Martin Zimmermann Aalborg University

Logics for Hyperproperties

UniVr/UniUd Summer School on Formal Methods for
Cyber-Physical Systems, Udine, August 30, 2023

Hyperproperties

Hyperproperties

- The system \mathcal{S} is input-deterministic: for all traces t, t^{\prime} of \mathcal{S}

$$
t=1 t^{\prime} \quad \text { implies } t=0 t^{\prime}
$$

Hyperproperties

- The system \mathcal{S} is input-deterministic: for all traces t, t^{\prime} of \mathcal{S}

$$
t=\jmath t^{\prime} \quad \text { implies } \quad t=o t^{\prime}
$$

■ Noninterference: for all traces t, t^{\prime} of \mathcal{S}

$$
t=I_{\text {public }} t^{\prime} \text { implies } t=O_{\text {public }} t^{\prime}
$$

Hyperproperties

- These are not trace properties, i.e., sets $T \subseteq \operatorname{Traces}(\mathrm{AP})$ of traces.

Hyperproperties

- These are not trace properties, i.e., sets $T \subseteq \operatorname{Traces}(A P)$ of traces.
- They are hyperproperties, i.e., sets $H \subseteq 2^{\operatorname{Traces}(A P)}$ of sets of traces.
■ A system \mathcal{S} satisfies a hyperproperty H, if $\operatorname{Traces}(\mathcal{S}) \in H$.

Example: Noninterference as hyperproperty:
$\left\{T \subseteq \operatorname{Traces}(\mathrm{AP}) \mid \forall t, t^{\prime} \in T: t=I_{\text {public }} t^{\prime} \Rightarrow t=O_{\text {public }} t^{\prime}\right\}$

Hyperproperties

- These are not trace properties, i.e., sets $T \subseteq \operatorname{Traces}(A P)$ of traces.
- They are hyperproperties, i.e., sets $H \subseteq 2^{\operatorname{Traces}(A P)}$ of sets of traces.
■ A system \mathcal{S} satisfies a hyperproperty H, if $\operatorname{Traces}(\mathcal{S}) \in H$.

Example: Noninterference as hyperproperty:

$$
\left\{T \subseteq \operatorname{Traces}(\mathrm{AP}) \mid \forall t, t^{\prime} \in T: t=l_{\text {public }} t^{\prime} \Rightarrow t=o_{\text {public }} t^{\prime}\right\}
$$

Specification languages for hyperproperties
HyperLTL: Extend LTL by trace quantifiers.
HyperCTL*: Extend CTL* by trace quantifiers.

Outline

1. HyperLTL
2. The Models Of HyperLTL
3. HyperLTL Satisfiability
4. HyperLTL Model-checking
5. The First-order Logic of Hyperproperties
6. Conclusion

Agenda

1. HyperLTL

2. The Models Of HyperLTL
3. HyperLTL Satisfiability
4. HyperlTL Model-checking
5. The First-order Logic of Hyperproperties
6. Conclusion

LTL in One Slide

Syntax

$$
\varphi::=a|\neg \varphi| \varphi \vee \varphi|\varphi \wedge \varphi| \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi
$$

where $a \in \operatorname{AP}$ (atomic propositions).

LTL in One Slide

Syntax

$$
\varphi::=a|\neg \varphi| \varphi \vee \varphi|\varphi \wedge \varphi| \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi
$$

where $a \in \operatorname{AP}$ (atomic propositions).

Semantics

$w, n \models \varphi$ for a trace $w \in\left(2^{\mathrm{AP}}\right)^{\omega}$ and a position $n \in \mathbb{N}$:

- $w, n \models \mathbf{X} \varphi$:

LTL in One Slide

Syntax

$$
\varphi::=a|\neg \varphi| \varphi \vee \varphi|\varphi \wedge \varphi| \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi
$$

where $a \in \operatorname{AP}$ (atomic propositions).

Semantics

$w, n \models \varphi$ for a trace $w \in\left(2^{\mathrm{AP}}\right)^{\omega}$ and a position $n \in \mathbb{N}$:

Syntactic Sugar
■ $\mathbf{F} \psi=\operatorname{true} \mathbf{U} \psi$
■ $\mathbf{G} \psi=\neg \mathbf{F} \neg \psi$

HyperLTL

HyperLTL $=$ LTL + trace quantification

$$
\begin{aligned}
& \varphi::=\exists \pi . \varphi|\forall \pi . \varphi| \psi \\
& \psi::=a_{\pi}|\neg \psi| \psi \vee \psi|\psi \wedge \psi| \mathbf{X} \psi \mid \psi \mathbf{U} \psi
\end{aligned}
$$

where $a \in \mathrm{AP}$ (atomic propositions) and $\pi \in \mathcal{V}$ (trace variables).

HyperLTL

HyperLTL $=$ LTL + trace quantification

$$
\begin{aligned}
& \varphi::=\exists \pi . \varphi|\forall \pi . \varphi| \psi \\
& \psi::=a_{\pi}|\neg \psi| \psi \vee \psi|\psi \wedge \psi| \mathbf{X} \psi \mid \psi \mathbf{U} \psi
\end{aligned}
$$

where $a \in \mathrm{AP}$ (atomic propositions) and $\pi \in \mathcal{V}$ (trace variables).

- Prenex normal form, but
- closed under boolean combinations.

Semantics

- Trace assignment: partial mapping $\Pi: \mathcal{V} \rightarrow\left(2^{\mathrm{AP}}\right)^{\omega}$
- Empty trace assignment: Π_{\emptyset}
$T, \Pi, n \models \varphi$ for a set of traces $T \in\left(2^{\mathrm{AP}}\right)^{\omega}$, a trace assignment Π, and a position $n \in \mathbb{N}$:

Semantics

- Trace assignment: partial mapping $\Pi: \mathcal{V} \rightarrow\left(2^{\mathrm{AP}}\right)^{\omega}$
- Empty trace assignment: Π_{\emptyset}
$T, \Pi, n \vDash \varphi$ for a set of traces $T \in\left(2^{\mathrm{AP}}\right)^{\omega}$, a trace assignment Π, and a position $n \in \mathbb{N}$:

$$
T, \Pi, n \mid=a_{\pi_{j}}:
$$

Semantics

- Trace assignment: partial mapping $\Pi: \mathcal{V} \rightarrow\left(2^{\mathrm{AP}}\right)^{\omega}$
- Empty trace assignment: Π_{\emptyset}
$T, \Pi, n \neq \varphi$ for a set of traces $T \in\left(2^{\mathrm{AP}}\right)^{\omega}$, a trace assignment Π, and a position $n \in \mathbb{N}$:

Semantics

- Trace assignment: partial mapping $\Pi: \mathcal{V} \rightarrow\left(2^{\mathrm{AP}}\right)^{\omega}$
- Empty trace assignment: Π_{\emptyset}
$T, \Pi, n \models \varphi$ for a set of traces $T \in\left(2^{\mathrm{AP}}\right)^{\omega}$, a trace assignment Π, and a position $n \in \mathbb{N}$:

■ $T, \Pi, n \models \exists \pi$. φ if $T, \Pi[\pi \mapsto t], n \models \varphi$ for some $t \in T$.
■ $T, \Pi, n \models \forall \pi . \varphi$ if $T, \Pi[\pi \mapsto t], n \models \varphi$ for all $t \in T$.
T is a model of a sentence φ, written $T \models \varphi$, if $T, \Pi_{\emptyset}, 0 \models \varphi$.

