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Hyperproperties

S
Isecret Osecret

Ipublic Opublic

The system S is input-deterministic: for all traces t, t ′ of S
t =I t

′ implies t =O t ′

Noninterference: for all traces t, t ′ of S
t =Ipublic t

′ implies t =Opublic
t ′
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Hyperproperties

These are not trace properties, i.e., sets T ⊆ Traces(AP) of
traces.

They are hyperproperties, i.e., sets H ⊆ 2Traces(AP) of sets of
traces.

A system S satisfies a hyperproperty H, if Traces(S) ∈ H.

Example: Noninterference as hyperproperty:

{T ⊆ Traces(AP) | ∀t, t ′ ∈ T : t =Ipublic t
′ ⇒ t =Opublic

t ′}

Specification languages for hyperproperties

HyperLTL: Extend LTL by trace quantifiers.

HyperCTL∗: Extend CTL∗ by trace quantifiers.
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LTL in One Slide

Syntax

ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ

where a ∈ AP (atomic propositions).

Semantics
w , n |= ϕ for a trace w ∈ (2AP)ω and a position n ∈ N:

w , n |= Xϕ: w
n n + 1

ϕ

w , n |= ϕ0 Uϕ1: w
n

ϕ0 ϕ0 ϕ0 ϕ1

Syntactic Sugar
Fψ = true Uψ Gψ = ¬F¬ψ
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HyperLTL

HyperLTL = LTL + trace quantification

ϕ ::=∃π. ϕ | ∀π. ϕ | ψ
ψ ::= aπ | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Xψ | ψUψ

where a ∈ AP (atomic propositions) and π ∈ V (trace variables).

Prenex normal form, but

closed under boolean combinations.
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Semantics

Trace assignment: partial mapping Π: V → (2AP)ω

Empty trace assignment: Π∅

T ,Π, n |= ϕ for a set of traces T ∈ (2AP)ω, a trace assignment Π,
and a position n ∈ N:

7



Semantics

Trace assignment: partial mapping Π: V → (2AP)ω

Empty trace assignment: Π∅

T ,Π, n |= ϕ for a set of traces T ∈ (2AP)ω, a trace assignment Π,
and a position n ∈ N:

T ,Π, n |= aπj :

Π(π1)
...

Π(πj)
...

Π(πk)

n

a
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Semantics

Trace assignment: partial mapping Π: V → (2AP)ω

Empty trace assignment: Π∅

T ,Π, n |= ϕ for a set of traces T ∈ (2AP)ω, a trace assignment Π,
and a position n ∈ N:

T ,Π, n |= ∃π. ϕ if T ,Π[π 7→ t], n |= ϕ for some t ∈ T .

T ,Π, n |= ∀π. ϕ if T ,Π[π 7→ t], n |= ϕ for all t ∈ T .

T is a model of a sentence ϕ, written T |= ϕ, if T ,Π∅, 0 |= ϕ.
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Semantics: Example

ϕ = ∀π.∀π′.G onπ ↔ onπ′

T ⊆ (2AP)ω is a model of ϕ iff

{} |= ∀π.∀π′.G onπ ↔ onπ′

{π 7→ t} |= ∀π′.G onπ ↔ onπ′ for all t ∈ T

{π 7→ t, π′ 7→ t ′} |= G onπ ↔ onπ′ for all t ′ ∈ T

{π 7→ t[n,∞), π′ 7→ t ′[n,∞)} |= onπ ↔ onπ′ for all n ∈ N

on ∈ t(n)⇔ on ∈ t ′(n)
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Applications

Uniform framework for information-flow control

Does a system leak information?

Symmetries in distributed systems

Are clients treated symmetrically?

Error resistant codes

Do codes for distinct inputs have at least Hamming
distance d?

Software doping

Think emission scandal in automotive industry

9



The Virtues of LTL

LTL has many desirables properties:

1. Every satisfiable LTL formula is satisfied by an ultimately
periodic trace, i.e., by a finite and finitely-represented model.

2. LTL satisfiability and model-checking are PSpace-complete.

3. LTL and FO[<] are expressively equivalent.

Which properties does HyperLTL retain ?
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What about Finite Models?

Fix AP = {a} and consider the conjunction ϕ of

∀π. (¬aπ) U (aπ ∧ X G¬aπ)

∃π. aπ
∀π. ∃π′. F (aπ ∧ X aπ′)

{a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ · · ·
∅ {a} ∅ ∅ ∅ ∅ ∅ ∅ · · ·
∅ ∅ {a} ∅ ∅ ∅ ∅ ∅ · · ·
...

...
...

...
...

...
...

...

The unique model of ϕ is {∅n {a} ∅ω | n ∈ N}.

