configuration Graphs

qm qa qd

q20 q21

q30 q31 q32

⊥ | ⊥A

A | AA

A | A

A | AA

A | A

A | A

A | A

⊥ | ⊥ ⊥ | ⊥

⊥ | ⊥ ⊥ | ⊥ ⊥ | ⊥

A | ε

A | ε

A | ε A | ε

A | ε

qm qa qd

q20 q21

q30 q31 q32

⊥ | ⊥A

A | AA

A | A

A | AA

A | A

A | A

A | A

⊥ | ⊥ ⊥ | ⊥

⊥ | ⊥ ⊥ | ⊥ ⊥ | ⊥

A | ε

A | ε

A | ε A | ε

A | ε

(qm,⊥) (qm,⊥A1) (qm,⊥A2) (qm,⊥A3) · · ·

(qa,⊥A1) (qa,⊥A2) (qa,⊥A3) · · ·(qa,⊥)

(qd ,⊥A1) (qd ,⊥A2) (qd ,⊥A3) · · ·(qd ,⊥)

(q20 ,⊥A1) (q20 ,⊥A2) (q20 ,⊥A3) · · ·

(q21 ,⊥) (q21 ,⊥A1) (q21 ,⊥A2) (q21 ,⊥A3) · · ·

(q20 ,⊥)

(q30 ,⊥)

(q31 ,⊥)

(q32 ,⊥)

(q30 ,⊥A1)

(q31 ,⊥A1)

(q32 ,⊥A1)

(q30 ,⊥A2)

(q31 ,⊥A2)

(q32 ,⊥A2)

(q30 ,⊥A3)

(q31 ,⊥A3)

(q32 ,⊥A3)

· · ·

· · ·

· · ·

9

Configuration Graphs

qm qa qd

q20 q21

q30 q31 q32

⊥ | ⊥A

A | AA

A | A

A | AA

A | A

A | A

A | A

⊥ | ⊥ ⊥ | ⊥

⊥ | ⊥ ⊥ | ⊥ ⊥ | ⊥

A | ε

A | ε

A | ε A | ε

A | ε

qm qa qd

q20 q21

q30 q31 q32

⊥ | ⊥A

A | AA

A | A

A | AA

A | A

A | A

A | A

⊥ | ⊥ ⊥ | ⊥

⊥ | ⊥ ⊥ | ⊥ ⊥ | ⊥

A | ε

A | ε

A | ε A | ε

A | ε

(qm,⊥) (qm,⊥A1) (qm,⊥A2) (qm,⊥A3) · · ·

(qa,⊥A1) (qa,⊥A2) (qa,⊥A3) · · ·(qa,⊥)

(qd ,⊥A1) (qd ,⊥A2) (qd ,⊥A3) · · ·(qd ,⊥)

(q20 ,⊥A1) (q20 ,⊥A2) (q20 ,⊥A3) · · ·

(q21 ,⊥) (q21 ,⊥A1) (q21 ,⊥A2) (q21 ,⊥A3) · · ·

(q20 ,⊥)

(q30 ,⊥)

(q31 ,⊥)

(q32 ,⊥)

(q30 ,⊥A1)

(q31 ,⊥A1)

(q32 ,⊥A1)

(q30 ,⊥A2)

(q31 ,⊥A2)

(q32 ,⊥A2)

(q30 ,⊥A3)

(q31 ,⊥A3)

(q32 ,⊥A3)

· · ·

· · ·

· · ·

9

Configuration Graphs

qm qa qd

q20 q21

q30 q31 q32

⊥ | ⊥A

A | AA

A | A

A | AA

A | A

A | A

A | A

⊥ | ⊥ ⊥ | ⊥

⊥ | ⊥ ⊥ | ⊥ ⊥ | ⊥

A | ε

A | ε

A | ε A | ε

A | ε

qm qa qd

q20 q21

q30 q31 q32

⊥ | ⊥A

A | AA

A | A

A | AA

A | A

A | A

A | A

⊥ | ⊥ ⊥ | ⊥

⊥ | ⊥ ⊥ | ⊥ ⊥ | ⊥

A | ε

A | ε

A | ε A | ε

A | ε

(qm,⊥) (qm,⊥A1) (qm,⊥A2) (qm,⊥A3) · · ·

(qa,⊥A1) (qa,⊥A2) (qa,⊥A3) · · ·(qa,⊥)

(qd ,⊥A1) (qd ,⊥A2) (qd ,⊥A3) · · ·(qd ,⊥)

(q20 ,⊥A1) (q20 ,⊥A2) (q20 ,⊥A3) · · ·

(q21 ,⊥) (q21 ,⊥A1) (q21 ,⊥A2) (q21 ,⊥A3) · · ·

(q20 ,⊥)

(q30 ,⊥)

(q31 ,⊥)

(q32 ,⊥)

(q30 ,⊥A1)

(q31 ,⊥A1)

(q32 ,⊥A1)

(q30 ,⊥A2)

(q31 ,⊥A2)

(q32 ,⊥A2)

(q30 ,⊥A3)

(q31 ,⊥A3)

(q32 ,⊥A3)

· · ·

· · ·

· · ·

9

Configuration Graphs

qm qa qd

q20 q21

q30 q31 q32

⊥ | ⊥A

A | AA

A | A

A | AA

A | A

A | A

A | A

⊥ | ⊥ ⊥ | ⊥

⊥ | ⊥ ⊥ | ⊥ ⊥ | ⊥

A | ε

A | ε

A | ε A | ε

A | ε

qm qa qd

q20 q21

q30 q31 q32

⊥ | ⊥A

A | AA

A | A

A | AA

A | A

A | A

A | A

⊥ | ⊥ ⊥ | ⊥

⊥ | ⊥ ⊥ | ⊥ ⊥ | ⊥

A | ε

A | ε

A | ε A | ε

A | ε

(qm,⊥) (qm,⊥A1) (qm,⊥A2) (qm,⊥A3) · · ·

(qa,⊥A1) (qa,⊥A2) (qa,⊥A3) · · ·(qa,⊥)

(qd ,⊥A1) (qd ,⊥A2) (qd ,⊥A3) · · ·(qd ,⊥)

(q20 ,⊥A1) (q20 ,⊥A2) (q20 ,⊥A3) · · ·

(q21 ,⊥) (q21 ,⊥A1) (q21 ,⊥A2) (q21 ,⊥A3) · · ·

(q20 ,⊥)

(q30 ,⊥)

(q31 ,⊥)

(q32 ,⊥)

(q30 ,⊥A1)

(q31 ,⊥A1)

(q32 ,⊥A1)

(q30 ,⊥A2)

(q31 ,⊥A2)

(q32 ,⊥A2)

(q30 ,⊥A3)

(q31 ,⊥A3)

(q32 ,⊥A3)

· · ·

· · ·

· · ·

9

Configuration Graphs

qm qa qd

q20 q21

q30 q31 q32

⊥ | ⊥A

A | AA

A | A

A | AA

A | A

A | A

A | A

⊥ | ⊥ ⊥ | ⊥

⊥ | ⊥ ⊥ | ⊥ ⊥ | ⊥

A | ε

A | ε

A | ε A | ε

A | ε

qm qa qd

q20 q21

q30 q31 q32

⊥ | ⊥A

A | AA

A | A

A | AA

A | A

A | A

A | A

⊥ | ⊥ ⊥ | ⊥

⊥ | ⊥ ⊥ | ⊥ ⊥ | ⊥

A | ε

A | ε

A | ε A | ε

A | ε

(qm,⊥) (qm,⊥A1) (qm,⊥A2) (qm,⊥A3) · · ·

(qa,⊥A1) (qa,⊥A2) (qa,⊥A3) · · ·(qa,⊥)

(qd ,⊥A1) (qd ,⊥A2) (qd ,⊥A3) · · ·(qd ,⊥)

(q20 ,⊥A1) (q20 ,⊥A2) (q20 ,⊥A3) · · ·

(q21 ,⊥) (q21 ,⊥A1) (q21 ,⊥A2) (q21 ,⊥A3) · · ·

(q20 ,⊥)

(q30 ,⊥)

(q31 ,⊥)

(q32 ,⊥)

(q30 ,⊥A1)

(q31 ,⊥A1)

(q32 ,⊥A1)

(q30 ,⊥A2)

(q31 ,⊥A2)

(q32 ,⊥A2)

(q30 ,⊥A3)

(q31 ,⊥A3)

(q32 ,⊥A3)

· · ·

· · ·

· · ·

9

Configuration Graphs

qm qa qd

q20 q21

q30 q31 q32

⊥ | ⊥A

A | AA

A | A

A | AA

A | A

A | A

A | A

⊥ | ⊥ ⊥ | ⊥

⊥ | ⊥ ⊥ | ⊥ ⊥ | ⊥

A | ε

A | ε

A | ε A | ε

A | ε

qm qa qd

q20 q21

q30 q31 q32

⊥ | ⊥A

A | AA

A | A

A | AA

A | A

A | A

A | A

⊥ | ⊥ ⊥ | ⊥

⊥ | ⊥ ⊥ | ⊥ ⊥ | ⊥

A | ε

A | ε

A | ε A | ε

A | ε

(qm,⊥) (qm,⊥A1) (qm,⊥A2) (qm,⊥A3) · · ·

(qa,⊥A1) (qa,⊥A2) (qa,⊥A3) · · ·

(qa,⊥)

(qd ,⊥A1) (qd ,⊥A2) (qd ,⊥A3) · · ·

(qd ,⊥)

(q20 ,⊥A1) (q20 ,⊥A2) (q20 ,⊥A3) · · ·

(q21 ,⊥) (q21 ,⊥A1) (q21 ,⊥A2) (q21 ,⊥A3) · · ·

(q20 ,⊥)

(q30 ,⊥)

(q31 ,⊥)

(q32 ,⊥)

(q30 ,⊥A1)

(q31 ,⊥A1)

(q32 ,⊥A1)

(q30 ,⊥A2)

(q31 ,⊥A2)

(q32 ,⊥A2)

(q30 ,⊥A3)

(q31 ,⊥A3)

(q32 ,⊥A3)

· · ·

· · ·

· · ·

Oftentimes we only consider vertices reachable from the initial
vertex.

9

A Bit More Formal: Syntax

A pushdown system (PDS) S = (Q, Γ, qI ,∆) consists of

a finite set Q of states,

a stack alphabet Γ,

an initial state qI ∈ Q, and

a transition relation ∆ ⊆ Q × Γ⊥ × Q × Γ≤2⊥ ,

where ⊥ /∈ Γ is a designated stack bottom symbol and
Γ⊥ = Γ ∪ {⊥}.

Assumptions

1. ⊥ is neither written nor deleted from the stack. Formally:

If (q,⊥, q′, γ) ∈ ∆, then γ ∈ ⊥ · (Γ ∪ {ε}), and
if (q,X , q′, γ) ∈ ∆ for X 6= ⊥, then γ ∈ Γ≤2.

2. Deadlock freedom: For all q ∈ Q and all X ∈ Γ⊥, there is a
transition (q,X , q′, γ) ∈ ∆.

10

A Bit More Formal: Syntax

A pushdown system (PDS) S = (Q, Γ, qI ,∆) consists of

a finite set Q of states,

a stack alphabet Γ,

an initial state qI ∈ Q, and

a transition relation ∆ ⊆ Q × Γ⊥ × Q × Γ≤2⊥ ,

where ⊥ /∈ Γ is a designated stack bottom symbol and
Γ⊥ = Γ ∪ {⊥}.

Assumptions

1. ⊥ is neither written nor deleted from the stack. Formally:

If (q,⊥, q′, γ) ∈ ∆, then γ ∈ ⊥ · (Γ ∪ {ε}), and
if (q,X , q′, γ) ∈ ∆ for X 6= ⊥, then γ ∈ Γ≤2.

2. Deadlock freedom: For all q ∈ Q and all X ∈ Γ⊥, there is a
transition (q,X , q′, γ) ∈ ∆.

10

A Bit More Formal: Semantics

Stack content: a finite word in ⊥Γ∗ (i.e., stacks grow to the
right).

Configuration: c = (q, γ) consisting of a state q ∈ Q and a
stack content γ.

Initial configuration: (qI ,⊥).

Transition τ = (q,X , q′, γ′) ∈ ∆ is enabled in a
configuration c : if c = (q, γX) for some γ ∈ Γ∗⊥. In this case,

write (q, γX)
τ−→ (q′, γγ′).

Configuration graph of PDS P = (Q, Γ, qI ,∆):

Vertices: all configurations of P.

Edges: (c , c ′) ∈ E if and only if c
τ−→ c ′ for some transition τ .

11

A Bit More Formal: Semantics

Stack content: a finite word in ⊥Γ∗ (i.e., stacks grow to the
right).

Configuration: c = (q, γ) consisting of a state q ∈ Q and a
stack content γ.

Initial configuration: (qI ,⊥).

Transition τ = (q,X , q′, γ′) ∈ ∆ is enabled in a
configuration c : if c = (q, γX) for some γ ∈ Γ∗⊥. In this case,

write (q, γX)
τ−→ (q′, γγ′).

Configuration graph of PDS P = (Q, Γ, qI ,∆):

Vertices: all configurations of P.

Edges: (c , c ′) ∈ E if and only if c
τ−→ c ′ for some transition τ .

11

Let’s Play

We want to play parity games on configuration graphs of PDS’s
(so-called pushdown graphs).

12

Let’s Play

We want to play parity games on configuration graphs of PDS’s
(so-called pushdown graphs).

(qm,⊥) (qm,⊥A1) (qm,⊥A2) (qm,⊥A3) · · ·

(qa,⊥A1) (qa,⊥A2) (qa,⊥A3) · · ·

(qd ,⊥A1) (qd ,⊥A2) (qd ,⊥A3) · · ·

(q20 ,⊥A1) (q20 ,⊥A2) (q20 ,⊥A3) · · ·

(q21 ,⊥) (q21 ,⊥A1) (q21 ,⊥A2) (q21 ,⊥A3) · · ·

(q20 ,⊥)

(q30 ,⊥)

(q31 ,⊥)

(q32 ,⊥)

(q30 ,⊥A1)

(q31 ,⊥A1)

(q32 ,⊥A1)

(q30 ,⊥A2)

(q31 ,⊥A2)

(q32 ,⊥A2)

(q30 ,⊥A3)

(q31 ,⊥A3)

(q32 ,⊥A3)

· · ·

· · ·

· · ·
12

Let’s Play

We want to play parity games on configuration graphs of PDS’s
(so-called pushdown graphs).

We need to specify a partition of the vertices into the
positions of the players and a coloring of the vertices.

For simplicity, both only depend on the state of a
configuration (more general definitions are possible).

12

Let’s Play

We want to play parity games on configuration graphs of PDS’s
(so-called pushdown graphs).

We need to specify a partition of the vertices into the
positions of the players and a coloring of the vertices.

For simplicity, both only depend on the state of a
configuration (more general definitions are possible).

Definition
A PDS (Q, Γ, qI ,∆), a partition Q = Q0 ∪ Q1, and a
coloring Ω′ : Q → N induce the parity game (V ,V0,V1,E ,Ω)
where

(V ,E) is the configuration graph induced by the PDS,

Vi = {(q, γ) ∈ V | q ∈ Qi}, and

Ω(q, γ) = Ω′(q).

12

Let’s Play

Consider Q0 = {qa}, Q1 = Q \ Q0, Ω′(qm) = Ω(q20) = Ω(q30) = 0
and Ω′(q) = 1 for all other states q.

12

Let’s Play

Consider Q0 = {qa}, Q1 = Q \ Q0, Ω′(qm) = Ω(q20) = Ω(q30) = 0
and Ω′(q) = 1 for all other states q.

qm/0

qa/1

qd/1

q20/0

q21/1

q30/0

q31/1

q32/1

· · ·

· · ·

· · ·· · ·

· · ·

· · ·

· · ·

· · ·

· · ·
12

Let’s Play

Consider Q0 = {qa}, Q1 = Q \ Q0, Ω′(qm) = Ω(q20) = Ω(q30) = 0
and Ω′(q) = 1 for all other states q.

qm/0

qa/1

qd/1

q20/0

q21/1

q30/0

q31/1

q32/1

· · ·

· · ·

· · ·· · ·

· · ·

· · ·

· · ·

· · ·

· · ·
12

Our Goal

Solving parity games on pushdown graphs: given a PDS,
and a partition and a coloring of its states, determine
whether Player 0 wins the induced parity game from the
initial configuration.

All inputs are finite objects, but the induced parity game has

infinitely many vertices,

finitely many colors, and

finite branching.

13

Our Goal

Solving parity games on pushdown graphs: given a PDS,
and a partition and a coloring of its states, determine
whether Player 0 wins the induced parity game from the
initial configuration.

All inputs are finite objects, but the induced parity game has

infinitely many vertices,

finitely many colors, and

finite branching.

13

An (Abridged) History

Thomas 1995: Can winning strategies for parity games in
pushdown games be finitely represented?

Solving parity games on pushdown graphs is decidable by a
reduction to MSO satisfiability over pushdown graphs [Rabin
1969, Muller, Schupp 1985]. However, this does not yield
(tight) complexity bounds.

Walukiewicz 1996: Solving parity games on pushdown
graphs is ExpTime-complete.

Kupferman and Vardi 2000: An alternative proof (with
optimal complexity) via alternating two-way tree automata.

Thereafter: Extensions, refinements, simplifications, etc.

14

An (Abridged) History

Thomas 1995: Can winning strategies for parity games in
pushdown games be finitely represented?

Solving parity games on pushdown graphs is decidable by a
reduction to MSO satisfiability over pushdown graphs [Rabin
1969, Muller, Schupp 1985]. However, this does not yield
(tight) complexity bounds.

Walukiewicz 1996: Solving parity games on pushdown
graphs is ExpTime-complete.

Kupferman and Vardi 2000: An alternative proof (with
optimal complexity) via alternating two-way tree automata.

Thereafter: Extensions, refinements, simplifications, etc.

14

An (Abridged) History

Thomas 1995: Can winning strategies for parity games in
pushdown games be finitely represented?

Solving parity games on pushdown graphs is decidable by a
reduction to MSO satisfiability over pushdown graphs [Rabin
1969, Muller, Schupp 1985]. However, this does not yield
(tight) complexity bounds.

Walukiewicz 1996: Solving parity games on pushdown
graphs is ExpTime-complete.

Kupferman and Vardi 2000: An alternative proof (with
optimal complexity) via alternating two-way tree automata.

Thereafter: Extensions, refinements, simplifications, etc.

14

An (Abridged) History

Thomas 1995: Can winning strategies for parity games in
pushdown games be finitely represented?

Solving parity games on pushdown graphs is decidable by a
reduction to MSO satisfiability over pushdown graphs [Rabin
1969, Muller, Schupp 1985]. However, this does not yield
(tight) complexity bounds.

Walukiewicz 1996: Solving parity games on pushdown
graphs is ExpTime-complete.