Semantics: Example

$$
\varphi=\forall \pi . \forall \pi^{\prime} . \mathrm{G} \mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi^{\prime}}
$$

$T \subseteq\left(2^{\mathrm{AP}}\right)^{\omega}$ is a model of φ iff

Semantics: Example

$$
\varphi=\forall \pi . \forall \pi^{\prime} . \mathrm{G} \mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi^{\prime}}
$$

$T \subseteq\left(2^{\mathrm{AP}}\right)^{\omega}$ is a model of φ iff

$$
\left\} \models \forall \pi . \forall \pi^{\prime} . \mathbf{G} \circ \mathrm{n}_{\pi} \leftrightarrow \mathrm{on}_{\pi^{\prime}}\right.
$$

Semantics: Example

$$
\varphi=\forall \pi . \forall \pi^{\prime} . \mathbf{G} \text { on }_{\pi} \leftrightarrow \text { on }_{\pi^{\prime}}
$$

$T \subseteq\left(2^{\mathrm{AP}}\right)^{\omega}$ is a model of φ iff

$$
\begin{aligned}
\} & \models \forall \pi \cdot \forall \pi^{\prime} . \mathbf{G} \text { on }_{\pi} \leftrightarrow \text { on }_{\pi^{\prime}} \\
\{\pi \mapsto t\} & \models \forall \pi^{\prime} . \mathbf{G} \circ \mathrm{n}_{\pi} \leftrightarrow \mathrm{on}_{\pi^{\prime}} \quad \text { for all } t \in T
\end{aligned}
$$

Semantics: Example

$$
\varphi=\forall \pi . \forall \pi^{\prime} . \mathbf{G} \text { on }_{\pi} \leftrightarrow \text { on }_{\pi^{\prime}}
$$

$T \subseteq\left(2^{\mathrm{AP}}\right)^{\omega}$ is a model of φ iff

$$
\begin{array}{rlrl}
\} & \models \forall \pi \cdot \forall \pi^{\prime} . \mathbf{G} \mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi^{\prime}} & \\
\{\pi \mapsto t\} & \models \forall \pi^{\prime} . \mathbf{G} \mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi^{\prime}} & & \text { for all } t \in T \\
\left\{\pi \mapsto t, \pi^{\prime} \mapsto t^{\prime}\right\} & \models \mathrm{G}_{\mathrm{on}}^{\pi} \leftrightarrow & \mathrm{on}_{\pi^{\prime}} & \\
\text { for all } t^{\prime} \in T
\end{array}
$$

Semantics: Example

$$
\varphi=\forall \pi \cdot \forall \pi^{\prime} \cdot \mathbf{G} \mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi^{\prime}}
$$

$T \subseteq\left(2^{\mathrm{AP}}\right)^{\omega}$ is a model of φ iff

$$
\begin{array}{rlr}
\} & \models \forall \pi . \forall \pi^{\prime} . \mathbf{G o n}_{\pi} \leftrightarrow \mathrm{on}_{\pi^{\prime}} & \\
\{\pi \mapsto t\} \models \forall \pi^{\prime} . \mathbf{G} \mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi^{\prime}} & & \text { for all } t \in T \\
\left\{\pi \mapsto t, \pi^{\prime} \mapsto t^{\prime}\right\} \models \mathbf{G o n}_{\pi} \leftrightarrow \mathrm{on}_{\pi^{\prime}} & & \text { for all } t^{\prime} \in T \\
\left\{\pi \mapsto t[n, \infty), \pi^{\prime} \mapsto t^{\prime}[n, \infty)\right\} & \models \mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi^{\prime}} & \text { for all } n \in \mathbb{N}
\end{array}
$$

Semantics: Example

$$
\varphi=\forall \pi \cdot \forall \pi^{\prime} \cdot \mathbf{G} \mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi^{\prime}}
$$

$T \subseteq\left(2^{\mathrm{AP}}\right)^{\omega}$ is a model of φ iff

$$
\begin{aligned}
\left\} \models \forall \pi . \forall \pi^{\prime} . \mathbf{G o n}_{\pi} \leftrightarrow \mathrm{on}_{\pi^{\prime}}\right. & \\
\{\pi \mapsto t\} \models \forall \pi^{\prime} . \mathbf{G} \mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi^{\prime}} & \text { for all } t \in T \\
\left\{\pi \mapsto t, \pi^{\prime} \mapsto t^{\prime}\right\} \models \mathbf{G o n}_{\pi} \leftrightarrow \mathrm{on}_{\pi^{\prime}} & \text { for all } t^{\prime} \in T \\
\left\{\pi \mapsto t[n, \infty), \pi^{\prime} \mapsto t^{\prime}[n, \infty)\right\} \models \text { on }_{\pi} \leftrightarrow \text { on }_{\pi^{\prime}} & \text { for all } n \in \mathbb{N} \\
& \text { on } \in t(n) \Leftrightarrow \text { on } \in t^{\prime}(n)
\end{aligned}
$$

Applications

- Uniform framework for information-flow control
- Does a system leak information?
- Symmetries in distributed systems
- Are clients treated symmetrically?
- Error resistant codes
- Do codes for distinct inputs have at least Hamming distance d ?
- Software doping
- Think emission scandal in automotive industry

The Virtues of LTL

LTL has many desirables properties:

1. Every satisfiable LTL formula is satisfied by an ultimately periodic trace, i.e., by a finite and finitely-represented model.
2. LTL satisfiability and model-checking are PSPACE-complete.
3. LTL and $\mathrm{FO}[<]$ are expressively equivalent.

Which properties does HyperLTL retain ?