Theorem
There is a satisfiable HyperLTL sentence that is not satisfied by
any finite set of traces.
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What about Countable Models?

Theorem
Every satisfiable HyperLTL sentence has a countable model.

Proof

W.l.o.g. ϕ = ∀π0. ∃π′0. · · · ∀πk . ∃π′k . ψ with quantifier-free ψ.

Fix a Skolem function fj for every existentially quantified π′j .

· · · · · ·
f0(t)

f1(t, t) · · ·
fk(t, . . . , t)t

The limit is a model of ϕ and countable.
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What about Regular Models?

Theorem
There is a satisfiable HyperLTL sentence that is not satisfied by
any ω-regular set of traces.

Proof

Express that a model T contains..

1. .. ({a}{b})n∅ω for every n.

2. .. for every trace of the form
x{b}{a}y in T , also the
trace x{a}{b}y .

{a} {b} {a} {b} {a} {b} ∅ω

{a} {b}{a} {b} {a} {b} ∅ω

{a} {b}{a} {b}{a} {b} ∅ω

{a} {b}{a} {b}{a} {b} ∅ω

Then, T ∩ {a}∗{b}∗∅ω = {{a}n{b}n∅ω | n ∈ N} is not ω-regular.
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What about Ultimately Periodic Models?

Theorem
There is a satisfiable HyperLTL sentence that is not satisfied by
any set of traces that contains an ultimately periodic trace.

One can even encode the prime numbers in HyperLTL!
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Undecidability

The HyperLTL satisfiability problem:

Given ϕ, is there a non-empty set T of traces with T |= ϕ?

Theorem
HyperLTL satisfiability is undecidable.

Proof:
By a reduction from Post’s correspondence problem.

Example

Blocks (a, baa) (ab, aa) (bba, bb)

A solution:

b b a a b b b a a

b b a a b b b a a
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Undecidability

1. There is a (solution)
trace where top
matches bottom.

2. Every trace is finite
and starts with a
block or is empty.

3. For every non-empty
trace, the trace
obtained by
removing the first
block also exists.

{b} {b} {a} {a} {b} {b} {b} {a} {a} ∅ω
{b} {b} {a} {a} {b} {b} {b} {a} {a} ∅ω

{a} {b} {b} {b} {a} {a} ∅ ∅ ∅ ∅ω
{a} {a} {b} {b} {b} {a} {a} ∅ ∅ ∅ω

{b} {b} {a} {a} ∅ ∅ ∅ ∅ ∅ ∅ω
{b} {b} {b} {a} {a} ∅ ∅ ∅ ∅ ∅ω

{a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω
{b} {a} {a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ω

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω
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Decidability

Theorem
∃∗-HyperLTL satisfiability is PSpace-complete.

Proof:

Membership:

Consider ϕ = ∃π0 . . . ∃πk . ψ.
Obtain ψ′ from ψ by replacing each aπj by a fresh
proposition aj .
Then: ϕ and the LTL formula ψ′ are equi-satisfiable.

Hardness: trivial reduction from LTL satisfiability
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Decidability

Theorem
∃∗∀∗-HyperLTL satisfiability is ExpSpace-complete.

Proof:

Membership:

Consider ϕ = ∃π0 . . . ∃πk .∀π′0 . . . ∀π′`. ψ.
Let

ϕ′ = ∃π0 . . . ∃πk
k∧

j0=0

· · ·
k∧

j`=0

ψj0,...,j`

where ψj0,...,j` is obtained from ψ by replacing each
occurrence of π′i by πji .
Then: ϕ and ϕ′ are equi-satisfiable.

Hardness: encoding of exponential-space Turing machines.
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Further Results

HyperLTL implication checking: given ϕ and ϕ′, does, for every T ,
T |= ϕ imply T |= ϕ′?

Lemma
ϕ does not imply ϕ′ iff (ϕ ∧ ¬ϕ′) is satisfiable.

Corollary

Implication checking for alternation-free HyperLTL formulas is
ExpSpace-complete.

Tool EAHyper:

satisfiability, implication, and equivalence checking for
HyperLTL
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Latest Results

Recently, the exact complexity of HyperLTL satisfiability was
settled: it is highly undecidable.

Theorem (Fortin, Kuijer, Totzke, Z. 2021)

HyperLTL satisfiability is Σ1
1-complete.

Corollary (Fortin, Kuijer, Totzke, Z. 2021)

The membership problem for each level of the HyperLTL quantifier
alternation hierarchy is Σ1

1-complete.
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Agenda

1. HyperLTL

2. The Models Of HyperLTL

3. HyperLTL Satisfiability

4. HyperLTL Model-checking

5. The First-order Logic of Hyperproperties

6. Conclusion
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Model-Checking

The HyperLTL model-checking problem:

Given a transition system S and ϕ, does Traces(S) |= ϕ?

