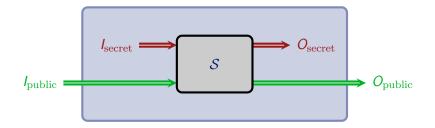
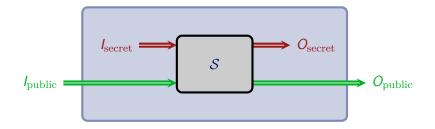
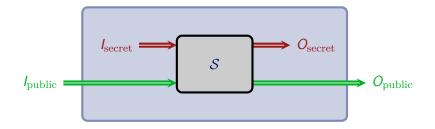
Martin Zimmermann Aalborg University Logics for Hyperproperties

UniVr/UniUd Summer School on Formal Methods for Cyber-Physical Systems, Udine, August 30, 2023





• The system S is input-deterministic: for all traces t, t' of S $t =_{l} t'$ implies $t =_{O} t'$



The system S is input-deterministic: for all traces t, t' of S $t =_{I} t'$ implies $t =_{O} t'$

• Noninterference: for all traces t, t' of S $t =_{I_{\text{public}}} t'$ implies $t =_{O_{\text{public}}} t'$

■ These are not trace properties, i.e., sets T ⊆ Traces(AP) of traces.

- These are not trace properties, i.e., sets T ⊆ Traces(AP) of traces.
- They are hyperproperties, i.e., sets H ⊆ 2^{Traces(AP)} of sets of traces.
- A system S satisfies a hyperproperty H, if $Traces(S) \in H$.

Example: Noninterference as hyperproperty:

$$\{ T \subseteq \operatorname{Traces}(\operatorname{AP}) \mid \forall t, t' \in T : t =_{I_{\operatorname{public}}} t' \Rightarrow t =_{O_{\operatorname{public}}} t' \}$$

- These are not trace properties, i.e., sets T ⊆ Traces(AP) of traces.
- They are hyperproperties, i.e., sets H ⊆ 2^{Traces(AP)} of sets of traces.
- A system S satisfies a hyperproperty H, if $Traces(S) \in H$.

Example: Noninterference as hyperproperty:

$$\{ T \subseteq \operatorname{Traces}(\operatorname{AP}) \mid \forall t, t' \in T : t =_{I_{\operatorname{public}}} t' \Rightarrow t =_{O_{\operatorname{public}}} t' \}$$

Specification languages for hyperproperties **HyperLTL:** Extend LTL by trace quantifiers. **HyperCTL*:** Extend CTL* by trace quantifiers.

Outline

- 1. HyperLTL
- 2. The Models Of HyperLTL
- 3. HyperLTL Satisfiability
- 4. HyperLTL Model-checking
- 5. The First-order Logic of Hyperproperties
- 6. Conclusion

Agenda

1. HyperLTL

- 2. The Models Of HyperLTL
- 3. HyperLTL Satisfiability
- 4. HyperLTL Model-checking
- 5. The First-order Logic of Hyperproperties
- 6. Conclusion

LTL in One Slide

Syntax

 $\varphi ::= \mathbf{a} \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi$

where $a \in AP$ (atomic propositions).

LTL in One Slide

Syntax

 $\varphi ::= \mathbf{a} \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi$

where $a \in AP$ (atomic propositions).

Semantics

 $w,n\models arphi$ for a trace $w\in (2^{\operatorname{AP}})^\omega$ and a position $n\in\mathbb{N}$:

•
$$w, n \models \mathbf{X} \varphi$$
: $w \longmapsto \frac{\varphi}{n + 1} \mapsto \frac{\varphi}{n + 1}$
• $w, n \models \varphi_0 \mathbf{U} \varphi_1$: $w \longmapsto \frac{\varphi_0}{n + 1} \mapsto \frac{\varphi_0 - \varphi_0 - \varphi_0}{n + 1} \mapsto \frac{\varphi_0 - \varphi_0 - \varphi_1}{n + 1}$

LTL in One Slide

Syntax

 $\varphi ::= \mathbf{a} \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi$

where $a \in AP$ (atomic propositions).

Semantics

Syntactic Sugar **•** $\mathbf{F} \psi = \text{true } \mathbf{U} \psi$ **•** $\mathbf{G} \psi = \neg \mathbf{F} \neg \psi$

HyperLTL

HyperLTL = LTL + trace quantification

$$\begin{split} \varphi &::= \exists \pi. \ \varphi \mid \forall \pi. \ \varphi \mid \psi \\ \psi &::= a_{\pi} \mid \neg \psi \mid \psi \lor \psi \mid \psi \land \psi \mid \mathbf{X} \ \psi \mid \psi \ \mathbf{U} \ \psi \end{split}$$

where $a \in AP$ (atomic propositions) and $\pi \in \mathcal{V}$ (trace variables).

HyperLTL

HyperLTL = LTL + trace quantification

$$\begin{split} \varphi &::= \exists \pi. \ \varphi \mid \forall \pi. \ \varphi \mid \psi \\ \psi &::= a_{\pi} \mid \neg \psi \mid \psi \lor \psi \mid \psi \land \psi \mid \mathbf{X} \ \psi \mid \psi \ \mathbf{U} \ \psi \end{split}$$

where $a \in AP$ (atomic propositions) and $\pi \in \mathcal{V}$ (trace variables).