Agenda

1. HyperLTL
2. The Models Of HyperLTL
3. HyperLTL Satisfiability
4. HyperLTL Model-checking
5. The First-order Iogic of Hyperproperties
6. Conclusion

What about Finite Models?

Fix AP $=\{a\}$ and consider the conjunction φ of
■ $\forall \pi$. $\left(\neg a_{\pi}\right) \mathbf{U}\left(a_{\pi} \wedge \mathbf{X G} \neg a_{\pi}\right)$

What about Finite Models?

Fix AP $=\{a\}$ and consider the conjunction φ of
■ $\forall \pi$. $\left(\neg a_{\pi}\right) \mathbf{U}\left(a_{\pi} \wedge \mathbf{X} \mathbf{G} \neg a_{\pi}\right)$

- $\exists \pi . a_{\pi}$

What about Finite Models?

Fix AP $=\{a\}$ and consider the conjunction φ of
■ $\forall \pi$. $\left(\neg a_{\pi}\right) \mathbf{U}\left(a_{\pi} \wedge \mathbf{X G} \neg a_{\pi}\right)$

- $\exists \pi . a_{\pi}$
$\left\{\begin{array}{lllllllll} & \text { a }\end{array} \quad \emptyset \quad \cdots\right.$

What about Finite Models?

Fix AP $=\{a\}$ and consider the conjunction φ of
■ $\forall \pi$. $\left(\neg a_{\pi}\right) \mathbf{U}\left(a_{\pi} \wedge \mathbf{X G} \neg a_{\pi}\right)$

- $\exists \pi \cdot a_{\pi}$
- $\forall \pi . \exists \pi^{\prime} . \mathbf{F}\left(a_{\pi} \wedge \mathbf{X} a_{\pi^{\prime}}\right)$
$\left\{\begin{array}{lllllll}\{ \end{array}\right\} \emptyset \emptyset \quad \emptyset \quad \emptyset \quad \emptyset \quad \emptyset \quad \cdots$

What about Finite Models?

Fix AP $=\{a\}$ and consider the conjunction φ of
■ $\forall \pi$. $\left(\neg a_{\pi}\right) \mathbf{U}\left(a_{\pi} \wedge \mathbf{X G} \neg a_{\pi}\right)$

- $\exists \pi . a_{\pi}$

■ $\forall \pi . \exists \pi^{\prime} . \mathbf{F}\left(a_{\pi} \wedge \mathbf{X} a_{\pi^{\prime}}\right)$

$\{a\}$	\emptyset	\cdots						
\emptyset	$\{a\}$	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	\cdots

What about Finite Models?

Fix AP $=\{a\}$ and consider the conjunction φ of
■ $\forall \pi$. $\left(\neg a_{\pi}\right) \mathbf{U}\left(a_{\pi} \wedge \mathbf{X G} \neg a_{\pi}\right)$

- $\exists \pi$. a_{π}

■ $\forall \pi . \exists \pi^{\prime} . \mathbf{F}\left(a_{\pi} \wedge \mathbf{X} a_{\pi^{\prime}}\right)$

$\{a\}$	\emptyset	\cdots						
\emptyset	$\{a\}$	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	\cdots
\emptyset	\emptyset	$\{a\}$	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	\cdots
\vdots								

The unique model of φ is $\left\{\emptyset^{n}\{a\} \emptyset^{\omega} \mid n \in \mathbb{N}\right\}$.

What about Finite Models?

Fix AP $=\{a\}$ and consider the conjunction φ of
■ $\forall \pi$. $\left(\neg a_{\pi}\right) \mathbf{U}\left(a_{\pi} \wedge \mathbf{X} \mathbf{G} \neg a_{\pi}\right)$

- $\exists \pi . a_{\pi}$

■ $\forall \pi . \exists \pi^{\prime} . \mathbf{F}\left(a_{\pi} \wedge \mathbf{X} a_{\pi^{\prime}}\right)$

$\{a\}$	\emptyset	\cdots						
\emptyset	$\{a\}$	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	\cdots
\emptyset	\emptyset	$\{a\}$	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	\cdots
\vdots								

The unique model of φ is $\left\{\emptyset^{n}\{a\} \emptyset^{\omega} \mid n \in \mathbb{N}\right\}$.

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any finite set of traces.

What about Countable Models?

Theorem
Every satisfiable HyperLTL sentence has a countable model.

What about Countable Models?

Theorem

Every satisfiable HyperLTL sentence has a countable model.

Proof

■ W.I.o.g. $\varphi=\forall \pi_{0} \cdot \exists \pi_{0}^{\prime} . \cdots \forall \pi_{k} \cdot \exists \pi_{k}^{\prime}$. ψ with quantifier-free ψ.
■ Fix a Skolem function f_{j} for every existentially quantified π_{j}^{\prime}.

What about Countable Models?

Theorem

Every satisfiable HyperLTL sentence has a countable model.

Proof

■ W.I.o.g. $\varphi=\forall \pi_{0} \cdot \exists \pi_{0}^{\prime} . \cdots \forall \pi_{k} \cdot \exists \pi_{k}^{\prime}$. ψ with quantifier-free ψ.
■ Fix a Skolem function f_{j} for every existentially quantified π_{j}^{\prime}.

What about Countable Models?

Theorem

Every satisfiable HyperLTL sentence has a countable model.

Proof

■ W.I.o.g. $\varphi=\forall \pi_{0} . \exists \pi_{0}^{\prime} . \cdots \forall \pi_{k} \cdot \exists \pi_{k}^{\prime}$. ψ with quantifier-free ψ.
■ Fix a Skolem function f_{j} for every existentially quantified π_{j}^{\prime}.

$$
\begin{array}{r}
f_{0}(t) \\
f_{1}(t, t) \\
\hdashline f_{k}(t, \ldots, t)
\end{array}
$$

What about Countable Models?

Theorem

Every satisfiable HyperLTL sentence has a countable model.

Proof

■ W.I.o.g. $\varphi=\forall \pi_{0} . \exists \pi_{0}^{\prime} . \cdots \forall \pi_{k} \cdot \exists \pi_{k}^{\prime}$. ψ with quantifier-free ψ.

- Fix a Skolem function f_{j} for every existentially quantified π_{j}^{\prime}.

What about Countable Models?

Theorem

Every satisfiable HyperLTL sentence has a countable model.

Proof

■ W.I.o.g. $\varphi=\forall \pi_{0} . \exists \pi_{0}^{\prime} . \cdots \forall \pi_{k} \cdot \exists \pi_{k}^{\prime}$. ψ with quantifier-free ψ.
■ Fix a Skolem function f_{j} for every existentially quantified π_{j}^{\prime}.