Kupferman and Vardi 2000: An alternative proof (with
optimal complexity) via alternating two-way tree automata.

Thereafter: Extensions, refinements, simplifications, etc.

14

An (Abridged) History

Thomas 1995: Can winning strategies for parity games in
pushdown games be finitely represented?

Solving parity games on pushdown graphs is decidable by a
reduction to MSO satisfiability over pushdown graphs [Rabin
1969, Muller, Schupp 1985]. However, this does not yield
(tight) complexity bounds.

Walukiewicz 1996: Solving parity games on pushdown
graphs is ExpTime-complete.

Kupferman and Vardi 2000: An alternative proof (with
optimal complexity) via alternating two-way tree automata.

Thereafter: Extensions, refinements, simplifications, etc.

14

Some Terminology

The stack height of a configuration (q, γ) is |γ| − 1 ∈ N.

We classify transitions (q,X , q′, γ) of a PDS into three types:

push: if |γ| = 2, i.e., a symbol is pushed onto the stack
and the stack height increases by one.
skip: if |γ| = 1, i.e., the topmost stack symbol is
replaced and the stack height does not change.
pop: if |γ| = 0, i.e., a symbol is popped off the stack and
the stack height decreases by one.

15

Some Terminology

The stack height of a configuration (q, γ) is |γ| − 1 ∈ N.

We classify transitions (q,X , q′, γ) of a PDS into three types:

push: if |γ| = 2, i.e., a symbol is pushed onto the stack
and the stack height increases by one.
skip: if |γ| = 1, i.e., the topmost stack symbol is
replaced and the stack height does not change.
pop: if |γ| = 0, i.e., a symbol is popped off the stack and
the stack height decreases by one.

15

Walukiewicz’s Reduction: Intuition

Given a parity game G induced by a PDS (Q, Γ, qI ,∆), a
partition (Q0,Q1), and a coloring Ω, we construct a finite parity
game G′ such that Player i wins G from (qI ,⊥) if and only if
Player i wins G′ from some designated vertex v .

Idea

Simulate plays in G by plays in G′ by only storing the state
and the topmost stack symbol.

This works for push- and skip-, but not for pop-transitions.

So, we add a mechanism for Player 0 to make predictions
about the possible states a play is in the next time the current
stack height is reached again (if it is at all).

Player 1 verifies these predictions and can “jump” over parts
of the play.

16

Walukiewicz’s Reduction: Intuition

Given a parity game G induced by a PDS (Q, Γ, qI ,∆), a
partition (Q0,Q1), and a coloring Ω, we construct a finite parity
game G′ such that Player i wins G from (qI ,⊥) if and only if
Player i wins G′ from some designated vertex v .

Idea

Simulate plays in G by plays in G′ by only storing the state
and the topmost stack symbol.

This works for push- and skip-, but not for pop-transitions.

So, we add a mechanism for Player 0 to make predictions
about the possible states a play is in the next time the current
stack height is reached again (if it is at all).

Player 1 verifies these predictions and can “jump” over parts
of the play.

16

Walukiewicz’s Reduction: Intuition

Given a parity game G induced by a PDS (Q, Γ, qI ,∆), a
partition (Q0,Q1), and a coloring Ω, we construct a finite parity
game G′ such that Player i wins G from (qI ,⊥) if and only if
Player i wins G′ from some designated vertex v .

Idea

Simulate plays in G by plays in G′ by only storing the state
and the topmost stack symbol.

This works for push- and skip-, but not for pop-transitions.

So, we add a mechanism for Player 0 to make predictions
about the possible states a play is in the next time the current
stack height is reached again (if it is at all).

Player 1 verifies these predictions and can “jump” over parts
of the play.

16

Walukiewicz’s Reduction: Intuition

Given a parity game G induced by a PDS (Q, Γ, qI ,∆), a
partition (Q0,Q1), and a coloring Ω, we construct a finite parity
game G′ such that Player i wins G from (qI ,⊥) if and only if
Player i wins G′ from some designated vertex v .

Idea

Simulate plays in G by plays in G′ by only storing the state
and the topmost stack symbol.

This works for push- and skip-, but not for pop-transitions.

So, we add a mechanism for Player 0 to make predictions
about the possible states a play is in the next time the current
stack height is reached again (if it is at all).

Player 1 verifies these predictions and can “jump” over parts
of the play.

16

Intuition

qm/0

qa/1

qd/1

q20/0

q21/1

q30/0

q31/1

q32/1

· · ·

· · ·

· · ·· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

17

Intuition

qm/0

qa/1

qd/1

q20/0

q21/1

q30/0

q31/1

q32/1

· · ·

· · ·

· · ·· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

17

Intuition

qm/0

qa/1

qd/1

q20/0

q21/1

q30/0

q31/1

q32/1

· · ·

· · ·

· · ·· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

17

Intuition

qm/0

qa/1

qd/1

q20/0

q21/1

q30/0

q31/1

q32/1

· · ·

· · ·

· · ·· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

17

Predictions

We do not only need to consider states in a prediction, but also
the colors seen along the play infixes leading to these states.

Definition
Let C = Ω(Q) be the set of colors of the game G.

A prediction is a tuple (Pc)c∈C s.t. each Pc is a subset of Q.

P is the set of all predictions.

Remark
There are exponentially many predictions.

18

Predictions

We do not only need to consider states in a prediction, but also
the colors seen along the play infixes leading to these states.

Definition
Let C = Ω(Q) be the set of colors of the game G.

A prediction is a tuple (Pc)c∈C s.t. each Pc is a subset of Q.

P is the set of all predictions.

Remark
There are exponentially many predictions.

18

Predictions

We do not only need to consider states in a prediction, but also
the colors seen along the play infixes leading to these states.

Definition
Let C = Ω(Q) be the set of colors of the game G.

A prediction is a tuple (Pc)c∈C s.t. each Pc is a subset of Q.

P is the set of all predictions.

Remark
There are exponentially many predictions.

18

Predictions: Intuition

With every simulated push-transition, Player 0 makes a
prediction (Pc)c∈C about the states that are reached when the
current stack height s (before the push-transition is executed)
is reached for the first time again (if it is reached at all).

q ∈ Pc if and only if state q is reached and the maximal color
seen between the push-transition and the pop-transition
bringing the play to stack height s for the first time is c .

Player 1 has two choices to react:

1. Accept (Pc)c∈C by jumping to some q ∈
⋃

c∈C Pc and
continue simulation there.

2. Verify correctness of (Pc)c∈C : simulate push-transition.
When the top of the stack is eventually popped,
correctness of (Pc)c∈C can be checked.

I If prediction is correct, simulation ends and Player 0
wins.

I If prediction is incorrect, simulation ends and
Player 1 wins.

19

Predictions: Intuition

With every simulated push-transition, Player 0 makes a
prediction (Pc)c∈C about the states that are reached when the
current stack height s (before the push-transition is executed)
is reached for the first time again (if it is reached at all).

q ∈ Pc if and only if state q is reached and the maximal color
seen between the push-transition and the pop-transition
bringing the play to stack height s for the first time is c .

Player 1 has two choices to react:

1. Accept (Pc)c∈C by jumping to some q ∈
⋃

c∈C Pc and
continue simulation there.

2. Verify correctness of (Pc)c∈C : simulate push-transition.
When the top of the stack is eventually popped,
correctness of (Pc)c∈C can be checked.

I If prediction is correct, simulation ends and Player 0
wins.

I If prediction is incorrect, simulation ends and
Player 1 wins.

19

Predictions: Intuition

With every simulated push-transition, Player 0 makes a
prediction (Pc)c∈C about the states that are reached when the
current stack height s (before the push-transition is executed)
is reached for the first time again (if it is reached at all).

q ∈ Pc if and only if state q is reached and the maximal color
seen between the push-transition and the pop-transition
bringing the play to stack height s for the first time is c .

Player 1 has two choices to react:

1. Accept (Pc)c∈C by jumping to some q ∈
⋃

c∈C Pc and
continue simulation there.

2. Verify correctness of (Pc)c∈C : simulate push-transition.
When the top of the stack is eventually popped,
correctness of (Pc)c∈C can be checked.

I If prediction is correct, simulation ends and Player 0
wins.

I If prediction is incorrect, simulation ends and
Player 1 wins.

19

Predictions: Intuition

With every simulated push-transition, Player 0 makes a
prediction (Pc)c∈C about the states that are reached when the
current stack height s (before the push-transition is executed)
is reached for the first time again (if it is reached at all).

q ∈ Pc if and only if state q is reached and the maximal color
seen between the push-transition and the pop-transition
bringing the play to stack height s for the first time is c .

Player 1 has two choices to react:

1. Accept (Pc)c∈C by jumping to some q ∈
⋃

c∈C Pc and
continue simulation there.

2. Verify correctness of (Pc)c∈C : simulate push-transition.
When the top of the stack is eventually popped,
correctness of (Pc)c∈C can be checked.

I If prediction is correct, simulation ends and Player 0
wins.

I If prediction is incorrect, simulation ends and
Player 1 wins.

19

The Finite Parity Game G′: Vertices

Let q ∈ Q, A,B ∈ Γ, c , d ∈ C , and P,R ∈ P. G′ contains the
following vertices:

Check[q,A,P, c , d]: Encode configuration of G.

Push[P, c , q,AB]: signal intent to perform a push-transition.

Claim[P, c , q,AB,R]: to make a new prediction.

Jump[q,A,P, c , d]: Jump over part of simulated play.

Win0[q] and Win1[q]: sink vertices reached when prediction is
checked.

All Push-vertices and all Check[q, . . .]-vertices with q ∈ Q0

belong to Player 0 in G′.
All other vertices belong to Player 1 in G′.

20

The Finite Parity Game G′: Vertices

Let q ∈ Q, A,B ∈ Γ, c , d ∈ C , and P,R ∈ P. G′ contains the
following vertices:

Check[q,A,P, c , d]: Encode configuration of G.

Push[P, c , q,AB]: signal intent to perform a push-transition.

Claim[P, c , q,AB,R]: to make a new prediction.

Jump[q,A,P, c , d]: Jump over part of simulated play.

Win0[q] and Win1[q]: sink vertices reached when prediction is
checked.

All Push-vertices and all Check[q, . . .]-vertices with q ∈ Q0

belong to Player 0 in G′.
All other vertices belong to Player 1 in G′.

20

The Finite Parity Game G′: Edges

For all skip-transitions (q,A, q′,B) ∈ ∆, G′ has the edge

Check[q,A,P, c , d]→ Check[q′,B,P,max{c ,Ω(q′)},Ω(q′)]

for all P ∈ P and all c , d ∈ C .

21

The Finite Parity Game G′: Edges

For all push-transitions (q,A, q′,BC) ∈ ∆, G has the edges

Check[q,A,P, c , d]→ Push[P, c , q′,BC],

Push[P, c , q′,BC]→ Claim[P, c , q′,BC ,R],

Claim[P, c , q′,BC ,R]→ Check[q′,C ,R,Ω(q′),Ω(q′)],

Claim[P, c , q′,BC ,R]→ Jump[qj ,B,P, c , cj], and

Jump[qj ,B,P, c , cj]→
Check[qj ,B,P,max{c , cj ,Ω(q′)},max{cj ,Ω(q′)}]

for all P,R ∈ P and all c , c ′, cj , d ∈ C , and all qj ∈ Rcj .

21

The Finite Parity Game G′: Edges

For all push-transitions (q,A, q′,BC) ∈ ∆, G has the edges

Check[q,A,P, c , d]→ Push[P, c , q′,BC],

Push[P, c , q′,BC]→ Claim[P, c , q′,BC ,R],

Claim[P, c , q′,BC ,R]→ Check[q′,C ,R,Ω(q′),Ω(q′)],

Claim[P, c , q′,BC ,R]→ Jump[qj ,B,P, c , cj], and

Jump[qj ,B,P, c , cj]→
Check[qj ,B,P,max{c , cj ,Ω(q′)},max{cj ,Ω(q′)}]

for all P,R ∈ P and all c , c ′, cj , d ∈ C , and all qj ∈ Rcj .

21

The Finite Parity Game G′: Edges

For all push-transitions (q,A, q′,BC) ∈ ∆, G has the edges

Check[q,A,P, c , d]→ Push[P, c , q′,BC],

Push[P, c , q′,BC]→ Claim[P, c , q′,BC ,R],

Claim[P, c , q′,BC ,R]→ Check[q′,C ,R,Ω(q′),Ω(q′)],

Claim[P, c , q′,BC ,R]→ Jump[qj ,B,P, c , cj], and

Jump[qj ,B,P, c , cj]→
Check[qj ,B,P,max{c , cj ,Ω(q′)},max{cj ,Ω(q′)}]

for all P,R ∈ P and all c , c ′, cj , d ∈ C , and all qj ∈ Rcj .

21

The Finite Parity Game G′: Edges

For all push-transitions (q,A, q′,BC) ∈ ∆, G has the edges

Check[q,A,P, c , d]→ Push[P, c , q′,BC],

Push[P, c , q′,BC]→ Claim[P, c , q′,BC ,R],

Claim[P, c , q′,BC ,R]→ Check[q′,C ,R,Ω(q′),Ω(q′)],

Claim[P, c , q′,BC ,R]→ Jump[qj ,B,P, c , cj], and

Jump[qj ,B,P, c , cj]→
Check[qj ,B,P,max{c , cj ,Ω(q′)},max{cj ,Ω(q′)}]

for all P,R ∈ P and all c , c ′, cj , d ∈ C , and all qj ∈ Rcj .

21

The Finite Parity Game G′: Edges

For all push-transitions (q,A, q′,BC) ∈ ∆, G has the edges

Check[q,A,P, c , d]→ Push[P, c , q′,BC],

Push[P, c , q′,BC]→ Claim[P, c , q′,BC ,R],

Claim[P, c , q′,BC ,R]→ Check[q′,C ,R,Ω(q′),Ω(q′)],

Claim[P, c , q′,BC ,R]→ Jump[qj ,B,P, c , cj], and

Jump[qj ,B,P, c , cj]→
Check[qj ,B,P,max{c , cj ,Ω(q′)},max{cj ,Ω(q′)}]

for all P,R ∈ P and all c , c ′, cj , d ∈ C , and all qj ∈ Rcj .

21

The Finite Parity Game G′: Edges

For all push-transitions (q,A, q′,BC) ∈ ∆, G has the edges

Check[q,A,P, c , d]→ Push[P, c , q′,BC],

Push[P, c , q′,BC]→ Claim[P, c , q′,BC ,R],

Claim[P, c , q′,BC ,R]→ Check[q′,C ,R,Ω(q′),Ω(q′)],

Claim[P, c , q′,BC ,R]→ Jump[qj ,B,P, c , cj], and

Jump[qj ,B,P, c , cj]→
Check[qj ,B,P,max{c , cj ,Ω(q′)},max{cj ,Ω(q′)}]

for all P,R ∈ P and all c , c ′, cj , d ∈ C , and all qj ∈ Rcj .

21

The Finite Parity Game G′: Edges

For all pop-transitions (q,A, q′, ε) ∈ ∆, G has the edge

Check[q,A,P, c , d]→Win0[q′]

if q′ ∈ Pc and

Check[q,A,P, c , d]→Win1[q′]

if q′ /∈ Pc .

21

The Finite Parity Game G′: Edges

For all pop-transitions (q,A, q′, ε) ∈ ∆, G has the edge

Check[q,A,P, c , d]→Win0[q′]

if q′ ∈ Pc and

Check[q,A,P, c , d]→Win1[q′]

if q′ /∈ Pc .

Finally, G has the edges

Wini [q]→Wini [q]

for all i ∈ {0, 1} and all q ∈ Q.

21

The Finite Parity Game G′: Colors

Check[. . . , d] has color d .

Wini [q] has color i .

All other vertices have color 0 (which is neutral, i.e., it never
determines the winner).

22

Finishing Touches

1. G′ has exponentially many vertices in |Q|+ |Γ| and at most
two more colors than G.

2. It can be solved in exponential time (in |Q|+ |Γ|).

Lemma (Walukiewicz 1996)

Player 0 wins G from (qI ,⊥) if and only if Player 0 wins G′ from
Check[qI ,⊥, (∅)c∈C ,Ω(qI),Ω(qI)].

23

Finishing Touches

1. G′ has exponentially many vertices in |Q|+ |Γ| and at most
two more colors than G.

2. It can be solved in exponential time (in |Q|+ |Γ|).

Lemma (Walukiewicz 1996)

Player 0 wins G from (qI ,⊥) if and only if Player 0 wins G′ from
Check[qI ,⊥, (∅)c∈C ,Ω(qI),Ω(qI)].

23

Proof Sketch: From G to G′

Let σ be a positional winning strategy for Player 0 from
(qI ,⊥).

Use σ to play G′: use it to pick successors and to make
predictions using continuations of plays that are consistent
with σ.

Such predictions are always correct, i.e., the bad sink state is
never visited.

Hence, infinitely many Check-vertices are visited.

The sequence of colors at these Check-vertices “corresponds”
to the sequence of colors of a play in G that is consistent with
σ. Hence, it satisfies the parity condition.

24

Proof Sketch: From G to G′

Let σ be a positional winning strategy for Player 0 from
(qI ,⊥).

Use σ to play G′: use it to pick successors and to make
predictions using continuations of plays that are consistent
with σ.

Such predictions are always correct, i.e., the bad sink state is
never visited.

Hence, infinitely many Check-vertices are visited.

The sequence of colors at these Check-vertices “corresponds”
to the sequence of colors of a play in G that is consistent with
σ. Hence, it satisfies the parity condition.

24

Proof Sketch: From G to G′

Let σ be a positional winning strategy for Player 0 from
(qI ,⊥).

Use σ to play G′: use it to pick successors and to make
predictions using continuations of plays that are consistent
with σ.

Such predictions are always correct, i.e., the bad sink state is
never visited.

Hence, infinitely many Check-vertices are visited.

The sequence of colors at these Check-vertices “corresponds”
to the sequence of colors of a play in G that is consistent with
σ. Hence, it satisfies the parity condition.

24

Proof Sketch: From G′ to G

Let σ′ be a positional winning strategy for Player 0 from
Check[qI ,⊥, (∅)c∈C ,Ω(qI),Ω(qI)].

Use σ′ to play in G, assuming Player 1 never “jumps”. This
works until a pop-transition is simulated, which leads to a sink
vertex Win0[q] in G′.

To continue the simulation, backtrack to the corresponding
Claim-vertex where the prediction was made and continue like
σ′ would do if Player 1 had chosen to jump to q.

One can again relate the sequence of colors visited by the play
in G with those of some play in G′ that is consistent with σ′.
Hence, it satisfies the parity condition.

25

Proof Sketch: From G′ to G

Let σ′ be a positional winning strategy for Player 0 from
Check[qI ,⊥, (∅)c∈C ,Ω(qI),Ω(qI)].

Use σ′ to play in G, assuming Player 1 never “jumps”. This
works until a pop-transition is simulated, which leads to a sink
vertex Win0[q] in G′.
To continue the simulation, backtrack to the corresponding
Claim-vertex where the prediction was made and continue like
σ′ would do if Player 1 had chosen to jump to q.