Theorem (Finkbeiner, Rabe, Sánchez 2015)

The HyperLTL model-checking problem is decidable.

25



Model-Checking

Proof:

Consider ϕ = ∃π1.∀π2. . . .∃πk−1.∀πk . ψ.

Rewrite as ∃π1.¬∃π2.¬ . . . ∃πk−1.¬∃πk .¬ψ.

By induction over quantifier prefix construct non-determinstic
Büchi automaton A with L(A) 6= ∅ iff Traces(S) |= ϕ.

Induction start: build automaton for LTL formula
obtained from ¬ψ by replacing aπj by aj .
For ∃πjθ restrict automaton for θ in dimension j to
traces of S.
For ¬θ complement automaton for θ.

⇒ Non-elementary complexity, but alternation-free fragments are
as hard as LTL.
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First-order Logic vs. LTL

FO[<]: first-order order logic over signature {<} ∪ {Pa | a ∈ AP}
over structures with universe N.

Theorem (Kamp ’68, Gabbay et al. ’80)

LTL and FO[<] are expressively equivalent.

Example

∀x(Pq(x) ∧ ¬Pp(x))→ ∃y(x < y ∧ Pp(y))

and

G (q → F p)

are equivalent.
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First-order Logic for Hyperproperties
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FO[<, E ]: first-order logic with equality over the signature
{<,E} ∪ {Pa | a ∈ AP} over structures with universe T × N.

Example

∀x∀x ′ E (x , x ′)→ (Pon(x)↔ Pon(x ′))
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FO[<, E ]: first-order logic with equality over the signature
{<,E} ∪ {Pa | a ∈ AP} over structures with universe T × N.

Proposition

For every HyperLTL sentence there is an equivalent FO[<, E ]
sentence.
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A Setback

Let ϕ be the following property of sets T ⊆ (2{p})ω:

There is an n such that p /∈ t(n) for every t ∈ T .

Theorem (Bozzelli et al. ’15)

ϕ is not expressible in HyperLTL.

But, ϕ is easily expressible in FO[<, E ]:

∃x ∀y E (x , y)→ ¬Pp(y)

Corollary

FO[<, E ] strictly subsumes HyperLTL.
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HyperFO

∃Mx and ∀Mx : quantifiers restricted to initial positions.

∃Gy ≥ x and ∀Gy ≥ x : if x is initial, then quantifiers
restricted to positions on the same trace as x .

HyperFO: sentences of the form

ϕ = QM
1 x1. · · ·QM

k xk . Q
G
1 y1 ≥ xg1 . · · ·QG

` y` ≥ xg` . ψ

Q ∈ {∃,∀},
{x1, . . . , xk} and {y1, . . . , y`} are disjoint,

every guard xgj is in{x1, . . . , xk}, and

ψ is quantifier-free over signature {<,E} ∪ {Pa | a ∈ AP}
with free variables in {y1, . . . , y`}.
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Equivalence

Theorem (Finkbeiner, Z. 2017)

HyperLTL and HyperFO are equally expressive.

Proof

From HyperLTL to HyperFO: structural induction.

From HyperFO to HyperLTL: reduction to Kamp’s theorem.
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From HyperFO to HyperLTL

∀x∀x ′ E (x , x ′)→ (Pon(x)↔ Pon(x ′))

∀Mx1 ∀Mx2 ∀Gy1 ≥ x1 ∀Gy2 ≥ x2E (y1, y2)→ (Pon(y1)↔ Pon(y2))

∀Mx1 ∀Mx2 ∀y1 ∀y2 (y1 = y2)→ (P(on,1)(y1)↔ P(on,2)(y2))

∀Mx1 ∀Mx2 G ((on, 1)↔ (on, 2))

∀Mx1 ∀Mx2

∀π1 ∀π2 G (onπ1 ↔ onπ2)

{on} {on} ∅ {on} · · ·

{on} ∅ ∅ {on} · · ·

x1 7→

x2 7→

π1 7→

π2 7→

{(on, 1),
{(on, 1)} ∅

{(on, 1),
· · ·

(on, 2)} (on, 2)}
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Conclusion

HyperLTL behaves quite differently than LTL:

The models of HyperLTL are rather not well-behaved, i.e., in
general (countably) infinite, non-regular, and non-periodic.

Satisfiability is in general undecidable.

Model-checking is decidable, but non-elementary.

But with the feasible problems, you can do exciting things.
HyperLTL is a powerful tool for information security and beyond:

Information-flow control

Symmetries in distributed systems

Error resistant codes

Software doping

...
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