What about Countable Models?

Theorem

Every satisfiable HyperLTL sentence has a countable model.

Proof

■ W.I.o.g. $\varphi=\forall \pi_{0} . \exists \pi_{0}^{\prime} . \cdots \forall \pi_{k} \cdot \exists \pi_{k}^{\prime}$. ψ with quantifier-free ψ.
■ Fix a Skolem function f_{j} for every existentially quantified π_{j}^{\prime}.

The limit is a model of φ and countable.

What about Regular Models?

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any ω-regular set of traces.

What about Regular Models?

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any ω-regular set of traces.

Proof

Express that a model T contains..

1. .. $(\{a\}\{b\})^{n} \emptyset^{\omega}$ for every n.

What about Regular Models?

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any ω-regular set of traces.

Proof

Express that a model T contains.. $\{a\}\{b\}\{a\}\{b\}\{a\}\{b\} \not \emptyset^{\omega}$

1. .. $(\{a\}\{b\})^{n} \emptyset^{\omega}$ for every n.

What about Regular Models?

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any ω-regular set of traces.

Proof

Express that a model T contains.. $\{a\}\{b\}\{a\}\{b\}\{a\}\{b\} \not \emptyset^{\omega}$

1. .. $(\{a\}\{b\})^{n} \emptyset^{\omega}$ for every n.
2. .. for every trace of the form $x\{b\}\{a\} y$ in T, also the trace $x\{a\}\{b\} y$.

What about Regular Models?

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any ω-regular set of traces.

Proof

Express that a model T contains.. $\{a\}\{b\}\{a\}\{b\}\{a\}\{b\} \not \emptyset^{\omega}$

1. .. $(\{a\}\{b\})^{n} \emptyset^{\omega}$ for every $n . \quad\{a\}\{a\}\{b\}\{b\}\{a\}\{b\} \emptyset^{\omega}$
2. .. for every trace of the form $x\{b\}\{a\} y$ in T, also the trace $x\{a\}\{b\} y$.

What about Regular Models?

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any ω-regular set of traces.

Proof

Express that a model T contains.. $\{a\}\{b\}\{a\}\{b\}\{a\}\{b\} \not \emptyset^{\omega}$

1. .. $(\{a\}\{b\})^{n} \emptyset^{\omega}$ for every $n . \quad\{a\}\{a\}\{b\}\{b\}\{a\}\{b\} \not \emptyset^{\omega}$
2. .. for every trace of the form $x\{b\}\{a\} y$ in T, also the $\{a\}\{a\}\{b\}\{a\}\{b\}\{b\} \not \emptyset^{\omega}$ trace $x\{a\}\{b\} y$.

What about Regular Models?

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any ω-regular set of traces.

Proof

Express that a model T contains.. $\{a\}\{b\}\{a\}\{b\}\{a\}\{b\} \not \emptyset^{\omega}$

1. .. $(\{a\}\{b\})^{n} \emptyset^{\omega}$ for every n.
2. .. for every trace of the form $x\{b\}\{a\} y$ in T, also the trace $x\{a\}\{b\} y$.

$$
\begin{aligned}
& \{a\}\{a\}\{b\}\{b\}\{a\}\{b\} \emptyset^{\omega} \\
& \{a\}\{a\}\{b\}\{a\}\{b\}\{b\} \emptyset^{\omega} \\
& \{a\}\{a\}\{a\}\{b\}\{b\}\{b\} \emptyset^{\omega}
\end{aligned}
$$

What about Regular Models?

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any ω-regular set of traces.

Proof

Express that a model T contains.. $\{a\}\{b\}\{a\}\{b\}\{a\}\{b\} \not \emptyset^{\omega}$

1. .. $(\{a\}\{b\})^{n} \emptyset^{\omega}$ for every $n . \quad\{a\}\{a\}\{b\}\{b\}\{a\}\{b\} \emptyset^{\omega}$
2. .. for every trace of the form $x\{b\}\{a\} y$ in T, also the trace $x\{a\}\{b\} y$.

$$
\begin{aligned}
& \{a\}\{a\}\{b\}\{a\}\{b\}\{b\} \emptyset^{\omega} \\
& \{a\}\{a\}\{a\}\{b\}\{b\}\{b\} \emptyset^{\omega}
\end{aligned}
$$

Then, $T \cap\{a\}^{*}\{b\}^{*} \emptyset^{\omega}=\left\{\{a\}^{n}\{b\}^{n} \emptyset^{\omega} \mid n \in \mathbb{N}\right\}$ is not ω-regular.

What about Ultimately Periodic Models?

Theorem
 There is a satisfiable HyperLTL sentence that is not satisfied by any set of traces that contains an ultimately periodic trace.

What about Ultimately Periodic Models?

Theorem
There is a satisfiable HyperLTL sentence that is not satisfied by any set of traces that contains an ultimately periodic trace.

One can even encode the prime numbers in HyperLTL!

Agenda

1. HyperLTL
2. The Models Of HyperLTL
3. HyperLTL Satisfiability
4. HyperLTL Model-checking
5. The First-order Logic of Hyperproperties
6. Conclusion

Undecidability

The HyperLTL satisfiability problem:
Given φ, is there a non-empty set T of traces with $T \models \varphi$?

Theorem

HyperLTL satisfiability is undecidable.

Undecidability

The HyperLTL satisfiability problem:
Given φ, is there a non-empty set T of traces with $T \models \varphi$?

Theorem

HyperLTL satisfiability is undecidable.
Proof:
By a reduction from Post's correspondence problem.

Example

$$
\text { Blocks } \quad(a, b a a) \quad(a b, a a) \quad(b b a, b b)
$$

Undecidability

The HyperLTL satisfiability problem:
Given φ, is there a non-empty set T of traces with $T \models \varphi$?

Theorem

HyperLTL satisfiability is undecidable.
Proof:
By a reduction from Post's correspondence problem.

Example

$$
\text { Blocks } \quad(a, b a a) \quad(a b, a a) \quad(b b a, b b)
$$

A solution:

b	b	a	a	b	b	b	a	a
b	b	a	a	b	b	b	a	a

Undecidability

The HyperLTL satisfiability problem:
Given φ, is there a non-empty set T of traces with $T \models \varphi$?

Theorem

HyperLTL satisfiability is undecidable.
Proof:
By a reduction from Post's correspondence problem.