One can again relate the sequence of colors visited by the play
in G with those of some play in G′ that is consistent with σ′.
Hence, it satisfies the parity condition.

25

Proof Sketch: From G′ to G

Let σ′ be a positional winning strategy for Player 0 from
Check[qI ,⊥, (∅)c∈C ,Ω(qI),Ω(qI)].

Use σ′ to play in G, assuming Player 1 never “jumps”. This
works until a pop-transition is simulated, which leads to a sink
vertex Win0[q] in G′.
To continue the simulation, backtrack to the corresponding
Claim-vertex where the prediction was made and continue like
σ′ would do if Player 1 had chosen to jump to q.

One can again relate the sequence of colors visited by the play
in G with those of some play in G′ that is consistent with σ′.
Hence, it satisfies the parity condition.

25

Main Theorem

Theorem (Walukiewicz 1996)

Solving parity games on pushdown graphs is ExpTime-complete.

Proof.
Upper bound:

The finite parity game we have just constructed is of
exponential size with polynomially many colors, and can
therefore be solved in exponential time. It has the same
winner as the original game.

Lower bound: encode alternating polynomial-time Turing
machines.

26

Some Further Results

The reduction to finite parity games even yields finite
representations of winning strategies (via pushdown
transducers).

The winning regions of both players are regular subsets of
Q⊥Γ∗ [Cachat 2002, Serre 2003].

Solving one-counter parity games (induced by PDS’s with a
single stack symbol) is only PSpace-complete. [Serre 2006,
Jancar, Sawa 2007]

In the other direction, the result has been extended to
higher-order pushdown systems (having stacks of stacks of
stacks....): Solving parity games induced by order-k pushdown
automata is in k-ExpTime [Cachat 2003].

27

Some Further Results

The reduction to finite parity games even yields finite
representations of winning strategies (via pushdown
transducers).

The winning regions of both players are regular subsets of
Q⊥Γ∗ [Cachat 2002, Serre 2003].

Solving one-counter parity games (induced by PDS’s with a
single stack symbol) is only PSpace-complete. [Serre 2006,
Jancar, Sawa 2007]

In the other direction, the result has been extended to
higher-order pushdown systems (having stacks of stacks of
stacks....): Solving parity games induced by order-k pushdown
automata is in k-ExpTime [Cachat 2003].

27

Some Further Results

The reduction to finite parity games even yields finite
representations of winning strategies (via pushdown
transducers).

The winning regions of both players are regular subsets of
Q⊥Γ∗ [Cachat 2002, Serre 2003].

Solving one-counter parity games (induced by PDS’s with a
single stack symbol) is only PSpace-complete. [Serre 2006,
Jancar, Sawa 2007]

In the other direction, the result has been extended to
higher-order pushdown systems (having stacks of stacks of
stacks....): Solving parity games induced by order-k pushdown
automata is in k-ExpTime [Cachat 2003].

27

Some Further Results

The reduction to finite parity games even yields finite
representations of winning strategies (via pushdown
transducers).

The winning regions of both players are regular subsets of
Q⊥Γ∗ [Cachat 2002, Serre 2003].

Solving one-counter parity games (induced by PDS’s with a
single stack symbol) is only PSpace-complete. [Serre 2006,
Jancar, Sawa 2007]

In the other direction, the result has been extended to
higher-order pushdown systems (having stacks of stacks of
stacks....): Solving parity games induced by order-k pushdown
automata is in k-ExpTime [Cachat 2003].

27

Reminder: Gale-Stewart Games

In a Gale-Stewart game G(R), Player I (input) and Player O
(output) produce sequences α(0)α(1)α(2) · · ·Σω

I and
β(0)β(1)β(2) · · ·Σω

O of input and output symbols, a
relation R ⊆ Σω

I × Σω
O determines the winner.

σ
α(0)α(1)α(2) · · · β(0)β(1)β(2) · · ·

We are looking for a (letter-to-letter) strategy σ such that

(α, σ(α)) ∈ R

for every possible input α ∈ Σω
I .

28

Example

Consider

R = {(anbw , a3nbw ′) | n ≥ 0,w ,w ′ ∈ {a, b}ω} ∪ {(aω, aω)}

and let’s play.

Pl. I :

Pl. O:

a

a

a

a

a

a

b

a

a

a

b

a

a

a

b

a

a

a

b

b

b

a

a

b

· · ·

· · ·

Player O wins!

29

Example

Consider

R = {(anbw , a3nbw ′) | n ≥ 0,w ,w ′ ∈ {a, b}ω} ∪ {(aω, aω)}

and let’s play.

Pl. I :

Pl. O:

a

a

a

a

a

a

b

a

a

a

b

a

a

a

b

a

a

a

b

b

b

a

a

b

· · ·

· · ·

Player O wins!

29

Example

Consider

R = {(anbw , a3nbw ′) | n ≥ 0,w ,w ′ ∈ {a, b}ω} ∪ {(aω, aω)}

and let’s play.

Pl. I :

Pl. O:

a

a

a

a

a

a

b

a

a

a

b

a

a

a

b

a

a

a

b

b

b

a

a

b

· · ·

· · ·

Player O wins!

29

Example

Consider

R = {(anbw , a3nbw ′) | n ≥ 0,w ,w ′ ∈ {a, b}ω} ∪ {(aω, aω)}

and let’s play.

Pl. I :

Pl. O:

a

a

a

a

a

a

b

a

a

a

b

a

a

a

b

a

a

a

b

b

b

a

a

b

· · ·

· · ·

Player O wins!

29

Example

Consider

R = {(anbw , a3nbw ′) | n ≥ 0,w ,w ′ ∈ {a, b}ω} ∪ {(aω, aω)}

and let’s play.

Pl. I :

Pl. O:

a

a

a

a

a

a

b

a

a

a

b

a

a

a

b

a

a

a

b

b

b

a

a

b

· · ·

· · ·

Player O wins!

29

Example

Consider

R = {(anbw , a3nbw ′) | n ≥ 0,w ,w ′ ∈ {a, b}ω} ∪ {(aω, aω)}

and let’s play.

Pl. I :

Pl. O:

a

a

a

a

a

a

b

a

a

a

b

a

a

a

b

a

a

a

b

b

b

a

a

b

· · ·

· · ·

Player O wins!

29

Example

Consider

R = {(anbw , a3nbw ′) | n ≥ 0,w ,w ′ ∈ {a, b}ω} ∪ {(aω, aω)}

and let’s play.

Pl. I :

Pl. O:

a

a

a

a

a

a

b

a

a

a

b

a

a

a

b

a

a

a

b

b

b

a

a

b

· · ·

· · ·

Player O wins!

29

Example

Consider

R = {(anbw , a3nbw ′) | n ≥ 0,w ,w ′ ∈ {a, b}ω} ∪ {(aω, aω)}

and let’s play.

Pl. I :

Pl. O:

a

a

a

a

a

a

b

a

a

a

b

a

a

a

b

a

a

a

b

b

b

a

a

b

· · ·

· · ·

Player O wins!

29

Example

Consider

R = {(anbw , a3nbw ′) | n ≥ 0,w ,w ′ ∈ {a, b}ω} ∪ {(aω, aω)}

and let’s play.

Pl. I :

Pl. O:

a

a

a

a

a

a

b

a

a

a

b

a

a

a

b

a

a

a

b

b

b

a

a

b

· · ·

· · ·

Player O wins!

29

Example

Consider

R = {(anbw , a3nbw ′) | n ≥ 0,w ,w ′ ∈ {a, b}ω} ∪ {(aω, aω)}

and let’s play.

Pl. I :

Pl. O:

a

a

a

a

a

a

b

a

a

a

b

a

a

a

b

a

a

a

b

b

b

a

a

b

· · ·

· · ·

Player O wins!

29

Example

Consider

R = {(anbw , a3nbw ′) | n ≥ 0,w ,w ′ ∈ {a, b}ω} ∪ {(aω, aω)}

and let’s play.

Pl. I :

Pl. O:

a

a

a

a

a

a

b

a

a

a

b

a

a

a

b

a

a

a

b

b

b

a

a

b

· · ·

· · ·

Player O wins!

29

Example

Consider

R = {(anbw , a3nbw ′) | n ≥ 0,w ,w ′ ∈ {a, b}ω} ∪ {(aω, aω)}

and let’s play.

Pl. I :

Pl. O:

a

a

a

a

a

a

b

a

a

a

b

a

a

a

b

a

a

a

b

b

b

a

a

b

· · ·

· · ·

Player O wins!

29

Example

Consider

R = {(anbw , a3nbw ′) | n ≥ 0,w ,w ′ ∈ {a, b}ω} ∪ {(aω, aω)}

and let’s play.

Pl. I :

Pl. O:

a

a

a

a

a

a

b

a

a

a

b

a

a

a

b

a

a

a

b

b

b

a

a

b

· · ·

· · ·

Player O wins!

29

Example

Consider

R = {(anbw , a3nbw ′) | n ≥ 0,w ,w ′ ∈ {a, b}ω} ∪ {(aω, aω)}

and let’s play.

Pl. I :

Pl. O:

a

a

a

a

a

a

b

a

a

a

b

a

a

a

b

a

a

a

b

b

b

a

a

b

· · ·

· · ·

Player O wins!

29

Example

Consider

R = {(anbw , a3nbw ′) | n ≥ 0,w ,w ′ ∈ {a, b}ω} ∪ {(aω, aω)}

and let’s play.

Pl. I :

Pl. O:

a

a

a

a

a

a

b

a

a

a

b

a

a

a

b

a

a

a

b

b

b

a

a

b

· · ·

· · ·

Player O wins!

29

Example

Consider

R = {(anbw , a3nbw ′) | n ≥ 0,w ,w ′ ∈ {a, b}ω} ∪ {(aω, aω)}

and let’s play.

Pl. I :

Pl. O:

a

a

a

a

a

a

b

a

a

a

b

a

a

a

b

a

a

a

b

b

b

a

a

b

· · ·

· · ·

Player O wins!

29

Example

Consider

R = {(anbw , a3nbw ′) | n ≥ 0,w ,w ′ ∈ {a, b}ω} ∪ {(aω, aω)}

and let’s play.

Pl. I :

Pl. O:

a

a

a

a

a

a

b

a

a

a

b

a

a

a

b

a

a

a

b

b

b

a

a

b

· · ·

· · ·

Player O wins!

29

Example

Consider

R = {(anbw , a3nbw ′) | n ≥ 0,w ,w ′ ∈ {a, b}ω} ∪ {(aω, aω)}

and let’s play.

Pl. I :

Pl. O:

a

a

a

a

a

a

b

a

a

a

b

a

a

a

b

a

a

a

b

b

b

a

a

b

· · ·

· · ·

Player O wins!

29

Example

Consider

R = {(anbw , a3nbw ′) | n ≥ 0,w ,w ′ ∈ {a, b}ω} ∪ {(aω, aω)}

and let’s play.

Pl. I :

Pl. O:

a

a

a

a

a

a

b

a

a

a

b

a

a

a

b

a

a

a

b

b

b

a

a

b

· · ·

· · ·

Player O wins!

29

Example

Consider

R = {(anbw , a3nbw ′) | n ≥ 0,w ,w ′ ∈ {a, b}ω} ∪ {(aω, aω)}

and let’s play.

Pl. I :

Pl. O:

a

a

a

a

a

a

b

a

a

a

b

a

a

a

b

a

a

a

b

b

b

a

a

b

· · ·

· · ·

Player O wins!

29

Example

Consider

R = {(anbw , a3nbw ′) | n ≥ 0,w ,w ′ ∈ {a, b}ω} ∪ {(aω, aω)}

and let’s play.

Pl. I :

Pl. O:

a

a

a

a

a

a

b

a

a

a

b

a

a

a

b

a

a

a

b

b

b

a

a

b

· · ·

· · ·

Player O wins!

29

Example

Consider

R = {(anbw , a3nbw ′) | n ≥ 0,w ,w ′ ∈ {a, b}ω} ∪ {(aω, aω)}

and let’s play.

Pl. I :

Pl. O:

a

a

a

a

a

a

b

a

a

a

b

a

a

a

b

a

a

a

b

b

b

a

a

b

· · ·

· · ·

Player O wins!

29

Example

Consider

R = {(anbw , a3nbw ′) | n ≥ 0,w ,w ′ ∈ {a, b}ω} ∪ {(aω, aω)}

and let’s play.

Pl. I :

Pl. O:

a

a

a

a

a

a

b

a

a

a

b

a

a

a

b

a

a

a

b

b

b

a

a

b

· · ·

· · ·

Player O wins!

29

Example

Consider

R = {(anbw , a3nbw ′) | n ≥ 0,w ,w ′ ∈ {a, b}ω} ∪ {(aω, aω)}

and let’s play.

Pl. I :

Pl. O:

a

a

a

a

a

a

b

a

a

a

b

a

a

a

b

a

a

a

b

b

b

a

a

b

· · ·

· · ·

Player O wins!

29

Example

Consider

R = {(anbw , a3nbw ′) | n ≥ 0,w ,w ′ ∈ {a, b}ω} ∪ {(aω, aω)}

and let’s play.

Pl. I :

Pl. O:

a

a

a

a

a

a

b

a

a

a

b

a

a

a

b

a

a

a

b

b

b

a

a

b

· · ·

· · ·

Player O wins!

29

Example

Consider

R = {(anbw , a3nbw ′) | n ≥ 0,w ,w ′ ∈ {a, b}ω} ∪ {(aω, aω)}

and let’s play.

Pl. I :

Pl. O:

a

a

a

a

a

a

b

a

a

a

b

a

a

a

b

a

a

a

b

b

b

a

a

b

· · ·

· · ·

Player O wins!

29

Example

Consider

R = {(anbw , a3nbw ′) | n ≥ 0,w ,w ′ ∈ {a, b}ω} ∪ {(aω, aω)}

and let’s play.

Pl. I :

Pl. O:

a

a

a

a

a

a

b

a

a

a

b

a

a

a

b

a

a

a

b

b

b

a

a

b

· · ·

· · ·

Player O wins!

29

Our Goal

A strategy for Player O: mapping σ : Σ∗I → ΣO mapping a
finite sequence of input letters to one output letter.

(α, β) is consistent with σ: β(n) = σ(α(0) · · ·α(n)) for all n.

σ is winning in G(R) with R ⊆ Σω
I × Σω

O : all consistent pairs
(α, β) are in R.

30

Our Goal

A strategy for Player O: mapping σ : Σ∗I → ΣO mapping a
finite sequence of input letters to one output letter.

(α, β) is consistent with σ: β(n) = σ(α(0) · · ·α(n)) for all n.

σ is winning in G(R) with R ⊆ Σω
I × Σω

O : all consistent pairs
(α, β) are in R.

Example

σ(w) =


a if w ∈ a∗,

a if w = anbw ′ with |w ′| ≤ 2n − 1,

b if w = anbw ′ with |w ′| = 2n,

a otherwise.

is a winning strategy for G(R) with

R = {(anbw , a3nbw ′) | n ≥ 0,w ,w ′ ∈ {a, b}ω} ∪ {(aω, aω)}.

30

Our Goal

A strategy for Player O: mapping σ : Σ∗I → ΣO mapping a
finite sequence of input letters to one output letter.

(α, β) is consistent with σ: β(n) = σ(α(0) · · ·α(n)) for all n.

σ is winning in G(R) with R ⊆ Σω
I × Σω

O : all consistent pairs
(α, β) are in R.

Yesterday, we have seen how to solve Gale-Stewart games with
ω-regular winning conditions. Today, we consider the following
problem:

Solving Gale-Stewart games with ω-contextfree winning
conditions: Given an ω-contextfree relation R, does
Player O have a winning strategy for G(R)?

30

Pushdown Automata

We have seen pushdown systems and pushdown graphs. Now, we
want to accept ω-languages with pushdown automata.

To this
end, we

equip the transitions of pushdown systems with letters they
process (we allow ε-transitions), and

add an acceptance condition: we again use parity.

qm qa qd

q20 q21

q30 q31 q32

a,

⊥ | ⊥A

a,

A | AA

#,

A | A

b,

A | AA

#,

A | A

d ,

A | A

t,

A | A

#,

⊥ | ⊥

#,

⊥ | ⊥

#,

⊥ | ⊥

#,

⊥ | ⊥

#,

⊥ | ⊥

c ,

A | ε

c ,

A | ε

c ,

A | ε

c ,

A | ε

c ,

A | ε

31

Pushdown Automata

We have seen pushdown systems and pushdown graphs. Now, we
want to accept ω-languages with pushdown automata. To this
end, we

equip the transitions of pushdown systems with letters they
process (we allow ε-transitions), and

add an acceptance condition: we again use parity.

qm qa qd

q20 q21

q30 q31 q32

a,⊥ | ⊥A

a,A | AA

#,A | A

b,A | AA

#,A | A

d ,A | A

t,A | A

#,⊥ | ⊥ #,⊥ | ⊥

#,⊥ | ⊥ #,⊥ | ⊥ #,⊥ | ⊥

c ,A | ε

c ,A | ε

c ,A | ε c ,A | ε

c ,A | ε

31

Pushdown Automata

We have seen pushdown systems and pushdown graphs. Now, we
want to accept ω-languages with pushdown automata. To this
end, we

equip the transitions of pushdown systems with letters they
process (we allow ε-transitions), and

add an acceptance condition: we again use parity.

1 1 1

0 1

0 1 1

a,⊥ | ⊥A

a,A | AA

#,A | A

b,A | AA

#,A | A

d ,A | A

t,A | A

#,⊥ | ⊥ #,⊥ | ⊥

#,⊥ | ⊥ #,⊥ | ⊥ #,⊥ | ⊥

c ,A | ε

c ,A | ε

c ,A | ε c ,A | ε

c ,A | ε

31

More Formally: Syntax and Semantics

An ω-pushdown (parity) automaton (ω-PDA) P = (S,Σ, `,Ω)
consists of

a PDS S = (Q, Γ, qI ,∆),

an input alphabet Σ,

a labeling ` : ∆→ Σ ∪ {ε} of the transitions by letters or ε
(we say τ is an `(τ)-transition), and

a coloring Ω: Q → N of the states.

An ω-word w0w1w2 · · · ∈ Σω is in the language L(P) of P if there

is a path c0
τ0−→ c1

τ1−→ c2
τ2−→ · · · through the configuration graph

of S such that

c0 = (qI ,⊥),

`(τ0)`(τ1)`(τ2) · · · = w0w1w2 · · · , and

Ω(q0)Ω(q1)Ω(q2) · · · satisfies the parity condition, where qn
is the state of cn.

32

More Formally: Syntax and Semantics

An ω-pushdown (parity) automaton (ω-PDA) P = (S,Σ, `,Ω)
consists of

a PDS S = (Q, Γ, qI ,∆),

an input alphabet Σ,

a labeling ` : ∆→ Σ ∪ {ε} of the transitions by letters or ε
(we say τ is an `(τ)-transition), and

a coloring Ω: Q → N of the states.