Example

$$
\text { Blocks } \quad(a, b a a) \quad(a b, a a) \quad(b b a, b b)
$$

A solution:

Undecidability

1. There is a (solution)
trace where top matches bottom.

Undecidability

1. There is a (solution)

$$
\{b\}\{b\}\{a\}\{a\}\{b\}\{b\}\{b\}\{a\}\{a\} \emptyset^{\omega}
$$

$$
\{b\}\{b\}\{a\}\{a\}\{b\}\{b\}\{b\}\{a\}\{a\} \text { Øw }
$$ trace where top matches bottom.

Undecidability

1. There is a (solution)

$$
\{b\}\{b\}\{a\}\{a\}\{b\}\{b\}\{b\}\{a\}\{a\} \emptyset^{\omega}
$$

$\{b\}\{b\}\{a\}\{a\}\{b\}\{b\}\{b\}\{a\}\{a\} \not \emptyset^{\omega}$ trace where top matches bottom.
2. Every trace is finite and starts with a block or is empty.

Undecidability

1. There is a (solution)

$$
\begin{aligned}
& \{b\}\{b\}\{a\}\{a\}\{b\}\{b\}\{b\}\{a\}\{a\} \emptyset^{\omega} \\
& \{b\}\{b\}\left\lceil\{a\}\{a\}\{b\}\{b\}\{b\}\{a\}\{a\} \quad \emptyset^{\omega}\right.
\end{aligned}
$$ trace where top matches bottom.

2. Every trace is finite and starts with a block or is empty.

Undecidability

1. There is a (solution)

$$
\begin{aligned}
& \{b\}\{b\}\{a\}\left\{\{a\}\{b\}\{b\}\{b\}\{a\}\{a\} \not \emptyset^{\omega}\right. \\
& \{b\}\{b\} \backslash a\}\{a\}\{b\}\{b\}\{b\}\{a\}\{a\} \not \emptyset^{\omega}
\end{aligned}
$$ trace where top matches bottom.

2. Every trace is finite and starts with a block or is empty.
3. For every non-empty trace, the trace obtained by removing the first block also exists.

Undecidability

 trace where top matches bottom.
2. Every trace is finite and starts with a block or is empty.
3. For every non-empty trace, the trace obtained by removing the first block also exists.

Undecidability

 trace where top matches bottom.
2. Every trace is finite and starts with a block or is empty.
3. For every non-empty trace, the trace obtained by removing the first block also exists.

Undecidability

 trace where top matches bottom.
2. Every trace is finite and starts with a block or is empty.
3. For every non-empty trace, the trace obtained by removing the first block also exists.

Undecidability

 trace where top matches bottom.
2. Every trace is finite and starts with a block or is empty.
$\{a\}\{b\}$
$\{a\}\{a\}$$|\{b\}\{b\}\{a\}\{a\}$

3. For every non-empty trace, the trace obtained by removing the first block also exists.

Undecidability

 trace where top matches bottom.
2. Every trace is finite and starts with a block or is empty.

$\{b\}\{b\}\{a\}\left\{\begin{array}{ccccccc}\{a\} & \emptyset & \emptyset & \emptyset & \emptyset & \emptyset & \emptyset^{\omega} \\ \{b\} & \{b\} & \{b\} & \{a\} & \{a\} & \emptyset & \emptyset \\ \emptyset & \emptyset & \emptyset^{\omega}\end{array}, ~\right.$
3. For every non-empty trace, the trace obtained by removing the first block also exists.

Undecidability

 trace where top matches bottom.
2. Every trace is finite and starts with a block or is empty.

$$
\begin{aligned}
& \left\{\begin{array}{llllllllll}
\{a\} & \{b\} \\
\{a\} & \{a\} & \{b\} & \{b\} & \{b\} & \{a\} & \{a\} & \emptyset & \emptyset a\} & \{a\} \\
& \emptyset & \emptyset & \emptyset^{\omega} \\
& \{b\} & \{b\} & \{a\} & \{a\} & \emptyset & \emptyset & \emptyset & \emptyset & \emptyset \\
\emptyset^{\omega} \\
\{b\} & \{b\} & \{b\} & \{a\} & \{a\} & \emptyset & \emptyset & \emptyset & \emptyset & \emptyset^{\omega}
\end{array}\right.
\end{aligned}
$$

3. For every non-empty trace, the trace obtained by removing the first block also exists.

Undecidability

 trace where top matches bottom.
2. Every trace is finite and starts with a block or is empty.
3. For every non-empty trace, the trace obtained by removing the first block also exists.

Undecidability

 trace where top matches bottom.
2. Every trace is finite and starts with a block or is empty.
3. For every non-empty trace, the trace obtained by removing the first block also exists.

Undecidability

 trace where top matches bottom.2. Every trace is finite and starts with a block or is empty.
3. For every non-empty trace, the trace obtained by removing the first block also exists.

$$
\begin{aligned}
& \left.\begin{array}{l}
\{a\}\{b\} \\
\{a\}\{a\}
\end{array} \right\rvert\,\{b\}\{b\}\{a\}\{a\} \\
& \begin{array}{l}
\{b\}\{b\}\{a\}\left\{\begin{array}{ccccccc}
\{a\} & \emptyset & \emptyset & \emptyset & \emptyset & \emptyset & \emptyset^{\omega} \\
\{b\} & \{b\} & \{b\} & \{a\} & \{a\} & \emptyset & \emptyset \\
\emptyset & \emptyset & \emptyset^{\omega}
\end{array}\right.
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llllllllll}
\emptyset & \emptyset \omega \\
\emptyset & \emptyset \omega
\end{array}
\end{aligned}
$$

Decidability

Theorem
\exists^{*}-HyperLTL satisfiability is PSPACE-complete.

Decidability

Theorem
\exists^{*}-HyperLTL satisfiability is PSPACE-complete.

Proof:

■ Membership:
■ Consider $\varphi=\exists \pi_{0} \ldots \exists \pi_{k} . \psi$.

- Obtain ψ^{\prime} from ψ by replacing each $a_{\pi_{j}}$ by a fresh proposition a_{j}.
■ Then: φ and the LTL formula ψ^{\prime} are equi-satisfiable.
- Hardness: trivial reduction from LTL satisfiability

Decidability

Theorem
\forall^{*}-HyperLTL satisfiability is PSPACE-complete.

Decidability

Theorem
\forall^{*}-HyperLTL satisfiability is PSpace-complete.

Proof:

■ Membership:

- Consider $\varphi=\forall \pi_{0} \ldots \forall \pi_{k} . \psi$.

■ Obtain ψ^{\prime} from ψ by replacing each $a_{\pi_{j}}$ by a.

- Then: φ and the LTL formula ψ^{\prime} are equi-satisfiable.