An ω-word w0w1w2 · · · ∈ Σω is in the language L(P) of P if there

is a path c0
τ0−→ c1

τ1−→ c2
τ2−→ · · · through the configuration graph

of S such that

c0 = (qI ,⊥),

`(τ0)`(τ1)`(τ2) · · · = w0w1w2 · · · , and

Ω(q0)Ω(q1)Ω(q2) · · · satisfies the parity condition, where qn
is the state of cn.

32

Back to the Example

1 1 1

0 1

0 1 1

a,⊥ | ⊥A

a,A | AA

#,A | A

b,A | AA

#,A | A

d ,A | A

t,A | A

#,⊥ | ⊥ #,⊥ | ⊥

#,⊥ | ⊥ #,⊥ | ⊥ #,⊥ | ⊥

c ,A | ε

c ,A | ε

c ,A | ε c ,A | ε

c ,A | ε

L(P) ={am#bn#dcm+n#ω | m > 0 and m + n mod 2 = 0}∪
{am#bn#tcm+n#ω | m > 0 and m + n mod 3 = 0}

33

Back to the Example

1 1 1

0 1

0 1 1

a,⊥ | ⊥A

a,A | AA

#,A | A

b,A | AA

#,A | A

d ,A | A

t,A | A

#,⊥ | ⊥ #,⊥ | ⊥

#,⊥ | ⊥ #,⊥ | ⊥ #,⊥ | ⊥

c ,A | ε

c ,A | ε

c ,A | ε c ,A | ε

c ,A | ε

L(P) ={am#bn#dcm+n#ω | m > 0 and m + n mod 2 = 0}∪
{am#bn#tcm+n#ω | m > 0 and m + n mod 3 = 0}

33

Technicalities

Let α = α(0)α(1)α(2) · · · ∈ Σω
I and β = β(0)β(1)β(2) · · · ∈ Σω

O

be two ω-words. We want to combine these two words into a
single ω-word:

Yesterday:

αˆβ = α(0)β(0)α(1)β(1)α(2)β(2) · · · ∈ (ΣI · ΣO)ω.

Today:(
α

β

)
=

(
α(0)

β(0)

)(
α(1)

β(1)

)(
α(2)

β(2)

)
· · · ∈ (ΣI × ΣO)ω.

In the following, we consider winning conditions L ⊆ (ΣI × ΣO)ω,
which represent the relation

RL =

{
(α, β) ∈ Σω

I × Σω
O

∣∣∣∣ (αβ
)
∈ L

}
.

34

Technicalities

Let α = α(0)α(1)α(2) · · · ∈ Σω
I and β = β(0)β(1)β(2) · · · ∈ Σω

O

be two ω-words. We want to combine these two words into a
single ω-word:

Yesterday:

αˆβ = α(0)β(0)α(1)β(1)α(2)β(2) · · · ∈ (ΣI · ΣO)ω.

Today:(
α

β

)
=

(
α(0)

β(0)

)(
α(1)

β(1)

)(
α(2)

β(2)

)
· · · ∈ (ΣI × ΣO)ω.

In the following, we consider winning conditions L ⊆ (ΣI × ΣO)ω,
which represent the relation

RL =

{
(α, β) ∈ Σω

I × Σω
O

∣∣∣∣ (αβ
)
∈ L

}
.

34

Technicalities

Let α = α(0)α(1)α(2) · · · ∈ Σω
I and β = β(0)β(1)β(2) · · · ∈ Σω

O

be two ω-words. We want to combine these two words into a
single ω-word:

Yesterday:

αˆβ = α(0)β(0)α(1)β(1)α(2)β(2) · · · ∈ (ΣI · ΣO)ω.

Today:(
α

β

)
=

(
α(0)

β(0)

)(
α(1)

β(1)

)(
α(2)

β(2)

)
· · · ∈ (ΣI × ΣO)ω.

In the following, we consider winning conditions L ⊆ (ΣI × ΣO)ω,
which represent the relation

RL =

{
(α, β) ∈ Σω

I × Σω
O

∣∣∣∣ (αβ
)
∈ L

}
.

34

Technicalities

Let α = α(0)α(1)α(2) · · · ∈ Σω
I and β = β(0)β(1)β(2) · · · ∈ Σω

O

be two ω-words. We want to combine these two words into a
single ω-word:

Yesterday:

αˆβ = α(0)β(0)α(1)β(1)α(2)β(2) · · · ∈ (ΣI · ΣO)ω.

Today:(
α

β

)
=

(
α(0)

β(0)

)(
α(1)

β(1)

)(
α(2)

β(2)

)
· · · ∈ (ΣI × ΣO)ω.

In the following, we consider winning conditions L ⊆ (ΣI × ΣO)ω,
which represent the relation

RL =

{
(α, β) ∈ Σω

I × Σω
O

∣∣∣∣ (αβ
)
∈ L

}
.

34

Back to the Example

R = {(anbw , a3nbw ′) | n ≥ 0,w ,w ′ ∈ {a, b}ω} ∪ {(aω, aω)}

is encoded by (∗ denotes an arbitrary letter)

{(
a

a

)n(b
a

)(
∗
a

)2n−1(∗
b

)(
∗
∗

)ω ∣∣∣∣∣ n ≥ 1

}
∪
{(

b

b

)(
∗
∗

)ω
,

(
a

a

)ω}
,

which is accepted by the ω-PDA (state name = color)

0 2 3 5 6

(
b
b

)
,⊥ | ⊥

(∗
∗
)
,⊥ | ⊥

(
a
a

)
,⊥ | ⊥A

(
a
a

)
,A | AA

(
b
a

)
,A | A

(∗
a

)
,A | ε

(∗
a

)
,A | A

(∗
b

)
,⊥ | ⊥

(∗
∗
)
,⊥ | ⊥

35

Bad News

Theorem
Solving Gale-Stewart games with ω-contextfree winning conditions
is undecidable.

Proof.
Given an ω-language L ⊆ Σω, let L= be the ω-language

L= =

{(
α(0)

α(0)

)(
α(1)

α(1)

)(
α(2)

α(2)

)
· · ·
∣∣∣∣ α(0)α(1)α(2) · · · ∈ L

}
.

Given an ω-PDA P accepting a language L, one can
effectively construct an ω-PDA P= for L=.

L is universal if and only if Player O has a winning strategy
for G(L=).

Universality for ω-PDA is undecidable, as it is undecidable for
PDA over finite words.

36

Bad News

Theorem
Solving Gale-Stewart games with ω-contextfree winning conditions
is undecidable.

Proof.
Given an ω-language L ⊆ Σω, let L= be the ω-language

L= =

{(
α(0)

α(0)

)(
α(1)

α(1)

)(
α(2)

α(2)

)
· · ·
∣∣∣∣ α(0)α(1)α(2) · · · ∈ L

}
.

Given an ω-PDA P accepting a language L, one can
effectively construct an ω-PDA P= for L=.

L is universal if and only if Player O has a winning strategy
for G(L=).

Universality for ω-PDA is undecidable, as it is undecidable for
PDA over finite words.

36

Bad News

Theorem
Solving Gale-Stewart games with ω-contextfree winning conditions
is undecidable.

Proof.
Given an ω-language L ⊆ Σω, let L= be the ω-language

L= =

{(
α(0)

α(0)

)(
α(1)

α(1)

)(
α(2)

α(2)

)
· · ·
∣∣∣∣ α(0)α(1)α(2) · · · ∈ L

}
.

Given an ω-PDA P accepting a language L, one can
effectively construct an ω-PDA P= for L=.

L is universal if and only if Player O has a winning strategy
for G(L=).

Universality for ω-PDA is undecidable, as it is undecidable for
PDA over finite words.

36

Bad News

Theorem
Solving Gale-Stewart games with ω-contextfree winning conditions
is undecidable.

Proof.
Given an ω-language L ⊆ Σω, let L= be the ω-language

L= =

{(
α(0)

α(0)

)(
α(1)

α(1)

)(
α(2)

α(2)

)
· · ·
∣∣∣∣ α(0)α(1)α(2) · · · ∈ L

}
.

Given an ω-PDA P accepting a language L, one can
effectively construct an ω-PDA P= for L=.

L is universal if and only if Player O has a winning strategy
for G(L=).

Universality for ω-PDA is undecidable, as it is undecidable for
PDA over finite words.

36

Bad News

Theorem
Solving Gale-Stewart games with ω-contextfree winning conditions
is undecidable.

Proof.
Given an ω-language L ⊆ Σω, let L= be the ω-language

L= =

{(
α(0)

α(0)

)(
α(1)

α(1)

)(
α(2)

α(2)

)
· · ·
∣∣∣∣ α(0)α(1)α(2) · · · ∈ L

}
.

Given an ω-PDA P accepting a language L, one can
effectively construct an ω-PDA P= for L=.

L is universal if and only if Player O has a winning strategy
for G(L=).

Universality for ω-PDA is undecidable, as it is undecidable for
PDA over finite words.

36

What about Deterministic ω-PDA?

Universality is only undecidable for nondeterministic (ω-) PDA, but
decidable for deterministic (ω-) PDA. Thus, solving Gale-Stewart
games with deterministic contextfree winning conditions could still
be decidable as well.

P is deterministic if

for every q ∈ Q, every A ∈ Γ⊥, and every a ∈ Σ∪ {ε}, there is
at most one a-transition of the form (q,A, q′, γ) ∈ ∆ for some
q′ and some γ, and

for every q ∈ Q and every A ∈ Γ⊥, if there is an
ε-transition (q,A, q1, γ1) ∈ ∆ for some q1 and some γ1, then
there is no a ∈ Σ such that there is an
a-transition (q,A, q2, γ2) ∈ ∆ for some q2 and some γ2.

37

What about Deterministic ω-PDA?

Universality is only undecidable for nondeterministic (ω-) PDA, but
decidable for deterministic (ω-) PDA. Thus, solving Gale-Stewart
games with deterministic contextfree winning conditions could still
be decidable as well.

P is deterministic if

for every q ∈ Q, every A ∈ Γ⊥, and every a ∈ Σ∪ {ε}, there is
at most one a-transition of the form (q,A, q′, γ) ∈ ∆ for some
q′ and some γ, and

for every q ∈ Q and every A ∈ Γ⊥, if there is an
ε-transition (q,A, q1, γ1) ∈ ∆ for some q1 and some γ1, then
there is no a ∈ Σ such that there is an
a-transition (q,A, q2, γ2) ∈ ∆ for some q2 and some γ2.

37

What about Deterministic ω-PDA?

a,B | γ

a,B | γ′

7

a,B | γ

a,C | γ′

3

a,C | γ

b,C | γ′

3
a,B | γ

ε,B | γ′

7

a,B | γ

ε,C | γ′

3

ε,B | γ

ε,B | γ′

7

P is deterministic if

for every q ∈ Q, every A ∈ Γ⊥, and every a ∈ Σ∪ {ε}, there is
at most one a-transition of the form (q,A, q′, γ) ∈ ∆ for some
q′ and some γ, and

for every q ∈ Q and every A ∈ Γ⊥, if there is an
ε-transition (q,A, q1, γ1) ∈ ∆ for some q1 and some γ1, then
there is no a ∈ Σ such that there is an
a-transition (q,A, q2, γ2) ∈ ∆ for some q2 and some γ2.

37

What about Deterministic ω-PDA?

a,B | γ

a,B | γ′
7

a,B | γ

a,C | γ′

3

a,C | γ

b,C | γ′

3
a,B | γ

ε,B | γ′

7

a,B | γ

ε,C | γ′

3

ε,B | γ

ε,B | γ′

7

P is deterministic if

for every q ∈ Q, every A ∈ Γ⊥, and every a ∈ Σ∪ {ε}, there is
at most one a-transition of the form (q,A, q′, γ) ∈ ∆ for some
q′ and some γ, and

for every q ∈ Q and every A ∈ Γ⊥, if there is an
ε-transition (q,A, q1, γ1) ∈ ∆ for some q1 and some γ1, then
there is no a ∈ Σ such that there is an
a-transition (q,A, q2, γ2) ∈ ∆ for some q2 and some γ2.

37

What about Deterministic ω-PDA?

a,B | γ

a,B | γ′
7

a,B | γ

a,C | γ′
3

a,C | γ

b,C | γ′

3
a,B | γ

ε,B | γ′

7

a,B | γ

ε,C | γ′

3

ε,B | γ

ε,B | γ′

7

P is deterministic if

for every q ∈ Q, every A ∈ Γ⊥, and every a ∈ Σ∪ {ε}, there is
at most one a-transition of the form (q,A, q′, γ) ∈ ∆ for some
q′ and some γ, and

for every q ∈ Q and every A ∈ Γ⊥, if there is an
ε-transition (q,A, q1, γ1) ∈ ∆ for some q1 and some γ1, then
there is no a ∈ Σ such that there is an
a-transition (q,A, q2, γ2) ∈ ∆ for some q2 and some γ2.

37

What about Deterministic ω-PDA?

a,B | γ

a,B | γ′
7

a,B | γ

a,C | γ′
3

a,C | γ

b,C | γ′
3

a,B | γ

ε,B | γ′

7

a,B | γ

ε,C | γ′

3

ε,B | γ

ε,B | γ′

7

P is deterministic if

for every q ∈ Q, every A ∈ Γ⊥, and every a ∈ Σ∪ {ε}, there is
at most one a-transition of the form (q,A, q′, γ) ∈ ∆ for some
q′ and some γ, and

for every q ∈ Q and every A ∈ Γ⊥, if there is an
ε-transition (q,A, q1, γ1) ∈ ∆ for some q1 and some γ1, then
there is no a ∈ Σ such that there is an
a-transition (q,A, q2, γ2) ∈ ∆ for some q2 and some γ2.

37

What about Deterministic ω-PDA?

a,B | γ

a,B | γ′
7

a,B | γ

a,C | γ′
3

a,C | γ

b,C | γ′
3

a,B | γ

ε,B | γ′

7

a,B | γ

ε,C | γ′

3

ε,B | γ

ε,B | γ′

7

P is deterministic if

for every q ∈ Q, every A ∈ Γ⊥, and every a ∈ Σ∪ {ε}, there is
at most one a-transition of the form (q,A, q′, γ) ∈ ∆ for some
q′ and some γ, and

for every q ∈ Q and every A ∈ Γ⊥, if there is an
ε-transition (q,A, q1, γ1) ∈ ∆ for some q1 and some γ1, then
there is no a ∈ Σ such that there is an
a-transition (q,A, q2, γ2) ∈ ∆ for some q2 and some γ2.

37

What about Deterministic ω-PDA?

a,B | γ

a,B | γ′
7

a,B | γ

a,C | γ′
3

a,C | γ

b,C | γ′
3

a,B | γ

ε,B | γ′
7

a,B | γ

ε,C | γ′

3

ε,B | γ

ε,B | γ′

7

P is deterministic if

for every q ∈ Q, every A ∈ Γ⊥, and every a ∈ Σ∪ {ε}, there is
at most one a-transition of the form (q,A, q′, γ) ∈ ∆ for some
q′ and some γ, and

for every q ∈ Q and every A ∈ Γ⊥, if there is an
ε-transition (q,A, q1, γ1) ∈ ∆ for some q1 and some γ1, then
there is no a ∈ Σ such that there is an
a-transition (q,A, q2, γ2) ∈ ∆ for some q2 and some γ2.

37

What about Deterministic ω-PDA?

a,B | γ

a,B | γ′
7

a,B | γ

a,C | γ′
3

a,C | γ

b,C | γ′
3

a,B | γ

ε,B | γ′
7

a,B | γ

ε,C | γ′
3

ε,B | γ

ε,B | γ′

7

P is deterministic if

for every q ∈ Q, every A ∈ Γ⊥, and every a ∈ Σ∪ {ε}, there is
at most one a-transition of the form (q,A, q′, γ) ∈ ∆ for some
q′ and some γ, and

for every q ∈ Q and every A ∈ Γ⊥, if there is an
ε-transition (q,A, q1, γ1) ∈ ∆ for some q1 and some γ1, then
there is no a ∈ Σ such that there is an
a-transition (q,A, q2, γ2) ∈ ∆ for some q2 and some γ2.

37

What about Deterministic ω-PDA?

a,B | γ

a,B | γ′
7

a,B | γ

a,C | γ′
3

a,C | γ

b,C | γ′
3

a,B | γ

ε,B | γ′
7

a,B | γ

ε,C | γ′
3

ε,B | γ

ε,B | γ′
7

P is deterministic if

for every q ∈ Q, every A ∈ Γ⊥, and every a ∈ Σ∪ {ε}, there is
at most one a-transition of the form (q,A, q′, γ) ∈ ∆ for some
q′ and some γ, and

for every q ∈ Q and every A ∈ Γ⊥, if there is an
ε-transition (q,A, q1, γ1) ∈ ∆ for some q1 and some γ1, then
there is no a ∈ Σ such that there is an
a-transition (q,A, q2, γ2) ∈ ∆ for some q2 and some γ2.

37

What about Deterministic ω-PDA?

Example

0 2 3 5 6

(
b
b

)
,⊥ | ⊥

(∗
∗
)
,⊥ | ⊥

(
a
a

)
,⊥ | ⊥A

(
a
a

)
,A | AA

(
b
a

)
,A | A

(∗
a

)
,A | ε

(∗
a

)
,A | A

(∗
b

)
,⊥ | ⊥

(∗
∗
)
,⊥ | ⊥

P is deterministic if

for every q ∈ Q, every A ∈ Γ⊥, and every a ∈ Σ∪ {ε}, there is
at most one a-transition of the form (q,A, q′, γ) ∈ ∆ for some
q′ and some γ, and

for every q ∈ Q and every A ∈ Γ⊥, if there is an
ε-transition (q,A, q1, γ1) ∈ ∆ for some q1 and some γ1, then
there is no a ∈ Σ such that there is an
a-transition (q,A, q2, γ2) ∈ ∆ for some q2 and some γ2.

37

Good News

Corollary (Walukiewicz 1996)

Solving Gale-Stewart games with deterministic ω-contextfree
winning conditions is ExpTime-complete.

Proof Sketch
We show that Gale-Stewart games with ω-contextfree winning
conditions can be simulated by parity games on pushdown graphs
and vice versa (with a polynomial blowup).

1. Given an ω-PDA P, we construct a polynomial-sized PDS S ′
such that Player O wins G(L(P)) if and only if Player 0 wins
the parity game induced by S ′.

2. Given a PDS S ′, we construct a polynomial-sized ω-PDA P
such that Player 0 wins the parity game induced by S ′ if and
only if Player O wins G(L(P)).

38

Good News

Corollary (Walukiewicz 1996)

Solving Gale-Stewart games with deterministic ω-contextfree
winning conditions is ExpTime-complete.

Proof Sketch
We show that Gale-Stewart games with ω-contextfree winning
conditions can be simulated by parity games on pushdown graphs
and vice versa (with a polynomial blowup).