■ Hardness: trivial reduction from LTL satisfiability

Decidability

Theorem
$\exists^{*} \forall^{*}$-HyperLTL satisfiability is ExpSPace-complete.

Decidability

Theorem

$\exists^{*} \forall^{*}$-HyperLTL satisfiability is ExpSpace-complete.

Proof:

■ Membership:
■ Consider $\varphi=\exists \pi_{0} \ldots \exists \pi_{k} \cdot \forall \pi_{0}^{\prime} \ldots \forall \pi_{\ell}^{\prime} \cdot \psi$.

- Let

$$
\varphi^{\prime}=\exists \pi_{0} \ldots \exists \pi_{k} \bigwedge_{j_{0}=0}^{k} \cdots \bigwedge_{j_{\ell}=0}^{k} \psi_{j_{0}, \ldots, j_{\ell}}
$$

where $\psi_{j_{0}, \ldots, j_{\ell}}$ is obtained from ψ by replacing each occurrence of π_{i}^{\prime} by $\pi_{j i}$.

- Then: φ and φ^{\prime} are equi-satisfiable.

■ Hardness: encoding of exponential-space Turing machines.

Further Results

HyperLTL implication checking: given φ and φ^{\prime}, does, for every T, $T \models \varphi$ imply $T \models \varphi^{\prime}$?

Lemma
φ does not imply φ^{\prime} iff $\left(\varphi \wedge \neg \varphi^{\prime}\right)$ is satisfiable.

Further Results

HyperLTL implication checking: given φ and φ^{\prime}, does, for every T, $T \models \varphi$ imply $T \models \varphi^{\prime}$?

Lemma

φ does not imply φ^{\prime} iff $\left(\varphi \wedge \neg \varphi^{\prime}\right)$ is satisfiable.

Corollary

Implication checking for alternation-free HyperLTL formulas is ExpSpace-complete.

Tool EAHyper:

- satisfiability, implication, and equivalence checking for HyperLTL

Latest Results

Recently, the exact complexity of HyperLTL satisfiability was settled: it is highly undecidable.

Theorem (Fortin, Kuijer, Totzke, Z. 2021)
HyperLTL satisfiability is Σ_{1}^{1}-complete.

Latest Results

Recently, the exact complexity of HyperLTL satisfiability was settled: it is highly undecidable.

Theorem (Fortin, Kuijer, Totzke, Z. 2021)
HyperLTL satisfiability is \sum_{1}^{1}-complete.

Corollary (Fortin, Kuijer, Totzke, Z. 2021)
The membership problem for each level of the HyperLTL quantifier alternation hierarchy is Σ_{1}^{1}-complete.

Agenda

1. HyperLTL
2. The Models Of HyperLTL
3. HyperLTL Satisfiability
4. HyperLTL Model-checking
5. The First-order Logic of Hyperproperties
6. Conclusion

Model-Checking

The HyperLTL model-checking problem:
Given a transition system \mathcal{S} and φ, does $\operatorname{Traces}(\mathcal{S}) \models \varphi$?

Theorem (Finkbeiner, Rabe, Sánchez 2015)
The HyperLTL model-checking problem is decidable.

Model-Checking

Proof:

■ Consider $\varphi=\exists \pi_{1} \cdot \forall \pi_{2} \ldots \exists \pi_{k-1} . \forall \pi_{k} \cdot \psi$.
■ Rewrite as $\exists \pi_{1}, \neg \exists \pi_{2} . \neg \ldots \exists \pi_{k-1} . \neg \exists \pi_{k} . \neg \psi$.

Model-Checking

Proof:

■ Consider $\varphi=\exists \pi_{1} . \forall \pi_{2} \ldots \exists \pi_{k-1} . \forall \pi_{k} . \psi$.
■ Rewrite as $\exists \pi_{1} . \neg \exists \pi_{2} . \neg \ldots \exists \pi_{k-1} . \neg \exists \pi_{k} . \neg \psi$.

- By induction over quantifier prefix construct non-determinstic Büchi automaton \mathcal{A} with $L(\mathcal{A}) \neq \emptyset$ iff $\operatorname{Traces}(\mathcal{S}) \models \varphi$.
- Induction start: build automaton for LTL formula obtained from $\neg \psi$ by replacing $a_{\pi_{j}}$ by a_{j}.
■ For $\exists \pi_{j} \theta$ restrict automaton for θ in dimension j to traces of \mathcal{S}.
- For $\neg \theta$ complement automaton for θ.

Model-Checking

Proof:

■ Consider $\varphi=\exists \pi_{1} . \forall \pi_{2} \ldots \exists \pi_{k-1} . \forall \pi_{k} . \psi$.
■ Rewrite as $\exists \pi_{1} . \neg \exists \pi_{2} . \neg \ldots \exists \pi_{k-1} . \neg \exists \pi_{k} . \neg \psi$.

- By induction over quantifier prefix construct non-determinstic Büchi automaton \mathcal{A} with $L(\mathcal{A}) \neq \emptyset$ iff $\operatorname{Traces}(\mathcal{S}) \models \varphi$.
- Induction start: build automaton for LTL formula obtained from $\neg \psi$ by replacing $a_{\pi_{j}}$ by a_{j}.
■ For $\exists \pi_{j} \theta$ restrict automaton for θ in dimension j to traces of \mathcal{S}.
- For $\neg \theta$ complement automaton for θ.
\Rightarrow Non-elementary complexity, but alternation-free fragments are as hard as LTL.

Agenda

1. HyperLTL
2. The Models Of HyperLTL
3. HyperLTL Satisfiability
4. HyperLTL Model-checking
5. The First-order Logic of Hyperproperties
6. Conclusion

First-order Logic vs. LTL

FO $[<]$: first-order order logic over signature $\{<\} \cup\left\{P_{a} \mid a \in \mathrm{AP}\right\}$ over structures with universe \mathbb{N}.

Theorem (Kamp '68, Gabbay et al. '80)
LTL and $F O[<]$ are expressively equivalent.

First-order Logic vs. LTL

FO $[<]$: first-order order logic over signature $\{<\} \cup\left\{P_{a} \mid a \in \mathrm{AP}\right\}$ over structures with universe \mathbb{N}.

Theorem (Kamp '68, Gabbay et al. '80)
LTL and $F O[<]$ are expressively equivalent.
Example

$$
\forall x\left(P_{q}(x) \wedge \neg P_{p}(x)\right) \rightarrow \exists y\left(x<y \wedge P_{p}(y)\right)
$$

and

$$
\mathbf{G}(q \rightarrow \mathbf{F} p)
$$

are equivalent.

First-order Logic for Hyperproperties

First-order Logic for Hyperproperties

First-order Logic for Hyperproperties

First-order Logic for Hyperproperties

■ $\mathrm{FO}[<, E]$: first-order logic with equality over the signature $\{<, E\} \cup\left\{P_{a} \mid a \in \mathrm{AP}\right\}$ over structures with universe $T \times \mathbb{N}$.
Example

$$
\forall x \forall x^{\prime} E\left(x, x^{\prime}\right) \rightarrow\left(P_{\text {on }}(x) \leftrightarrow P_{\text {on }}\left(x^{\prime}\right)\right)
$$

First-order Logic for Hyperproperties

■ $\mathrm{FO}[<, E]$: first-order logic with equality over the signature $\{<, E\} \cup\left\{P_{a} \mid a \in \mathrm{AP}\right\}$ over structures with universe $T \times \mathbb{N}$.
Proposition
For every HyperLTL sentence there is an equivalent $F O[<, E]$ sentence.

A Setback

- Let φ be the following property of sets $T \subseteq\left(2^{\{p\}}\right)^{\omega}$:

There is an n such that $p \notin t(n)$ for every $t \in T$.

Theorem (Bozzelli et al. '15)
φ is not expressible in HyperLTL.

A Setback

- Let φ be the following property of sets $T \subseteq\left(2^{\{p\}}\right)^{\omega}$:

There is an n such that $p \notin t(n)$ for every $t \in T$.

Theorem (Bozzelli et al. '15)
φ is not expressible in HyperLTL.

■ But, φ is easily expressible in $\mathrm{FO}[<, E]$:

$$
\exists x \forall y E(x, y) \rightarrow \neg P_{p}(y)
$$

Corollary

FO[<, E] strictly subsumes HyperLTL.

HyperFO

- $\exists^{M_{x}}$ and $\forall^{M_{x}}$: quantifiers restricted to initial positions.
- $\exists^{G} y \geq x$ and $\forall^{G} y \geq x$: if x is initial, then quantifiers restricted to positions on the same trace as x.

HyperFO

■ $\exists^{M} x$ and $\forall^{M_{x}}$: quantifiers restricted to initial positions.

- $\exists^{G} y \geq x$ and $\forall^{G} y \geq x$: if x is initial, then quantifiers restricted to positions on the same trace as x.

HyperFO: sentences of the form

$$
\varphi=Q_{1}^{M} x_{1} \cdot \cdots Q_{k}^{M} x_{k} \cdot Q_{1}^{G} y_{1} \geq x_{g_{1}} \cdots Q_{\ell}^{G} y_{\ell} \geq x_{g_{\ell}} \cdot \psi
$$

- $Q \in\{\exists, \forall\}$,
- $\left\{x_{1}, \ldots, x_{k}\right\}$ and $\left\{y_{1}, \ldots, y_{\ell}\right\}$ are disjoint,
- every guard $x_{g_{j}}$ is in $\left\{x_{1}, \ldots, x_{k}\right\}$, and

■ ψ is quantifier-free over signature $\{<, E\} \cup\left\{P_{a} \mid a \in \mathrm{AP}\right\}$ with free variables in $\left\{y_{1}, \ldots, y_{\ell}\right\}$.

Equivalence

Theorem (Finkbeiner, Z. 2017)
HyperLTL and HyperFO are equally expressive.

Equivalence

Theorem (Finkbeiner, Z. 2017)
HyperLTL and HyperFO are equally expressive.

Proof

■ From HyperLTL to HyperFO: structural induction.

- From HyperFO to HyperLTL: reduction to Kamp's theorem.

From HyperFO to HyperLTL

$$
\forall x \forall x^{\prime} \quad E\left(x, x^{\prime}\right) \rightarrow\left(P_{\text {on }}(x) \leftrightarrow P_{\text {on }}\left(x^{\prime}\right)\right)
$$

From HyperFO to HyperLTL

$$
\begin{aligned}
& \forall x \forall x^{\prime} \quad E\left(x, x^{\prime}\right) \rightarrow\left(P_{\text {on }}(x) \leftrightarrow P_{\text {on }}\left(x^{\prime}\right)\right) \\
& \forall^{M} x_{x_{1}} \forall^{M} x_{2} \quad \forall^{G} y_{1} \geq x_{1} \forall^{G} y_{2} \geq x_{2} E\left(y_{1}, y_{2}\right) \rightarrow\left(P_{\text {on }}\left(y_{1}\right) \leftrightarrow P_{\text {on }}\left(y_{2}\right)\right)
\end{aligned}
$$

From HyperFO to HyperLTL

$$
\begin{aligned}
\forall x \forall x^{\prime} \quad & E\left(x, x^{\prime}\right) \rightarrow\left(P_{\text {on }}(x) \leftrightarrow P_{\text {on }}\left(x^{\prime}\right)\right) \\
\forall^{M} x_{1} \forall^{M} x_{2} & \forall^{G} y_{1} \geq x_{1} \forall^{G} y_{2} \geq x_{2} E\left(y_{1}, y_{2}\right) \rightarrow\left(P_{\text {on }}\left(y_{1}\right) \leftrightarrow P_{\text {on }}\left(y_{2}\right)\right)
\end{aligned}
$$

$\chi_{1} \mapsto$	\{on\}	\{on\}	\emptyset	\{on\}
$x_{2} \mapsto$	\{on\}	1	\emptyset	\{on\}

From HyperFO to HyperLTL

$$
\begin{aligned}
\forall x \forall x^{\prime} & E\left(x, x^{\prime}\right) \rightarrow\left(P_{\text {on }}(x) \leftrightarrow P_{\text {on }}\left(x^{\prime}\right)\right) \\
& \forall^{G} y_{1} \geq x_{1} \forall^{G} y_{2} \geq x_{2} E\left(y_{1}, y_{2}\right) \rightarrow\left(P_{\text {on }}\left(y_{1}\right) \leftrightarrow P_{\text {on }}\left(y_{2}\right)\right)
\end{aligned}
$$