1. Given an ω-PDA P, we construct a polynomial-sized PDS S ′
such that Player O wins G(L(P)) if and only if Player 0 wins
the parity game induced by S ′.

2. Given a PDS S ′, we construct a polynomial-sized ω-PDA P
such that Player 0 wins the parity game induced by S ′ if and
only if Player O wins G(L(P)).

38

From Gale-Stewart to Parity: Intuition

2

(2, a)
X | X

(2, b)
X | X

(2,
(
a
a

)
)X | X

(2,
(
a
b

)
)X | X

(2,
(
b
a

)
)

(2,
(
b
b

)
)

X | X

X | X

2
X | XA

s
X | X

3
A | A

⊥ | ⊥

0
⊥ | ⊥

A | A

0 2 3 5 6

(
b
b

)
,⊥ | ⊥

(∗
∗
)
,⊥ | ⊥

(
a
a

)
,⊥ | ⊥A

(
a
a

)
,A | AA

(
b
a

)
,A | A

(∗
a

)
,A | ε

(∗
a

)
,A | A

(∗
b

)
,⊥ | ⊥

(∗
∗
)
,⊥ | ⊥

39

From Gale-Stewart to Parity: Intuition

2

(2, a)
X | X

(2, b)
X | X

(2,
(
a
a

)
)X | X

(2,
(
a
b

)
)X | X

(2,
(
b
a

)
)

(2,
(
b
b

)
)

X | X

X | X

2
X | XA

s
X | X

3
A | A

⊥ | ⊥

0
⊥ | ⊥

A | A

0 2 3 5 6

(
b
b

)
,⊥ | ⊥

(∗
∗
)
,⊥ | ⊥

(
a
a

)
,⊥ | ⊥A

(
a
a

)
,A | AA

(
b
a

)
,A | A

(∗
a

)
,A | ε

(∗
a

)
,A | A

(∗
b

)
,⊥ | ⊥

(∗
∗
)
,⊥ | ⊥

39

From Gale-Stewart to Parity: Intuition

2

(2, a)
X | X

(2, b)
X | X

(2,
(
a
a

)
)X | X

(2,
(
a
b

)
)X | X

(2,
(
b
a

)
)

(2,
(
b
b

)
)

X | X

X | X

2
X | XA

s
X | X

3
A | A

⊥ | ⊥

0
⊥ | ⊥

A | A

0 2 3 5 6

(
b
b

)
,⊥ | ⊥

(∗
∗
)
,⊥ | ⊥

(
a
a

)
,⊥ | ⊥A

(
a
a

)
,A | AA

(
b
a

)
,A | A

(∗
a

)
,A | ε

(∗
a

)
,A | A

(∗
b

)
,⊥ | ⊥

(∗
∗
)
,⊥ | ⊥

39

From Gale-Stewart to Parity: Intuition

2

(2, a)
X | X

(2, b)
X | X

(2,
(
a
a

)
)X | X

(2,
(
a
b

)
)X | X

(2,
(
b
a

)
)

(2,
(
b
b

)
)

X | X

X | X

2
X | XA

s
X | X

3
A | A

⊥ | ⊥

0
⊥ | ⊥

A | A

0 2 3 5 6

(
b
b

)
,⊥ | ⊥

(∗
∗
)
,⊥ | ⊥

(
a
a

)
,⊥ | ⊥A

(
a
a

)
,A | AA

(
b
a

)
,A | A

(∗
a

)
,A | ε

(∗
a

)
,A | A

(∗
b

)
,⊥ | ⊥

(∗
∗
)
,⊥ | ⊥

39

From Gale-Stewart to Parity: Intuition

2

(2, a)
X | X

(2, b)
X | X

(2,
(
a
a

)
)X | X

(2,
(
a
b

)
)X | X

(2,
(
b
a

)
)

(2,
(
b
b

)
)

X | X

X | X

2
X | XA

s
X | X

3
A | A

⊥ | ⊥

0
⊥ | ⊥

A | A

0 2 3 5 6

(
b
b

)
,⊥ | ⊥

(∗
∗
)
,⊥ | ⊥

(
a
a

)
,⊥ | ⊥A

(
a
a

)
,A | AA

(
b
a

)
,A | A

(∗
a

)
,A | ε

(∗
a

)
,A | A

(∗
b

)
,⊥ | ⊥

(∗
∗
)
,⊥ | ⊥

39

From Gale-Stewart to Parity: Intuition

2

(2, a)
X | X

(2, b)
X | X

(2,
(
a
a

)
)X | X

(2,
(
a
b

)
)X | X

(2,
(
b
a

)
)

(2,
(
b
b

)
)

X | X

X | X

2
X | XA

s
X | X

3
A | A

⊥ | ⊥

0
⊥ | ⊥

A | A

0 2 3 5 6

(
b
b

)
,⊥ | ⊥

(∗
∗
)
,⊥ | ⊥

(
a
a

)
,⊥ | ⊥A

(
a
a

)
,A | AA

(
b
a

)
,A | A

(∗
a

)
,A | ε

(∗
a

)
,A | A

(∗
b

)
,⊥ | ⊥

(∗
∗
)
,⊥ | ⊥

39

From Gale-Stewart to Parity: Intuition

2

(2, a)
X | X

(2, b)
X | X

(2,
(
a
a

)
)X | X

(2,
(
a
b

)
)X | X

(2,
(
b
a

)
)

(2,
(
b
b

)
)

X | X

X | X

2
X | XA

s
X | X

3
A | A

⊥ | ⊥

0
⊥ | ⊥

A | A

0 2 3 5 6

(
b
b

)
,⊥ | ⊥

(∗
∗
)
,⊥ | ⊥

(
a
a

)
,⊥ | ⊥A

(
a
a

)
,A | AA

(
b
a

)
,A | A

(∗
a

)
,A | ε

(∗
a

)
,A | A

(∗
b

)
,⊥ | ⊥

(∗
∗
)
,⊥ | ⊥

39

From Gale-Stewart to Parity: Intuition

2

(2, a)
X | X

(2, b)
X | X

(2,
(
a
a

)
)X | X

(2,
(
a
b

)
)X | X

(2,
(
b
a

)
)

(2,
(
b
b

)
)

X | X

X | X

2
X | XA

s
X | X

3
A | A

⊥ | ⊥

0
⊥ | ⊥

A | A

0 2 3 5 6

(
b
b

)
,⊥ | ⊥

(∗
∗
)
,⊥ | ⊥

(
a
a

)
,⊥ | ⊥A

(
a
a

)
,A | AA

(
b
a

)
,A | A

(∗
a

)
,A | ε

(∗
a

)
,A | A

(∗
b

)
,⊥ | ⊥

(∗
∗
)
,⊥ | ⊥

39

From Gale-Stewart to Parity: Intuition

2

(2, a)
X | X

(2, b)
X | X

(2,
(
a
a

)
)X | X

(2,
(
a
b

)
)X | X

(2,
(
b
a

)
)

(2,
(
b
b

)
)

X | X

X | X

2
X | XA

s
X | X

3
A | A

⊥ | ⊥

0
⊥ | ⊥

A | A

0 2 3 5 6

(
b
b

)
,⊥ | ⊥

(∗
∗
)
,⊥ | ⊥

(
a
a

)
,⊥ | ⊥A

(
a
a

)
,A | AA

(
b
a

)
,A | A

(∗
a

)
,A | ε

(∗
a

)
,A | A

(∗
b

)
,⊥ | ⊥

(∗
∗
)
,⊥ | ⊥

39

From Gale-Stewart to Parity: Intuition

2

(2, a)
X | X

(2, b)
X | X

(2,
(
a
a

)
)X | X

(2,
(
a
b

)
)X | X

(2,
(
b
a

)
)

(2,
(
b
b

)
)

X | X

X | X

2
X | XA

s
X | X

3
A | A

⊥ | ⊥

0
⊥ | ⊥

A | A

0 2 3 5 6

(
b
b

)
,⊥ | ⊥

(∗
∗
)
,⊥ | ⊥

(
a
a

)
,⊥ | ⊥A

(
a
a

)
,A | AA

(
b
a

)
,A | A

(∗
a

)
,A | ε

(∗
a

)
,A | A

(∗
b

)
,⊥ | ⊥

(∗
∗
)
,⊥ | ⊥

39

From Gale-Stewart to Parity: Intuition

2

(2, a)
X | X

(2, b)
X | X

(2,
(
a
a

)
)X | X

(2,
(
a
b

)
)X | X

(2,
(
b
a

)
)

(2,
(
b
b

)
)

X | X

X | X

2
X | XA

s
X | X

3
A | A

⊥ | ⊥

0
⊥ | ⊥

A | A

0 2 3 5 6

(
b
b

)
,⊥ | ⊥

(∗
∗
)
,⊥ | ⊥

(
a
a

)
,⊥ | ⊥A

(
a
a

)
,A | AA

(
b
a

)
,A | A

(∗
a

)
,A | ε

(∗
a

)
,A | A

(∗
b

)
,⊥ | ⊥

(∗
∗
)
,⊥ | ⊥

39

From Gale-Stewart to Parity: Intuition

2

(2, a)
X | X

(2, b)
X | X

(2,
(
a
a

)
)X | X

(2,
(
a
b

)
)X | X

(2,
(
b
a

)
)

(2,
(
b
b

)
)

X | X

X | X

2
X | XA

s
X | X

3
A | A

⊥ | ⊥

0
⊥ | ⊥

A | A

0 2 3 5 6

(
b
b

)
,⊥ | ⊥

(∗
∗
)
,⊥ | ⊥

(
a
a

)
,⊥ | ⊥A

(
a
a

)
,A | AA

(
b
a

)
,A | A

(∗
a

)
,A | ε

(∗
a

)
,A | A

(∗
b

)
,⊥ | ⊥

(∗
∗
)
,⊥ | ⊥

39

From Gale-Stewart to Parity: Intuition

2

(2, a)
X | X

(2, b)
X | X

(2,
(
a
a

)
)X | X

(2,
(
a
b

)
)X | X

(2,
(
b
a

)
)

(2,
(
b
b

)
)

X | X

X | X

2
X | XA

s
X | X

3
A | A

⊥ | ⊥

0
⊥ | ⊥

A | A

0 2 3 5 6

(
b
b

)
,⊥ | ⊥

(∗
∗
)
,⊥ | ⊥

(
a
a

)
,⊥ | ⊥A

(
a
a

)
,A | AA

(
b
a

)
,A | A

(∗
a

)
,A | ε

(∗
a

)
,A | A

(∗
b

)
,⊥ | ⊥

(∗
∗
)
,⊥ | ⊥

39

(Slightly) More Formally

Construct PDS S ′ simulating G(L(P)) for P = (S,ΣI × ΣO , `,Ω)
with S = (Q, Γ, qI ,∆):

S ′ has all states of S, plus some auxiliary ones:

{(q, a), (q,
(a
b

)
) | q ∈ Q, a ∈ ΣI , b ∈ ΣO} to mimic

picking letters, and
a fresh sink state s.

The initial state and the stack alphabet of S are the same as
in S ′.
The transitions of S ′ are defined to implement the picking of
letters and then the deterministic simulation of P (might
involve ε-transitions).

Player 0 moves at states of the form q ∈ Q, Player 1 at states
of the form (q, a) ∈ Q ×ΣI and, for completeness, at all other
states (irrelevant, as these are “deterministic”).

Colors of states from Q are inherited from P (and are w.l.o.g.
≥ 2), all auxiliary states are colored by 1.

40

(Slightly) More Formally

Construct PDS S ′ simulating G(L(P)) for P = (S,ΣI × ΣO , `,Ω)
with S = (Q, Γ, qI ,∆):

S ′ has all states of S, plus some auxiliary ones:

{(q, a), (q,
(a
b

)
) | q ∈ Q, a ∈ ΣI , b ∈ ΣO} to mimic

picking letters, and
a fresh sink state s.

The initial state and the stack alphabet of S are the same as
in S ′.
The transitions of S ′ are defined to implement the picking of
letters and then the deterministic simulation of P (might
involve ε-transitions).

Player 0 moves at states of the form q ∈ Q, Player 1 at states
of the form (q, a) ∈ Q ×ΣI and, for completeness, at all other
states (irrelevant, as these are “deterministic”).

Colors of states from Q are inherited from P (and are w.l.o.g.
≥ 2), all auxiliary states are colored by 1.

40

(Slightly) More Formally

Construct PDS S ′ simulating G(L(P)) for P = (S,ΣI × ΣO , `,Ω)
with S = (Q, Γ, qI ,∆):

S ′ has all states of S, plus some auxiliary ones:

{(q, a), (q,
(a
b

)
) | q ∈ Q, a ∈ ΣI , b ∈ ΣO} to mimic

picking letters, and
a fresh sink state s.

The initial state and the stack alphabet of S are the same as
in S ′.

The transitions of S ′ are defined to implement the picking of
letters and then the deterministic simulation of P (might
involve ε-transitions).

Player 0 moves at states of the form q ∈ Q, Player 1 at states
of the form (q, a) ∈ Q ×ΣI and, for completeness, at all other
states (irrelevant, as these are “deterministic”).

Colors of states from Q are inherited from P (and are w.l.o.g.
≥ 2), all auxiliary states are colored by 1.

40

(Slightly) More Formally

Construct PDS S ′ simulating G(L(P)) for P = (S,ΣI × ΣO , `,Ω)
with S = (Q, Γ, qI ,∆):

S ′ has all states of S, plus some auxiliary ones:

{(q, a), (q,
(a
b

)
) | q ∈ Q, a ∈ ΣI , b ∈ ΣO} to mimic

picking letters, and
a fresh sink state s.

The initial state and the stack alphabet of S are the same as
in S ′.
The transitions of S ′ are defined to implement the picking of
letters and then the deterministic simulation of P (might
involve ε-transitions).

Player 0 moves at states of the form q ∈ Q, Player 1 at states
of the form (q, a) ∈ Q ×ΣI and, for completeness, at all other
states (irrelevant, as these are “deterministic”).

Colors of states from Q are inherited from P (and are w.l.o.g.
≥ 2), all auxiliary states are colored by 1.

40

(Slightly) More Formally

Construct PDS S ′ simulating G(L(P)) for P = (S,ΣI × ΣO , `,Ω)
with S = (Q, Γ, qI ,∆):

S ′ has all states of S, plus some auxiliary ones:

{(q, a), (q,
(a
b

)
) | q ∈ Q, a ∈ ΣI , b ∈ ΣO} to mimic

picking letters, and
a fresh sink state s.

The initial state and the stack alphabet of S are the same as
in S ′.
The transitions of S ′ are defined to implement the picking of
letters and then the deterministic simulation of P (might
involve ε-transitions).

Player 0 moves at states of the form q ∈ Q, Player 1 at states
of the form (q, a) ∈ Q ×ΣI and, for completeness, at all other
states (irrelevant, as these are “deterministic”).

Colors of states from Q are inherited from P (and are w.l.o.g.
≥ 2), all auxiliary states are colored by 1.

40

(Slightly) More Formally

Construct PDS S ′ simulating G(L(P)) for P = (S,ΣI × ΣO , `,Ω)
with S = (Q, Γ, qI ,∆):

S ′ has all states of S, plus some auxiliary ones:

{(q, a), (q,
(a
b

)
) | q ∈ Q, a ∈ ΣI , b ∈ ΣO} to mimic

picking letters, and
a fresh sink state s.

The initial state and the stack alphabet of S are the same as
in S ′.
The transitions of S ′ are defined to implement the picking of
letters and then the deterministic simulation of P (might
involve ε-transitions).

Player 0 moves at states of the form q ∈ Q, Player 1 at states
of the form (q, a) ∈ Q ×ΣI and, for completeness, at all other
states (irrelevant, as these are “deterministic”).

Colors of states from Q are inherited from P (and are w.l.o.g.
≥ 2), all auxiliary states are colored by 1.

40

Correctness

Lemma
Player O wins G(L(P)) if and only if Player 0 wins the parity game
induced by S ′ from its initial vertex.

Proof.

Show that winning strategies can be translated from one
game to the other.

In particular, a pushdown transducer implement a winning
strategy for Player 0 in the parity game induced by S ′ can be
effectively turned into a pushdown transducer implement a
winning strategy for Player O in G(L(P)).

Corollary

If Player O wins a Gale-Stewart game with deterministic
ω-contextfree winning condition, then she has a finitely
representable winning strategy (and the representation is
computable in exponential time).

41

Correctness

Lemma
Player O wins G(L(P)) if and only if Player 0 wins the parity game
induced by S ′ from its initial vertex.

Proof.

Show that winning strategies can be translated from one
game to the other.

In particular, a pushdown transducer implement a winning
strategy for Player 0 in the parity game induced by S ′ can be
effectively turned into a pushdown transducer implement a
winning strategy for Player O in G(L(P)).

Corollary

If Player O wins a Gale-Stewart game with deterministic
ω-contextfree winning condition, then she has a finitely
representable winning strategy (and the representation is
computable in exponential time).

41

Correctness

Lemma
Player O wins G(L(P)) if and only if Player 0 wins the parity game
induced by S ′ from its initial vertex.

Proof.

Show that winning strategies can be translated from one
game to the other.

In particular, a pushdown transducer implement a winning
strategy for Player 0 in the parity game induced by S ′ can be
effectively turned into a pushdown transducer implement a
winning strategy for Player O in G(L(P)).

Corollary

If Player O wins a Gale-Stewart game with deterministic
ω-contextfree winning condition, then she has a finitely
representable winning strategy (and the representation is
computable in exponential time).

41

From Parity to Gale-Stewart: Intuition

qm/0

qa/1

qd/1

q20/0

q21/1

q30/0

q31/1

q32/1

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

We can identify plays with infinite sequences of transitions.
42

(Slightly) More Formally

Fix a PDS (Q, Γ, qI ,∆), a partition Q = Q0 ∪ Q1, and a
coloring Ω: Q → N. We can assume w.l.o.g. that

the induced game is alternating, i.e., if (q,X , q′, γ) ∈ ∆, then
q ∈ Q0 if and only if q′ ∈ Q1, and

that qI ∈ Q1.

Both properties can be satisfied by adding transitions where
necessary, while preserving the winner of the induced game.

Consider the language

L =
{(

τ0
τ1

)(
τ2
τ3

)
· · · ∈ (∆2)ω

∣∣∣ τ0τ1τ2 · · · induces winning play for Pl. 0
}

∪
{(

τ0
τ1

)(
τ2
τ3

)
· · · ∈ (∆2)ω

∣∣∣∣ there is an even n s.t. τ0 · · · τn−1 induces
a play prefix, but τ0 · · · τn−1τn does not

}
.

L is accepted by a deterministic ω-PDA.

Player 0 wins the game induced by S if and only if Player O
wins G(L).