$x_{1} \mapsto$	\{on $\}$	\{on\}	\emptyset	\{on\}
$\chi_{2} \mapsto$	\{on\}	\emptyset	\emptyset	\{on\}

$$
\begin{aligned}
& \forall x \forall x^{\prime} \quad E\left(x, x^{\prime}\right) \rightarrow\left(P_{\text {on }}(x) \leftrightarrow P_{\text {on }}\left(x^{\prime}\right)\right) \\
& \forall^{G} y_{1} \geq x_{1} \forall^{G} y_{2} \geq x_{2} E\left(y_{1}, y_{2}\right) \rightarrow\left(P_{\text {on }}\left(y_{1}\right) \leftrightarrow P_{\text {on }}\left(y_{2}\right)\right) \\
& \forall y_{1} \forall y_{2}\left(y_{1}=y_{2}\right) \rightarrow\left(P_{(\text {on }, 1)}\left(y_{1}\right) \leftrightarrow P_{(o n, 2)}\left(y_{2}\right)\right) \\
& \{(\mathrm{on}, 1) \text {, } \\
& \text { (on, 2) }\} \\
& \{(o n, 1)\} \\
& \{(\mathrm{on}, 1) \text {, } \\
& \text { (on, 2) \} }
\end{aligned}
$$

$$
\begin{aligned}
& \forall x \forall x^{\prime} \quad E\left(x, x^{\prime}\right) \rightarrow\left(P_{\text {on }}(x) \leftrightarrow P_{\text {on }}\left(x^{\prime}\right)\right) \\
& \forall^{G} y_{1} \geq x_{1} \forall^{G} y_{2} \geq x_{2} E\left(y_{1}, y_{2}\right) \rightarrow\left(P_{\text {on }}\left(y_{1}\right) \leftrightarrow P_{\text {on }}\left(y_{2}\right)\right) \\
& \forall y_{1} \forall y_{2}\left(y_{1}=y_{2}\right) \rightarrow\left(P_{(\text {on }, 1)}\left(y_{1}\right) \leftrightarrow P_{(o n, 2)}\left(y_{2}\right)\right) \\
& \mathbf{G}((\mathrm{on}, 1) \leftrightarrow(\mathrm{on}, 2)) \\
& \{(o n, 1) \text {, } \\
& \text { (on, 2) \} } \\
& \{(o n, 1)\} \\
& \{(\mathrm{on}, 1) \text {, } \\
& \text { (on, 2) \} }
\end{aligned}
$$

From HyperFO to HyperLTL

$$
\begin{aligned}
\forall x \forall x^{\prime} & E\left(x, x^{\prime}\right) \rightarrow\left(P_{\text {on }}(x) \leftrightarrow P_{\text {on }}\left(x^{\prime}\right)\right) \\
\forall^{M} x_{x_{1}} \forall^{M} x_{2} \quad & \forall^{G} y_{1} \geq x_{1} \forall^{G} y_{2} \geq x_{2} E\left(y_{1}, y_{2}\right) \rightarrow\left(P_{\text {on }}\left(y_{1}\right) \leftrightarrow P_{\text {on }}\left(y_{2}\right)\right) \\
& \forall y_{1} \forall y_{2}\left(y_{1}=y_{2}\right) \rightarrow\left(P_{\text {(on }, 1)}\left(y_{1}\right) \leftrightarrow P_{\text {(on }, 2)}\left(y_{2}\right)\right) \\
& \mathbf{G}((\text { on }, 1) \leftrightarrow(\text { on }, 2))
\end{aligned}
$$

\{(on, 1),
(on, 2) \}
$\{($ on, 1$)\}$
$\{(\mathrm{on}, 1)$,
(on, 2) \}

From HyperFO to HyperLTL

$$
\begin{aligned}
& \forall x \forall x^{\prime} \quad E\left(x, x^{\prime}\right) \rightarrow\left(P_{\text {on }}(x) \leftrightarrow P_{\text {on }}\left(x^{\prime}\right)\right) \\
& \forall^{M} x_{1} \forall^{M} x_{2} \quad \forall^{G} y_{1} \geq x_{1} \forall^{G} y_{2} \geq x_{2} E\left(y_{1}, y_{2}\right) \rightarrow\left(P_{\text {on }}\left(y_{1}\right) \leftrightarrow P_{\text {on }}\left(y_{2}\right)\right) \\
& \forall y_{1} \forall y_{2}\left(y_{1}=y_{2}\right) \rightarrow\left(P_{(\text {on }, 1)}\left(y_{1}\right) \leftrightarrow P_{\text {(on }, 2)}\left(y_{2}\right)\right) \\
& \mathbf{G}((\mathrm{on}, 1) \leftrightarrow(\mathrm{on}, 2)) \\
& \forall \pi_{1} \forall \pi_{2} \quad \mathbf{G}\left(\mathrm{on}_{\pi_{1}} \leftrightarrow \mathrm{on}_{\pi_{2}}\right)
\end{aligned}
$$

Agenda

1. HyperLTL
2. The Models Of HyperLTL
3. HyperLTL Satisfiability
4. HyperITL Model-checking
5. The First-order Logic of Hyperproperties
6. Conclusion

Conclusion

HyperLTL behaves quite differently than LTL:
■ The models of HyperLTL are rather not well-behaved, i.e., in general (countably) infinite, non-regular, and non-periodic.
■ Satisfiability is in general undecidable.
■ Model-checking is decidable, but non-elementary.

Conclusion

HyperLTL behaves quite differently than LTL:
■ The models of HyperLTL are rather not well-behaved, i.e., in general (countably) infinite, non-regular, and non-periodic.

- Satisfiability is in general undecidable.

■ Model-checking is decidable, but non-elementary.

But with the feasible problems, you can do exciting things. HyperLTL is a powerful tool for information security and beyond:

- Information-flow control
- Symmetries in distributed systems
- Error resistant codes
- Software doping

■ ...

References (1)

The basics

- Michael R. Clarkson and Fred B. Schneider: "Hyperproperties." Journal of Computer Security 18(6), 2010.
■ Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez: "Temporal logics for hyperproperties". POST 2014.
■ Bernd Finkbeiner: "Logics and Algorithms for Hyperproperties", ACM SIGLOG News 10(2), 2023

References (2)

Satisfiability

■ Bernd Finkbeiner and Christopher Hahn: "Deciding Hyperproperties". CONCUR 2016
■ Bernd Finkbeiner, Christopher Hahn, and Marvin Stenger: "EAHyper: Satisfiability, Implication, and Equivalence Checking of Hyperproperties". CAV 2017
■ Marie Fortin, Louwe B. Kuijer, Patrick Totzke, Martin Zimmermann: "HyperLTL Satisfiability Is Σ_{1}^{1}-complete, HyperCTL* Satisfiability Is Σ_{1}^{2}-complete". MFCS 2021

References (3)

Model Checking

■ Bernd Finkbeiner, Markus N. Rabe, and César Sánchez: "Algorithms for Model Checking HyperLTL and HyperCTL*". CAV 2015

First-order logic
■ Finkbeiner, Zimmermann: "The first-order logic of hyperproperties". STACS 2017