43

(Slightly) More Formally

Fix a PDS (Q, Γ, qI ,∆), a partition Q = Q0 ∪ Q1, and a
coloring Ω: Q → N. We can assume w.l.o.g. that

the induced game is alternating, i.e., if (q,X , q′, γ) ∈ ∆, then
q ∈ Q0 if and only if q′ ∈ Q1, and

that qI ∈ Q1.

Consider the language

L =
{(

τ0
τ1

)(
τ2
τ3

)
· · · ∈ (∆2)ω

∣∣∣ τ0τ1τ2 · · · induces winning play for Pl. 0
}

∪
{(

τ0
τ1

)(
τ2
τ3

)
· · · ∈ (∆2)ω

∣∣∣∣ there is an even n s.t. τ0 · · · τn−1 induces
a play prefix, but τ0 · · · τn−1τn does not

}
.

L is accepted by a deterministic ω-PDA.

Player 0 wins the game induced by S if and only if Player O
wins G(L).

43

(Slightly) More Formally

Fix a PDS (Q, Γ, qI ,∆), a partition Q = Q0 ∪ Q1, and a
coloring Ω: Q → N. We can assume w.l.o.g. that

the induced game is alternating, i.e., if (q,X , q′, γ) ∈ ∆, then
q ∈ Q0 if and only if q′ ∈ Q1, and

that qI ∈ Q1.

Consider the language

L =
{(

τ0
τ1

)(
τ2
τ3

)
· · · ∈ (∆2)ω

∣∣∣ τ0τ1τ2 · · · induces winning play for Pl. 0
}

∪
{(

τ0
τ1

)(
τ2
τ3

)
· · · ∈ (∆2)ω

∣∣∣∣ there is an even n s.t. τ0 · · · τn−1 induces
a play prefix, but τ0 · · · τn−1τn does not

}
.

L is accepted by a deterministic ω-PDA.

Player 0 wins the game induced by S if and only if Player O
wins G(L).

43

(Slightly) More Formally

Fix a PDS (Q, Γ, qI ,∆), a partition Q = Q0 ∪ Q1, and a
coloring Ω: Q → N. We can assume w.l.o.g. that

the induced game is alternating, i.e., if (q,X , q′, γ) ∈ ∆, then
q ∈ Q0 if and only if q′ ∈ Q1, and

that qI ∈ Q1.

Consider the language

L =
{(

τ0
τ1

)(
τ2
τ3

)
· · · ∈ (∆2)ω

∣∣∣ τ0τ1τ2 · · · induces winning play for Pl. 0
}

∪
{(

τ0
τ1

)(
τ2
τ3

)
· · · ∈ (∆2)ω

∣∣∣∣ there is an even n s.t. τ0 · · · τn−1 induces
a play prefix, but τ0 · · · τn−1τn does not

}
.

L is accepted by a deterministic ω-PDA.

Player 0 wins the game induced by S if and only if Player O
wins G(L).

43

The End of the Story?
Solving Gale-Stewart games with nondeterministic contextfree
winning conditions is undecidable.
Solving Gale-Stewart games with deterministic contextfree
winning conditions is decidable.

Recall the construction of the PDS S ′ simulating the Gale-Stewart
game G(L(P)) for a deterministic ω-PDA P.

2

(2, a)
X | X

(2, b)
X | X

(2,
(
a
a

)
)X | X

(2,
(
a
b

)
)X | X

(2,
(
b
a

)
)

(2,
(
b
b

)
)

X | X

X | X

2
X | XA

s
X | X

3
A | A

⊥ | ⊥

0
⊥ | ⊥

A | A
In the configuration graph of S ′, every vertex of the form
((q,

(a
b

)
), γ) has a unique successor due to determinism of P.

Why not allow nondeterministic ω-PDA and let Player 0
resolve the nondeterminism (after all, she wins if the run there
is an accepting run).

44

The End of the Story?
Solving Gale-Stewart games with nondeterministic contextfree
winning conditions is undecidable.
Solving Gale-Stewart games with deterministic contextfree
winning conditions is decidable.

Recall the construction of the PDS S ′ simulating the Gale-Stewart
game G(L(P)) for a deterministic ω-PDA P.

2

(2, a)
X | X

(2, b)
X | X

(2,
(
a
a

)
)X | X

(2,
(
a
b

)
)X | X

(2,
(
b
a

)
)

(2,
(
b
b

)
)

X | X

X | X

2
X | XA

s
X | X

3
A | A

⊥ | ⊥

0
⊥ | ⊥

A | A

In the configuration graph of S ′, every vertex of the form
((q,

(a
b

)
), γ) has a unique successor due to determinism of P.

Why not allow nondeterministic ω-PDA and let Player 0
resolve the nondeterminism (after all, she wins if the run there
is an accepting run).

44

The End of the Story?
Solving Gale-Stewart games with nondeterministic contextfree
winning conditions is undecidable.
Solving Gale-Stewart games with deterministic contextfree
winning conditions is decidable.

Recall the construction of the PDS S ′ simulating the Gale-Stewart
game G(L(P)) for a deterministic ω-PDA P.

2

(2, a)
X | X

(2, b)
X | X

(2,
(
a
a

)
)X | X

(2,
(
a
b

)
)X | X

(2,
(
b
a

)
)

(2,
(
b
b

)
)

X | X

X | X

2
X | XA

s
X | X

3
A | A

⊥ | ⊥

0
⊥ | ⊥

A | A
In the configuration graph of S ′, every vertex of the form
((q,

(a
b

)
), γ) has a unique successor due to determinism of P.

Why not allow nondeterministic ω-PDA and let Player 0
resolve the nondeterminism (after all, she wins if the run there
is an accepting run).

44

A Counterexample

Consider the following (admittedly rather contrived) automaton for
the language U = ({a, b}2)ω.

1

2

3

4

(∗
∗
)

(∗
∗
)

(a
∗
)

(b
∗
) (∗

∗
)

Player O wins G(U).

Let us study the simulation game in the configuration graph:

45

A Counterexample

Consider the following (admittedly rather contrived) automaton for
the language U = ({a, b}2)ω.

1

2

3

4

(∗
∗
)

(∗
∗
)

(a
∗
)

(b
∗
) (∗

∗
)

Player O wins G(U).

Let us study the simulation game in the configuration graph:

45

A Counterexample

Consider the following (admittedly rather contrived) automaton for
the language U = ({a, b}2)ω.

1

2

3

4

(∗
∗
)

(∗
∗
)

(a
∗
)

(b
∗
) (∗

∗
)

Player O wins G(U).

Let us study the simulation game in the configuration graph:

45

A Counterexample

Consider the following (admittedly rather contrived) automaton for
the language U = ({a, b}2)ω.

1

2

3

4

(∗
∗
)

(∗
∗
)

(a
∗
)

(b
∗
) (∗

∗
)

Player O wins G(U).

Let us study the simulation game in the configuration graph:

1

(1, a)

(1, b)

(1,
(
a
a

)
)

(1,
(
a
b

)
)

(1,
(
b
a

)
)

(1,
(
b
b

)
)

2

3

(2, a)

(2, b)

(2,
(
a
a

)
)

(2,
(
a
b

)
)

(2,
(
b
a

)
)

(2,
(
b
b

)
)

4

s

(3, a)

(3, b)

(3,
(
a
a

)
)

(3,
(
a
b

)
)

(3,
(
b
a

)
)

(3,
(
b
b

)
)

45

A Counterexample

Consider the following (admittedly rather contrived) automaton for
the language U = ({a, b}2)ω.

1

2

3

4

(∗
∗
)

(∗
∗
)

(a
∗
)

(b
∗
) (∗

∗
)

Player O wins G(U).

Let us study the simulation game in the configuration graph:

1

(1, a)

(1, b)

(1,
(
a
a

)
)

(1,
(
a
b

)
)

(1,
(
b
a

)
)

(1,
(
b
b

)
)

2

3

(2, a)

(2, b)

(2,
(
a
a

)
)

(2,
(
a
b

)
)

(2,
(
b
a

)
)

(2,
(
b
b

)
)

4

s

(3, a)

(3, b)

(3,
(
a
a

)
)

(3,
(
a
b

)
)

(3,
(
b
a

)
)

(3,
(
b
b

)
)

45

A Counterexample

Consider the following (admittedly rather contrived) automaton for
the language U = ({a, b}2)ω.

1

2

3

4

(∗
∗
)

(∗
∗
)

(a
∗
)

(b
∗
) (∗

∗
)

Player O wins G(U).

Let us study the simulation game in the configuration graph:

1

(1, a)

(1, b)

(1,
(
a
a

)
)

(1,
(
a
b

)
)

(1,
(
b
a

)
)

(1,
(
b
b

)
)

2

3

(2, a)

(2, b)

(2,
(
a
a

)
)

(2,
(
a
b

)
)

(2,
(
b
a

)
)

(2,
(
b
b

)
)

4

s

(3, a)

(3, b)

(3,
(
a
a

)
)

(3,
(
a
b

)
)

(3,
(
b
a

)
)

(3,
(
b
b

)
)

45

A Counterexample

Consider the following (admittedly rather contrived) automaton for
the language U = ({a, b}2)ω.

1

2

3

4

(∗
∗
)

(∗
∗
)

(a
∗
)

(b
∗
) (∗

∗
)

Player O wins G(U).

Let us study the simulation game in the configuration graph:

1

(1, a)

(1, b)

(1,
(
a
a

)
)

(1,
(
a
b

)
)

(1,
(
b
a

)
)

(1,
(
b
b

)
)

2

3

(2, a)

(2, b)

(2,
(
a
a

)
)

(2,
(
a
b

)
)

(2,
(
b
a

)
)

(2,
(
b
b

)
)

4

s

(3, a)

(3, b)

(3,
(
a
a

)
)

(3,
(
a
b

)
)

(3,
(
b
a

)
)

(3,
(
b
b

)
)

45

A Counterexample

Consider the following (admittedly rather contrived) automaton for
the language U = ({a, b}2)ω.

1

2

3

4

(∗
∗
)

(∗
∗
)

(a
∗
)

(b
∗
) (∗

∗
)

Player O wins G(U).

Let us study the simulation game in the configuration graph:

1

(1, a)

(1, b)

(1,
(
a
a

)
)

(1,
(
a
b

)
)

(1,
(
b
a

)
)

(1,
(
b
b

)
)

2

3

(2, a)

(2, b)

(2,
(
a
a

)
)

(2,
(
a
b

)
)

(2,
(
b
a

)
)

(2,
(
b
b

)
)

4

s

(3, a)

(3, b)

(3,
(
a
a

)
)

(3,
(
a
b

)
)

(3,
(
b
a

)
)

(3,
(
b
b

)
)

45

A Counterexample

Consider the following (admittedly rather contrived) automaton for
the language U = ({a, b}2)ω.

1

2

3

4

(∗
∗
)

(∗
∗
)

(a
∗
)

(b
∗
) (∗

∗
)

Player O wins G(U).

Let us study the simulation game in the configuration graph:

1

(1, a)

(1, b)

(1,
(
a
a

)
)

(1,
(
a
b

)
)

(1,
(
b
a

)
)

(1,
(
b
b

)
)

2

3

(2, a)

(2, b)

(2,
(
a
a

)
)

(2,
(
a
b

)
)

(2,
(
b
a

)
)

(2,
(
b
b

)
)

4

s

(3, a)

(3, b)

(3,
(
a
a

)
)

(3,
(
a
b

)
)

(3,
(
b
a

)
)

(3,
(
b
b

)
)

45

A Counterexample

Consider the following (admittedly rather contrived) automaton for
the language U = ({a, b}2)ω.

1

2

3

4

(∗
∗
)

(∗
∗
)

(a
∗
)

(b
∗
) (∗

∗
)

Player O wins G(U).

Let us study the simulation game in the configuration graph:

1

(1, a)

(1, b)

(1,
(
a
a

)
)

(1,
(
a
b

)
)

(1,
(
b
a

)
)

(1,
(
b
b

)
)

2

3

(2, a)

(2, b)

(2,
(
a
a

)
)

(2,
(
a
b

)
)

(2,
(
b
a

)
)

(2,
(
b
b

)
)

4

s

(3, a)

(3, b)

(3,
(
a
a

)
)

(3,
(
a
b

)
)

(3,
(
b
a

)
)

(3,
(
b
b

)
)

45

A Counterexample

Consider the following (admittedly rather contrived) automaton for
the language U = ({a, b}2)ω.

1

2

3

4

(∗
∗
)

(∗
∗
)

(a
∗
)

(b
∗
) (∗

∗
)

Player O wins G(U).

Let us study the simulation game in the configuration graph:

1

(1, a)

(1, b)

(1,
(
a
a

)
)

(1,
(
a
b

)
)

(1,
(
b
a

)
)

(1,
(
b
b

)
)

2

3

(2, a)

(2, b)

(2,
(
a
a

)
)

(2,
(
a
b

)
)

(2,
(
b
a

)
)

(2,
(
b
b

)
)

4

s

(3, a)

(3, b)

(3,
(
a
a

)
)

(3,
(
a
b

)
)

(3,
(
b
a

)
)

(3,
(
b
b

)
)

45

A Counterexample

Consider the following (admittedly rather contrived) automaton for
the language U = ({a, b}2)ω.

1

2

3

4

(∗
∗
)

(∗
∗
)

(a
∗
)

(b
∗
) (∗

∗
)

Player O wins G(U).

Let us study the simulation game in the configuration graph:

1

(1, a)

(1, b)

(1,
(
a
a

)
)

(1,
(
a
b

)
)

(1,
(
b
a

)
)

(1,
(
b
b

)
)

2

3

(2, a)

(2, b)

(2,
(
a
a

)
)

(2,
(
a
b

)
)

(2,
(
b
a

)
)

(2,
(
b
b

)
)

4

s

(3, a)

(3, b)

(3,
(
a
a

)
)

(3,
(
a
b

)
)

(3,
(
b
a

)
)

(3,
(
b
b

)
)

45

A Counterexample

Consider the following (admittedly rather contrived) automaton for
the language U = ({a, b}2)ω.

1

2

3

4

(∗
∗
)

(∗
∗
)

(a
∗
)

(b
∗
) (∗

∗
)

Player O wins G(U).

Let us study the simulation game in the configuration graph:
It is won by Player 1, i.e., the generalized simulation game is
not correct for this automaton!

45

A Counterexample

Consider the following (admittedly rather contrived) automaton for
the language U = ({a, b}2)ω.

1

2

3

4

(∗
∗
)

(∗
∗
)

(a
∗
)

(b
∗
) (∗

∗
)

Player O wins G(U).

Let us study the simulation game in the configuration graph:
It is won by Player 1, i.e., the generalized simulation game is
not correct for this automaton!

Still not the end of the story! Can we capture the class of
automata for which the generalized simulation game is
correct?

45

History-determinism: Intuition

An automaton is history-deterministic if the nondeterminism can
always be resolved on the fly (during the simulation game).

1 3 5 7 8

a,X | Xa

#,X | X# #,X | X

a,X | Xa

#,X | X
#,X | X

ε, a | ε b, a | ε

ε,# | ε

#,X | X

L(P) = {ai#aj#bk#ω | k ≤ i or k ≤ j)}

(1,⊥) (3,⊥ai#aj)
ai#aj

(7,⊥ai#aj) (7,⊥aj#aj−k)#
bk #ω

(5,⊥ai#aj) (7,⊥ai) (7,⊥ai−k)
#

ε bk

46

History-determinism: Intuition

An automaton is history-deterministic if the nondeterminism can
always be resolved on the fly (during the simulation game).

1 3 5 7 8

a,X | Xa

#,X | X# #,X | X

a,X | Xa

#,X | X
#,X | X

ε, a | ε b, a | ε

ε,# | ε

#,X | X

L(P) = {ai#aj#bk#ω | k ≤ i or k ≤ j)}

(1,⊥) (3,⊥ai#aj)
ai#aj

(7,⊥ai#aj) (7,⊥aj#aj−k)#
bk #ω

(5,⊥ai#aj) (7,⊥ai) (7,⊥ai−k)
#

ε bk

46

History-determinism: Intuition

An automaton is history-deterministic if the nondeterminism can
always be resolved on the fly (during the simulation game).

1 3 5 7 8

a,X | Xa

#,X | X# #,X | X

a,X | Xa

#,X | X
#,X | X

ε, a | ε b, a | ε

ε,# | ε

#,X | X

L(P) = {ai#aj#bk#ω | k ≤ i or k ≤ j)}

(1,⊥) (3,⊥ai#aj)
ai#aj

(7,⊥ai#aj) (7,⊥aj#aj−k)#
bk #ω

(5,⊥ai#aj) (7,⊥ai) (7,⊥ai−k)
#

ε bk

46

History-determinism: Intuition

An automaton is history-deterministic if the nondeterminism can
always be resolved on the fly (during the simulation game).

1 3 5 7 8

a,X | Xa

#,X | X# #,X | X

a,X | Xa

#,X | X
#,X | X

ε, a | ε b, a | ε

ε,# | ε

#,X | X

L(P) = {ai#aj#bk#ω | k ≤ i or k ≤ j)}

(1,⊥) (3,⊥ai#aj)
ai#aj

(7,⊥ai#aj) (7,⊥aj#aj−k)#
bk #ω

(5,⊥ai#aj) (7,⊥ai) (7,⊥ai−k)
#

ε bk

46

History-determinism: Intuition

An automaton is history-deterministic if the nondeterminism can
always be resolved on the fly (during the simulation game).

1 3 5 7 8

a,X | Xa

#,X | X# #,X | X

a,X | Xa

#,X | X
#,X | X

ε, a | ε b, a | ε

ε,# | ε

#,X | X

L(P) = {ai#aj#bk#ω | k ≤ i or k ≤ j)}

(1,⊥) (3,⊥ai#aj)
ai#aj

(7,⊥ai#aj) (7,⊥aj#aj−k)#
bk #ω

(5,⊥ai#aj) (7,⊥ai) (7,⊥ai−k)
#

ε bk

46

History-determinism Formally

An ω-PDA P = (S,Σ, `,Ω) with S = (Q, Γ, qI ,∆) is
history-deterministic, if there is a (nondeterminism) resolver for P,
a function r : ∆∗ × Σ→ ∆ such that for every w ∈ L(P) the
sequence τ0τ1τ2 · · · ∈ ∆ω defined by

τn = r(τ0 · · · τn−1,w(|`(τ0 · · · τn−1)|))

induces an accepting run of P on w .

Remark
ω-DCFL ⊆ ω-HD-CFL ⊆ ω-CFL.

47

Back to the Example

1 3 5 7 8

a,X | Xa

#,X | X# #,X | X

a,X | Xa

#,X | X
#,X | X

ε, a | ε b, a | ε

ε,# | ε

#,X | X

A resolver for P:

r((1, , 1,)i (1, , 3,)(3, , 3,)j ,#) =

{
(3, , 7,) if i ≤ j ,

(3, , 5,) if i > j .

For all other run prefixes and letters, there is a unique
transition to extend the run to process that letter next.

48

Back to the Example

1 3 5 7 8

a,X | Xa

#,X | X# #,X | X

a,X | Xa

#,X | X
#,X | X

ε, a | ε b, a | ε

ε,# | ε

#,X | X

A resolver for P:

r((1, , 1,)i (1, , 3,)(3, , 3,)j ,#) =

{
(3, , 7,) if i ≤ j ,

(3, , 5,) if i > j .

For all other run prefixes and letters, there is a unique
transition to extend the run to process that letter next.

48

Back to the Example

1 3 5 7 8

a,X | Xa

#,X | X# #,X | X

a,X | Xa

#,X | X
#,X | X

ε, a | ε b, a | ε

ε,# | ε

#,X | X

A resolver for P:

r((1, , 1,)i (1, , 3,)(3, , 3,)j ,#) =

{
(3, , 7,) if i ≤ j ,

(3, , 5,) if i > j .

For all other run prefixes and letters, there is a unique
transition to extend the run to process that letter next.

48

Many Questions

History-deterministic (a.k.a. good-for-games) automata can often
be used in contexts that typically require deterministic automata,
e.g., solving games. Much effort has been put into studying
history-determinism for various types of automata, e.g., ω-regular,
quantitative, timed, etc (see the recent survey by Boker and
Lehtinen for an introduction).

We are interested in the following questions:

1. Are history-deterministic ω-PDA more expressive than
deterministic ω-PDA?

2. Are they maybe even as expressive as ω-PDA?

3. Can games with history-deterministic ω-contextfree winning
conditions be solved?

4. Can one check whether a ω-PDA is history-deterministic?

5. Closure properties?

49

Many Questions

History-deterministic (a.k.a. good-for-games) automata can often
be used in contexts that typically require deterministic automata,
e.g., solving games. Much effort has been put into studying
history-determinism for various types of automata, e.g., ω-regular,
quantitative, timed, etc (see the recent survey by Boker and
Lehtinen for an introduction).

We are interested in the following questions:

1. Are history-deterministic ω-PDA more expressive than
deterministic ω-PDA?

2. Are they maybe even as expressive as ω-PDA?

3. Can games with history-deterministic ω-contextfree winning
conditions be solved?

4. Can one check whether a ω-PDA is history-deterministic?

5. Closure properties?

49

Another Language

Let I = {0, +, -} and define the energy level EL : I ∗ → Z of a
finite word over I as

EL(w) = |w |+ − |w |-,

where |w |◦ is the number of ◦ in w , for ◦ ∈ I .

A word w ∈ Iω is safe if EL(w(0) · · ·w(n)) ≥ 0 for every
n ≥ 0.

A word w ∈ Iω is eventually safe if it has a safe suffix.

Let Σ = I × I and

Les =

{(
w0

w1

)
∈ Σω

∣∣∣∣ some wi is eventually safe

}
.

Lemma (Lehtinen, Z. 2020)

Les ∈ ω-HD-CFL \ ω-DCFL.

50

Another Language

Let I = {0, +, -} and define the energy level EL : I ∗ → Z of a
finite word over I as

EL(w) = |w |+ − |w |-,

where |w |◦ is the number of ◦ in w , for ◦ ∈ I .

A word w ∈ Iω is safe if EL(w(0) · · ·w(n)) ≥ 0 for every
n ≥ 0.

A word w ∈ Iω is eventually safe if it has a safe suffix.

Let Σ = I × I and

Les =

{(
w0

w1

)
∈ Σω

∣∣∣∣ some wi is eventually safe

}
.

Lemma (Lehtinen, Z. 2020)

Les ∈ ω-HD-CFL \ ω-DCFL.

50

Another Language

Let I = {0, +, -} and define the energy level EL : I ∗ → Z of a
finite word over I as

EL(w) = |w |+ − |w |-,

where |w |◦ is the number of ◦ in w , for ◦ ∈ I .

A word w ∈ Iω is safe if EL(w(0) · · ·w(n)) ≥ 0 for every
n ≥ 0.

A word w ∈ Iω is eventually safe if it has a safe suffix.

Let Σ = I × I and

Les =

{(
w0

w1

)
∈ Σω

∣∣∣∣ some wi is eventually safe

}
.

Lemma (Lehtinen, Z. 2020)

Les ∈ ω-HD-CFL \ ω-DCFL.

50

Another Language

Let I = {0, +, -} and define the energy level EL : I ∗ → Z of a
finite word over I as

EL(w) = |w |+ − |w |-,

where |w |◦ is the number of ◦ in w , for ◦ ∈ I .

A word w ∈ Iω is safe if EL(w(0) · · ·w(n)) ≥ 0 for every
n ≥ 0.

A word w ∈ Iω is eventually safe if it has a safe suffix.

Let Σ = I × I and

Les =

{(
w0

w1

)
∈ Σω

∣∣∣∣ some wi is eventually safe

}
.

Lemma (Lehtinen, Z. 2020)

Les ∈ ω-HD-CFL \ ω-DCFL.

50

Les ∈ ω-HD-CFL

(
0
∗
)
,X | X(

+
∗
)
,X | XA(

-
∗
)
,A | ε(
-
∗
)
,⊥ | ⊥

(∗
0

)
,X | X(∗

+

)
,X | XA(∗

-

)
,A | ε(∗

-

)
,⊥ | ⊥

(∗
∗
)
,X | X

(∗
∗
)
,X | X

Red transitions have color 1, all others have color 0 (can easily
be turned into a state-based parity condition by adding
auxiliary states).
The ω-PDA accepts Les.

But we also need a resolver: Given w =
(w0

0

w1
0

)
· · ·
(w0

n
w1
n

)
let mi

be the minimal m such that w i
m · · ·w i

n is safe. Then, we
define the resolver to guide the run

to the left state, if m0 ≤ m1, and
to the right state otherwise.

51

Les ∈ ω-HD-CFL

(
0
∗
)
,X | X(

+
∗
)
,X | XA(

-
∗
)
,A | ε(
-
∗
)
,⊥ | ⊥

(∗
0

)
,X | X(∗

+

)
,X | XA(∗

-

)
,A | ε(∗

-

)
,⊥ | ⊥

(∗
∗
)
,X | X

(∗
∗
)
,X | X

Red transitions have color 1, all others have color 0 (can easily
be turned into a state-based parity condition by adding
auxiliary states).

The ω-PDA accepts Les.

But we also need a resolver: Given w =
(w0

0

w1
0

)
· · ·
(w0

n
w1
n

)
let mi

be the minimal m such that w i
m · · ·w i

n is safe. Then, we
define the resolver to guide the run

to the left state, if m0 ≤ m1, and
to the right state otherwise.

51

Les ∈ ω-HD-CFL

(
0
∗
)
,X | X(

+
∗
)
,X | XA(

-
∗
)
,A | ε(
-
∗
)
,⊥ | ⊥

(∗
0

)
,X | X(∗

+

)
,X | XA(∗

-

)
,A | ε(∗

-

)
,⊥ | ⊥

(∗
∗
)
,X | X

(∗
∗
)
,X | X

Red transitions have color 1, all others have color 0 (can easily
be turned into a state-based parity condition by adding
auxiliary states).
The ω-PDA accepts Les.

But we also need a resolver: Given w =
(w0

0

w1
0

)
· · ·
(w0

n
w1
n

)
let mi

be the minimal m such that w i
m · · ·w i

n is safe. Then, we
define the resolver to guide the run

to the left state, if m0 ≤ m1, and
to the right state otherwise.

51

Les ∈ ω-HD-CFL

(
0
∗
)
,X | X(

+
∗
)
,X | XA(

-
∗
)
,A | ε(
-
∗
)
,⊥ | ⊥

(∗
0

)
,X | X(∗

+

)
,X | XA(∗

-

)
,A | ε(∗

-

)
,⊥ | ⊥

(∗
∗
)
,X | X

(∗
∗
)
,X | X

Red transitions have color 1, all others have color 0 (can easily
be turned into a state-based parity condition by adding
auxiliary states).
The ω-PDA accepts Les.

But we also need a resolver: Given w =
(w0

0

w1
0

)
· · ·
(w0

n
w1
n

)
let mi

be the minimal m such that w i
m · · ·w i

n is safe. Then, we
define the resolver to guide the run

to the left state, if m0 ≤ m1, and
to the right state otherwise.

51

Runs Have Steps

Let ρ = c0
τ0−→ c1

τ1−→ c2
τ2−→ · · · be a run of an ω-PDA (i.e., a path

through the configuration graph of the underlying PDS). A step
of ρ is a position s ∈ N such that sh(cs) ≤ sh(cs′) for all s ′ > s.

st
ac

k
h

ei
gh

t

s s ′

Lemma

1. Every infinite run has infinitely many steps.

2. If s < s ′ are steps of a run c0
τ0−→ c1

τ1−→ c2
τ2−→ · · · such that

cs and cs′ have the same state and same topmost stack
symbol, then τ0 · · · τs−1(τs · · · τs′−1) also induces a run.

52

Runs Have Steps

Let ρ = c0
τ0−→ c1

τ1−→ c2
τ2−→ · · · be a run of an ω-PDA (i.e., a path

through the configuration graph of the underlying PDS). A step
of ρ is a position s ∈ N such that sh(cs) ≤ sh(cs′) for all s ′ > s.

st
ac

k
h

ei
gh

t

s s ′

Lemma

1. Every infinite run has infinitely many steps.

2. If s < s ′ are steps of a run c0
τ0−→ c1

τ1−→ c2
τ2−→ · · · such that

cs and cs′ have the same state and same topmost stack
symbol, then τ0 · · · τs−1(τs · · · τs′−1) also induces a run.

52

Runs Have Steps

Let ρ = c0
τ0−→ c1

τ1−→ c2
τ2−→ · · · be a run of an ω-PDA (i.e., a path

through the configuration graph of the underlying PDS). A step
of ρ is a position s ∈ N such that sh(cs) ≤ sh(cs′) for all s ′ > s.

st
ac

k
h

ei
gh

t

s s ′

Lemma

1. Every infinite run has infinitely many steps.

2. If s < s ′ are steps of a run c0
τ0−→ c1

τ1−→ c2
τ2−→ · · · such that

cs and cs′ have the same state and same topmost stack
symbol, then τ0 · · · τs−1(τs · · · τs′−1) also induces a run.

52

Runs Have Steps

Let ρ = c0
τ0−→ c1

τ1−→ c2
τ2−→ · · · be a run of an ω-PDA (i.e., a path

through the configuration graph of the underlying PDS). A step
of ρ is a position s ∈ N such that sh(cs) ≤ sh(cs′) for all s ′ > s.

st
ac

k
h

ei
gh

t

s s ′

Lemma

1. Every infinite run has infinitely many steps.

2. If s < s ′ are steps of a run c0
τ0−→ c1

τ1−→ c2
τ2−→ · · · such that

cs and cs′ have the same state and same topmost stack
symbol, then τ0 · · · τs−1(τs · · · τs′−1) also induces a run.

52

Runs Have Steps

Let ρ = c0
τ0−→ c1

τ1−→ c2
τ2−→ · · · be a run of an ω-PDA (i.e., a path

through the configuration graph of the underlying PDS). A step
of ρ is a position s ∈ N such that sh(cs) ≤ sh(cs′) for all s ′ > s.

st
ac

k
h

ei
gh

t

s s ′

Lemma

1. Every infinite run has infinitely many steps.

2. If s < s ′ are steps of a run c0
τ0−→ c1

τ1−→ c2
τ2−→ · · · such that

cs and cs′ have the same state and same topmost stack
symbol, then τ0 · · · τs−1(τs · · · τs′−1) also induces a run.

52

Runs Have Steps

Let ρ = c0
τ0−→ c1

τ1−→ c2
τ2−→ · · · be a run of an ω-PDA (i.e., a path

through the configuration graph of the underlying PDS). A step
of ρ is a position s ∈ N such that sh(cs) ≤ sh(cs′) for all s ′ > s.

st
ac

k
h

ei
gh

t

s s ′

Lemma

1. Every infinite run has infinitely many steps.

2. If s < s ′ are steps of a run c0
τ0−→ c1

τ1−→ c2
τ2−→ · · · such that

cs and cs′ have the same state and same topmost stack
symbol, then τ0 · · · τs−1(τs · · · τs′−1) also induces a run.

52

Runs Have Steps

Let ρ = c0
τ0−→ c1

τ1−→ c2
τ2−→ · · · be a run of an ω-PDA (i.e., a path

through the configuration graph of the underlying PDS). A step
of ρ is a position s ∈ N such that sh(cs) ≤ sh(cs′) for all s ′ > s.

st
ac

k
h

ei
gh

t

s s ′

Lemma

1. Every infinite run has infinitely many steps.

2. If s < s ′ are steps of a run c0
τ0−→ c1

τ1−→ c2
τ2−→ · · · such that

cs and cs′ have the same state and same topmost stack
symbol, then τ0 · · · τs−1(τs · · · τs′−1) also induces a run.

52

Runs Have Steps

Let ρ = c0
τ0−→ c1

τ1−→ c2
τ2−→ · · · be a run of an ω-PDA (i.e., a path

through the configuration graph of the underlying PDS). A step
of ρ is a position s ∈ N such that sh(cs) ≤ sh(cs′) for all s ′ > s.

st
ac

k
h

ei
gh

t

s s ′

Lemma

1. Every infinite run has infinitely many steps.

2. If s < s ′ are steps of a run c0
τ0−→ c1

τ1−→ c2
τ2−→ · · · such that

cs and cs′ have the same state and same topmost stack
symbol, then τ0 · · · τs−1(τs · · · τs′−1) also induces a run.

52

Les /∈ ω-DCFL

Towards a contradiction, assume there is a deterministic ω-PDA P
accepting Les.

Define x0 =
(
+
0

)(
+
-

)
and x1 =

(
0
+

)(
-
+

)
.

Define wes = x0 (x1)3 (x0)7 (x1)15 (x0)31 (x1)63 · · · .

53

Les /∈ ω-DCFL

Towards a contradiction, assume there is a deterministic ω-PDA P
accepting Les.

Define x0 =
(
+
0

)(
+
-

)
and x1 =

(
0
+

)(
-
+

)
.

Define wes = x0 (x1)3 (x0)7 (x1)15 (x0)31 (x1)63 · · · .
Then (πi denotes the projection to the i-th component),

EL(π0(x0(x1)3 · · · (x1)2
2j−1)) = −j

for every j > 1 and

EL(π1(x0(x1)3 · · · (x0)2
2j−1−1)) = −j

for every j > 0. This implies wes /∈ Les.

53

Les /∈ ω-DCFL

Towards a contradiction, assume there is a deterministic ω-PDA P
accepting Les.

Define x0 =
(
+
0

)(
+
-

)
and x1 =

(
0
+

)(
-
+

)
.

Define wes = x0 (x1)3 (x0)7 (x1)15 (x0)31 (x1)63 · · · .
Then (πi denotes the projection to the i-th component),

EL(π0(x0(x1)3 · · · (x1)2
2j−1)) = −j

for every j > 1 and

EL(π1(x0(x1)3 · · · (x0)2
2j−1−1)) = −j

for every j > 0. This implies wes /∈ Les.

As every prefix of wes can be extended to a word in Les, P has
a (rejecting!) run c0

τ0−→ c1
τ1−→ c2

τ2−→ · · · processing wes .

53

Les /∈ ω-DCFL

Towards a contradiction, assume there is a deterministic ω-PDA P
accepting Les.

Define x0 =
(
+
0

)(
+
-

)
and x1 =

(
0
+

)(
-
+

)
.

Define wes = x0 (x1)3 (x0)7 (x1)15 (x0)31 (x1)63 · · · .
Then (πi denotes the projection to the i-th component),

EL(π0(x0(x1)3 · · · (x1)2
2j−1)) = −j

for every j > 1 and

EL(π1(x0(x1)3 · · · (x0)2
2j−1−1)) = −j

for every j > 0. This implies wes /∈ Les.

As every prefix of wes can be extended to a word in Les, P has
a (rejecting!) run c0

τ0−→ c1
τ1−→ c2

τ2−→ · · · processing wes .

53

Les /∈ ω-DCFL

Towards a contradiction, assume there is a deterministic ω-PDA P
accepting Les.

Define x0 =
(
+
0

)(
+
-

)
and x1 =

(
0
+

)(
-
+

)
.

Define wes = x0 (x1)3 (x0)7 (x1)15 (x0)31 (x1)63 · · · .
This run contains two steps s and s ′ such that

0. both configurations have the same state and topmost
stack symbol,

1. The maximal color in cs · · · cs′ is odd, and
2. the sequence `(τs) · · · `(τs′−1) processes an infix w of wes

with EL(πi (w)) > 0, for some i ∈ {0, 1}.

53

Les /∈ ω-DCFL

Towards a contradiction, assume there is a deterministic ω-PDA P
accepting Les.

Define x0 =
(
+
0

)(
+
-

)
and x1 =

(
0
+

)(
-
+

)
.

Define wes = x0 (x1)3 (x0)7 (x1)15 (x0)31 (x1)63 · · · .
This run contains two steps s and s ′ such that

0. both configurations have the same state and topmost
stack symbol,

1. The maximal color in cs · · · cs′ is odd, and
2. the sequence `(τs) · · · `(τs′−1) processes an infix w of wes

with EL(πi (w)) > 0, for some i ∈ {0, 1}.
The run induced by τ0 · · · τs−1(τs · · · τs′−1)ω is

1. rejecting, but
2. processes a word with a safe suffix in component i .

53

Les /∈ ω-DCFL

Towards a contradiction, assume there is a deterministic ω-PDA P
accepting Les.

Define x0 =
(
+
0

)(
+
-

)
and x1 =

(
0
+

)(
-
+

)
.

Define wes = x0 (x1)3 (x0)7 (x1)15 (x0)31 (x1)63 · · · .
This run contains two steps s and s ′ such that

0. both configurations have the same state and topmost
stack symbol,

1. The maximal color in cs · · · cs′ is odd, and
2. the sequence `(τs) · · · `(τs′−1) processes an infix w of wes

with EL(πi (w)) > 0, for some i ∈ {0, 1}.
The run induced by τ0 · · · τs−1(τs · · · τs′−1)ω is

1. rejecting, but
2. processes a word with a safe suffix in component i .

Thus, contrary to our assumption, P does not accept Les .

53

The Full Picture

Theorem (Lehtinen, Z. 2020)

ω-HD-CFL (ω-CFL.

Proof.
Show that

L# = {(a#)n(b#)n#ω | n ≥ 1} ∪ {(a#)n(b#)2n#ω | n ≥ 1}

is not history-deterministic.

ω-PDA

ω-HD-PDA

ω-DPDA L#Les

54

The Full Picture

Theorem (Lehtinen, Z. 2020)

ω-HD-CFL (ω-CFL.

Proof.
Show that

L# = {(a#)n(b#)n#ω | n ≥ 1} ∪ {(a#)n(b#)2n#ω | n ≥ 1}

is not history-deterministic.

ω-PDA

ω-HD-PDA

ω-DPDA L#Les

54

The Full Picture

Theorem (Lehtinen, Z. 2020)

ω-HD-CFL (ω-CFL.

Proof.
Show that

L# = {(a#)n(b#)n#ω | n ≥ 1} ∪ {(a#)n(b#)2n#ω | n ≥ 1}

is not history-deterministic.

ω-PDA

ω-HD-PDA

ω-DPDA L#Les

54

The Full Picture

Theorem (Lehtinen, Z. 2020)

ω-HD-CFL (ω-CFL.

Proof.
Show that

L# = {(a#)n(b#)n#ω | n ≥ 1} ∪ {(a#)n(b#)2n#ω | n ≥ 1}

is not history-deterministic.

ω-PDA

ω-HD-PDA

ω-DPDA L#Les

54

The Full Picture

Theorem (Lehtinen, Z. 2020)

ω-HD-CFL (ω-CFL.

Proof.
Show that

L# = {(a#)n(b#)n#ω | n ≥ 1} ∪ {(a#)n(b#)2n#ω | n ≥ 1}

is not history-deterministic.

ω-PDA

ω-HD-PDA

ω-DPDA L#Les

54

Good News

Theorem (Lehtinen, Z. 2020)

Solving Gale-Stewart games with history-deterministic contextfree
winning conditions is ExpTime-complete.

Proof Sketch

55

Good News

Theorem (Lehtinen, Z. 2020)

Solving Gale-Stewart games with history-deterministic contextfree
winning conditions is ExpTime-complete.

Proof Sketch
Disclaimer: We only consider ε-free automata here (allowing
ε-transition is not technically hard, but requires slightly more
cumbersome notation).

55

Good News

Theorem (Lehtinen, Z. 2020)

Solving Gale-Stewart games with history-deterministic contextfree
winning conditions is ExpTime-complete.

Proof Sketch

Lower bound inherited from deterministic ω-PDA.

For the upper bound, let P = ((Q, Γ, qI ,∆),ΣI ×ΣO , `,Ω) be
a HD-PDA and let L be the following language over ΣI × Σ′O
with Σ′O = ΣO ×∆:
(

α0

(β0, τ0)

)(
α1

(β1, τ1)

)(
α2

(β2, τ2)

)
· · ·

∣∣∣∣∣∣
τ0τ1τ2 · · · is an
accepting run on(
α0
β0

)(
α1
β1

)(
α2
β2

)
· · ·

 .

L is accepted by a deterministic ω-PDA of polynomial size:
simulate P while processing input.

Thus, we can solve G(L) in exponential time.

55

Good News

Theorem (Lehtinen, Z. 2020)

Solving Gale-Stewart games with history-deterministic contextfree
winning conditions is ExpTime-complete.

Proof Sketch

Lower bound inherited from deterministic ω-PDA.

For the upper bound, let P = ((Q, Γ, qI ,∆),ΣI ×ΣO , `,Ω) be
a HD-PDA and let L be the following language over ΣI × Σ′O
with Σ′O = ΣO ×∆:
(

α0

(β0, τ0)

)(
α1

(β1, τ1)

)(
α2

(β2, τ2)

)
· · ·

∣∣∣∣∣∣
τ0τ1τ2 · · · is an
accepting run on(
α0
β0

)(
α1
β1

)(
α2
β2

)
· · ·

 .

L is accepted by a deterministic ω-PDA of polynomial size:
simulate P while processing input.

Thus, we can solve G(L) in exponential time.

55

Good News

Theorem (Lehtinen, Z. 2020)

Solving Gale-Stewart games with history-deterministic contextfree
winning conditions is ExpTime-complete.

Proof Sketch

Lower bound inherited from deterministic ω-PDA.

For the upper bound, let P = ((Q, Γ, qI ,∆),ΣI ×ΣO , `,Ω) be
a HD-PDA and let L be the following language over ΣI × Σ′O
with Σ′O = ΣO ×∆:
(

α0

(β0, τ0)

)(
α1

(β1, τ1)

)(
α2

(β2, τ2)

)
· · ·

∣∣∣∣∣∣
τ0τ1τ2 · · · is an
accepting run on(
α0
β0

)(
α1
β1

)(
α2
β2

)
· · ·

 .

L is accepted by a deterministic ω-PDA of polynomial size:
simulate P while processing input.

Thus, we can solve G(L) in exponential time.

55

Correctness

We claim that both games have the same winner.

56

Correctness

We claim that both games have the same winner.

First, let σ be a winning strategy for G(L(P) and let r be a
resolver for P.

σ and r can be combined into a strategy σ′ for G(L): chose
letters in ΣO according to σ and transitions according to r .
σ′ is winning, as σ is winning (it guarantees that the play is in
L(P)) and r is a resolver (it constructs on-the-fly an accepting
run on words in L(P)).

56

Correctness

We claim that both games have the same winner.

First, let σ be a winning strategy for G(L(P) and let r be a
resolver for P.

σ and r can be combined into a strategy σ′ for G(L): chose
letters in ΣO according to σ and transitions according to r .

α0 α1 · · · αn−1 αn

β0 β1 · · · βn−1

τ0 τ1 · · · τn−1

σ
βn r

r

τn

αn+1

σ′ is winning, as σ is winning (it guarantees that the play is in
L(P)) and r is a resolver (it constructs on-the-fly an accepting
run on words in L(P)).

56

Correctness

We claim that both games have the same winner.

First, let σ be a winning strategy for G(L(P) and let r be a
resolver for P.

σ and r can be combined into a strategy σ′ for G(L): chose
letters in ΣO according to σ and transitions according to r .

α0 α1 · · · αn−1 αn

β0 β1 · · · βn−1

τ0 τ1 · · · τn−1

σ
βn r

r

τn

αn+1

σ′ is winning, as σ is winning (it guarantees that the play is in
L(P)) and r is a resolver (it constructs on-the-fly an accepting
run on words in L(P)).

56

Correctness

We claim that both games have the same winner.

First, let σ be a winning strategy for G(L(P) and let r be a
resolver for P.

σ and r can be combined into a strategy σ′ for G(L): chose
letters in ΣO according to σ and transitions according to r .

α0 α1 · · · αn−1 αn

β0 β1 · · · βn−1

τ0 τ1 · · · τn−1

σ
βn

r

r

τn

αn+1

σ′ is winning, as σ is winning (it guarantees that the play is in
L(P)) and r is a resolver (it constructs on-the-fly an accepting
run on words in L(P)).

56

Correctness

We claim that both games have the same winner.

First, let σ be a winning strategy for G(L(P) and let r be a
resolver for P.

σ and r can be combined into a strategy σ′ for G(L): chose
letters in ΣO according to σ and transitions according to r .

α0 α1 · · · αn−1 αn

β0 β1 · · · βn−1

τ0 τ1 · · · τn−1

σ

βn

r

r

τn

αn+1

σ′ is winning, as σ is winning (it guarantees that the play is in
L(P)) and r is a resolver (it constructs on-the-fly an accepting
run on words in L(P)).

56

Correctness

We claim that both games have the same winner.

First, let σ be a winning strategy for G(L(P) and let r be a
resolver for P.

σ and r can be combined into a strategy σ′ for G(L): chose
letters in ΣO according to σ and transitions according to r .

α0 α1 · · · αn−1 αn

β0 β1 · · · βn−1

τ0 τ1 · · · τn−1

σ

βn

r

r

τn

αn+1

σ′ is winning, as σ is winning (it guarantees that the play is in
L(P)) and r is a resolver (it constructs on-the-fly an accepting
run on words in L(P)).

56

Correctness

We claim that both games have the same winner.

First, let σ be a winning strategy for G(L(P) and let r be a
resolver for P.

σ and r can be combined into a strategy σ′ for G(L): chose
letters in ΣO according to σ and transitions according to r .

α0 α1 · · · αn−1 αn

β0 β1 · · · βn−1

τ0 τ1 · · · τn−1

σ

βn r

r

τn

αn+1

σ′ is winning, as σ is winning (it guarantees that the play is in
L(P)) and r is a resolver (it constructs on-the-fly an accepting
run on words in L(P)).

56

Correctness

We claim that both games have the same winner.

First, let σ be a winning strategy for G(L(P) and let r be a
resolver for P.

σ and r can be combined into a strategy σ′ for G(L): chose
letters in ΣO according to σ and transitions according to r .

α0 α1 · · · αn−1 αn

β0 β1 · · · βn−1

τ0 τ1 · · · τn−1

σ

βn

r

r

τn

αn+1

σ′ is winning, as σ is winning (it guarantees that the play is in
L(P)) and r is a resolver (it constructs on-the-fly an accepting
run on words in L(P)).

56

Correctness

We claim that both games have the same winner.

First, let σ be a winning strategy for G(L(P) and let r be a
resolver for P.

σ and r can be combined into a strategy σ′ for G(L): chose
letters in ΣO according to σ and transitions according to r .

α0 α1 · · · αn−1 αn

β0 β1 · · · βn−1

τ0 τ1 · · · τn−1

σ

βn

r

r

τn

αn+1

σ′ is winning, as σ is winning (it guarantees that the play is in
L(P)) and r is a resolver (it constructs on-the-fly an accepting
run on words in L(P)).

56

Correctness

We claim that both games have the same winner.

First, let σ be a winning strategy for G(L(P) and let r be a
resolver for P.

σ and r can be combined into a strategy σ′ for G(L): chose
letters in ΣO according to σ and transitions according to r .

α0 α1 · · · αn−1 αn

β0 β1 · · · βn−1

τ0 τ1 · · · τn−1

σ

βn

r

r

τn

αn+1

σ′ is winning, as σ is winning (it guarantees that the play is in
L(P)) and r is a resolver (it constructs on-the-fly an accepting
run on words in L(P)).

56

Correctness

We claim that both games have the same winner.

Now, let σ′ be a winning strategy for G(L), i.e.,
σ′ : Σ∗I → (ΣI ×∆).

We define the strategy σ : Σ∗I → ΣI by σ(w) = β for
σ′(w) = (β, τ) (i.e., we just drop the second component).

It is winning since σ′ guarantees that the word over ΣI × ΣO

constructed by the two players has an accepting run, i.e., it is
in L(P).

56

Correctness

We claim that both games have the same winner.

Now, let σ′ be a winning strategy for G(L), i.e.,
σ′ : Σ∗I → (ΣI ×∆).

We define the strategy σ : Σ∗I → ΣI by σ(w) = β for
σ′(w) = (β, τ) (i.e., we just drop the second component).

It is winning since σ′ guarantees that the word over ΣI × ΣO

constructed by the two players has an accepting run, i.e., it is
in L(P).

56

Correctness

We claim that both games have the same winner.

Now, let σ′ be a winning strategy for G(L), i.e.,
σ′ : Σ∗I → (ΣI ×∆).

We define the strategy σ : Σ∗I → ΣI by σ(w) = β for
σ′(w) = (β, τ) (i.e., we just drop the second component).

It is winning since σ′ guarantees that the word over ΣI × ΣO

constructed by the two players has an accepting run, i.e., it is
in L(P).

56

Correctness

We claim that both games have the same winner.

Now, let σ′ be a winning strategy for G(L), i.e.,
σ′ : Σ∗I → (ΣI ×∆).

We define the strategy σ : Σ∗I → ΣI by σ(w) = β for
σ′(w) = (β, τ) (i.e., we just drop the second component).

It is winning since σ′ guarantees that the word over ΣI × ΣO

constructed by the two players has an accepting run, i.e., it is
in L(P).

Corollary

If Player O wins a Gale-Stewart game with history-deterministic
ω-contextfree winning condition, then she has a finitely
representable winning strategy (and the representation is
computable in exponential time).

56

A Caveat

History-determinism is not a syntactic definition (unlike
determinism, which is easily checkable).

Theorem (Lehtinen, Z. 2020)

The following problems are undecidable:

1. Given an ω-PDA P, is P history-deterministic?

2. Given an ω-PDA P, is L(P) in ω-HD-CFL?

Nevertheless, the reduction just sketched can be used for arbitrary
(nondeterministic) ω-PDA P:

If Player O wins G(L), then she also wins G(L(P)).

However, if she does not win G(L), then G(L(P)) is

1. either won by Player I , or
2. it is won by Player O and P is not history-deterministic.

57

A Caveat

History-determinism is not a syntactic definition (unlike
determinism, which is easily checkable).

Theorem (Lehtinen, Z. 2020)

The following problems are undecidable:

1. Given an ω-PDA P, is P history-deterministic?

2. Given an ω-PDA P, is L(P) in ω-HD-CFL?

Nevertheless, the reduction just sketched can be used for arbitrary
(nondeterministic) ω-PDA P:

If Player O wins G(L), then she also wins G(L(P)).

However, if she does not win G(L), then G(L(P)) is

1. either won by Player I , or
2. it is won by Player O and P is not history-deterministic.

57

A Caveat

History-determinism is not a syntactic definition (unlike
determinism, which is easily checkable).

Theorem (Lehtinen, Z. 2020)

The following problems are undecidable:

1. Given an ω-PDA P, is P history-deterministic?

2. Given an ω-PDA P, is L(P) in ω-HD-CFL?

Nevertheless, the reduction just sketched can be used for arbitrary
(nondeterministic) ω-PDA P:

If Player O wins G(L), then she also wins G(L(P)).

However, if she does not win G(L), then G(L(P)) is

1. either won by Player I , or
2. it is won by Player O and P is not history-deterministic.

57

Some Open Problems

Is there a class of grammars that captures the
history-deterministic contextfree languages?

Can the history-deterministic contextfree languages be
captured by some fragment of Second-order Logic?

What kind of “machines” are required to implement resolvers
for history-deterministic (ω-) PDA? It is known that
pushdown transducer are not sufficient!

Equivalence of deterministic PDA over finite words is
decidable. What about equivalence of history-deterministic
PDA over finite words?

There is an uncomputable succinctness gap between
deterministic and nondeterministic PDA. Where do
history-deterministic PDA lie in this gap? So far, only
(doubly-) exponential gaps are known.

Many more.

58

Some Open Problems

Is there a class of grammars that captures the
history-deterministic contextfree languages?

Can the history-deterministic contextfree languages be
captured by some fragment of Second-order Logic?

What kind of “machines” are required to implement resolvers
for history-deterministic (ω-) PDA? It is known that
pushdown transducer are not sufficient!

Equivalence of deterministic PDA over finite words is
decidable. What about equivalence of history-deterministic
PDA over finite words?

There is an uncomputable succinctness gap between
deterministic and nondeterministic PDA. Where do
history-deterministic PDA lie in this gap? So far, only
(doubly-) exponential gaps are known.

Many more.

58

Some Open Problems

Is there a class of grammars that captures the
history-deterministic contextfree languages?

Can the history-deterministic contextfree languages be
captured by some fragment of Second-order Logic?

What kind of “machines” are required to implement resolvers
for history-deterministic (ω-) PDA? It is known that
pushdown transducer are not sufficient!

Equivalence of deterministic PDA over finite words is
decidable. What about equivalence of history-deterministic
PDA over finite words?

There is an uncomputable succinctness gap between
deterministic and nondeterministic PDA. Where do
history-deterministic PDA lie in this gap? So far, only
(doubly-) exponential gaps are known.

Many more.

58

Some Open Problems

Is there a class of grammars that captures the
history-deterministic contextfree languages?

Can the history-deterministic contextfree languages be
captured by some fragment of Second-order Logic?

What kind of “machines” are required to implement resolvers
for history-deterministic (ω-) PDA? It is known that
pushdown transducer are not sufficient!

Equivalence of deterministic PDA over finite words is
decidable. What about equivalence of history-deterministic
PDA over finite words?

There is an uncomputable succinctness gap between
deterministic and nondeterministic PDA. Where do
history-deterministic PDA lie in this gap? So far, only
(doubly-) exponential gaps are known.

Many more.

58

A (Biased and Incomplete) List of References

Igor Walukiewicz: “Pushdown Processes: Games and
Model-Checking”. Information and Computation 164(2), 2001

Orna Kupferman, Moshe Y. Vardi: “An Automata-Theoretic
Approach to Reasoning about Infinite-State Systems”. CAV
2000

Karoliina Lehtinen, Martin Zimmermann: “Good-for-games
ω-Pushdown Automata”. Logical Methods in Computer
Science 18(1), 2022

Shibashis Guha, Ismaël Jecker, Karoliina Lehtinen, Martin
Zimmermann: “A Bit of Nondeterminism Makes Pushdown
Automata Expressive and Succinct”. MFCS 2021

Nathanaël Fijalkow et al.: “Games on Graphs”.
arXiv:2305.10546

Felix Klein, Alexander Weinert, Martin Zimmermann:
“Lecture Notes Infinite Games”. homes.cs.aau.dk/ mzi/

59

A (Biased and Incomplete) List of References

Igor Walukiewicz: “Pushdown Processes: Games and
Model-Checking”. Information and Computation 164(2), 2001

Orna Kupferman, Moshe Y. Vardi: “An Automata-Theoretic
Approach to Reasoning about Infinite-State Systems”. CAV
2000

Karoliina Lehtinen, Martin Zimmermann: “Good-for-games
ω-Pushdown Automata”. Logical Methods in Computer
Science 18(1), 2022

Shibashis Guha, Ismaël Jecker, Karoliina Lehtinen, Martin
Zimmermann: “A Bit of Nondeterminism Makes Pushdown
Automata Expressive and Succinct”. MFCS 2021

Nathanaël Fijalkow et al.: “Games on Graphs”.
arXiv:2305.10546

Felix Klein, Alexander Weinert, Martin Zimmermann:
“Lecture Notes Infinite Games”. homes.cs.aau.dk/ mzi/

59

A (Biased and Incomplete) List of References

Igor Walukiewicz: “Pushdown Processes: Games and
Model-Checking”. Information and Computation 164(2), 2001

Orna Kupferman, Moshe Y. Vardi: “An Automata-Theoretic
Approach to Reasoning about Infinite-State Systems”. CAV
2000

Karoliina Lehtinen, Martin Zimmermann: “Good-for-games
ω-Pushdown Automata”. Logical Methods in Computer
Science 18(1), 2022

Shibashis Guha, Ismaël Jecker, Karoliina Lehtinen, Martin
Zimmermann: “A Bit of Nondeterminism Makes Pushdown
Automata Expressive and Succinct”. MFCS 2021

Nathanaël Fijalkow et al.: “Games on Graphs”.
arXiv:2305.10546

Felix Klein, Alexander Weinert, Martin Zimmermann:
“Lecture Notes Infinite Games”. homes.cs.aau.dk/ mzi/

59

The Really Big Picture

Yesterday:
finite graphs

∞

Here:
countable graphs

This afternoon:
uncountable graphs

60

The Really Big Picture

Yesterday:
finite graphs

∞

Here:
countable graphs

This afternoon:
uncountable graphs

60

The Really Big Picture

Yesterday:
finite graphs

∞

Here:
countable graphs

This afternoon:
uncountable graphs

60

The Really Big Picture

Yesterday:
finite graphs

∞

Here:
countable graphs

This afternoon:
uncountable graphs

60