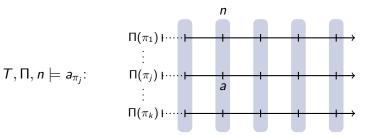
- Prenex normal form, but
- closed under boolean combinations.

- Trace assignment: partial mapping $\Pi \colon \mathcal{V} \to (2^{\mathrm{AP}})^{\omega}$
- Empty trace assignment: Π_{\emptyset}

 $T, \Pi, n \models \varphi$ for a set of traces $T \in (2^{AP})^{\omega}$, a trace assignment Π , and a position $n \in \mathbb{N}$:

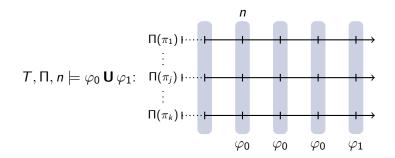
- Trace assignment: partial mapping $\Pi \colon \mathcal{V} \to (2^{\mathrm{AP}})^{\omega}$
- Empty trace assignment: Π_{\emptyset}

 $T, \Pi, n \models \varphi$ for a set of traces $T \in (2^{AP})^{\omega}$, a trace assignment Π , and a position $n \in \mathbb{N}$:



- Trace assignment: partial mapping $\Pi \colon \mathcal{V} \to (2^{\mathrm{AP}})^{\omega}$
- Empty trace assignment: Π_{\emptyset}

 $T, \Pi, n \models \varphi$ for a set of traces $T \in (2^{AP})^{\omega}$, a trace assignment Π , and a position $n \in \mathbb{N}$:



- Trace assignment: partial mapping $\Pi \colon \mathcal{V} \to (2^{\mathrm{AP}})^{\omega}$
- Empty trace assignment: Π_{\emptyset}

 $T, \Pi, n \models \varphi$ for a set of traces $T \in (2^{AP})^{\omega}$, a trace assignment Π , and a position $n \in \mathbb{N}$:

•
$$T, \Pi, n \models \exists \pi. \varphi \text{ if } T, \Pi[\pi \mapsto t], n \models \varphi \text{ for some } t \in T.$$

■
$$T, \Pi, n \models \forall \pi. \varphi$$
 if $T, \Pi[\pi \mapsto t], n \models \varphi$ for all $t \in T$.

T is a model of a sentence φ , written $T \models \varphi$, if $T, \Pi_{\emptyset}, \mathbf{0} \models \varphi$.

 $\varphi = \forall \pi. \, \forall \pi'. \, \mathbf{G} \, \mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi'}$

 $\mathcal{T} \subseteq (2^{\operatorname{AP}})^\omega$ is a model of arphi iff

 $\varphi = \forall \pi. \, \forall \pi'. \, \mathbf{G} \, \mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi'}$

 $\mathcal{T} \subseteq (2^{\operatorname{AP}})^\omega$ is a model of arphi iff

 $\{\} \models \forall \pi. \forall \pi'. \mathbf{G} \, \texttt{on}_{\pi'} \leftrightarrow \texttt{on}_{\pi'}$

 $\varphi = \forall \pi. \, \forall \pi'. \, \mathbf{G} \, \mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi'}$

 $\mathcal{T} \subseteq (2^{\operatorname{AP}})^\omega$ is a model of arphi iff

 $\{\} \models \forall \pi. \forall \pi'. \mathbf{G} \circ \mathbf{n}_{\pi} \leftrightarrow \circ \mathbf{n}_{\pi'}$ $\{\pi \mapsto t\} \models \forall \pi'. \mathbf{G} \circ \mathbf{n}_{\pi} \leftrightarrow \circ \mathbf{n}_{\pi'} \quad \text{for all } t \in T$

 $\varphi = \forall \pi. \, \forall \pi'. \, \mathbf{G} \, \mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi'}$

 $\mathcal{T} \subseteq (2^{\operatorname{AP}})^\omega$ is a model of arphi iff

 $\{\} \models \forall \pi. \forall \pi'. \mathbf{G} \circ \mathbf{n}_{\pi} \leftrightarrow \circ \mathbf{n}_{\pi'}$ $\{\pi \mapsto t\} \models \forall \pi'. \mathbf{G} \circ \mathbf{n}_{\pi} \leftrightarrow \circ \mathbf{n}_{\pi'} \quad \text{for all } t \in T$ $\{\pi \mapsto t, \pi' \mapsto t'\} \models \mathbf{G} \circ \mathbf{n}_{\pi} \leftrightarrow \circ \mathbf{n}_{\pi'} \quad \text{for all } t' \in T$

 $\varphi = \forall \pi. \, \forall \pi'. \, \mathbf{G} \, \mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi'}$

 $\mathcal{T} \subseteq (2^{\operatorname{AP}})^\omega$ is a model of arphi iff

 $\{\} \models \forall \pi. \forall \pi'. \mathbf{G} \circ \mathbf{n}_{\pi} \leftrightarrow \circ \mathbf{n}_{\pi'}$ $\{\pi \mapsto t\} \models \forall \pi'. \mathbf{G} \circ \mathbf{n}_{\pi} \leftrightarrow \circ \mathbf{n}_{\pi'} \quad \text{for all } t \in T$ $\{\pi \mapsto t, \pi' \mapsto t'\} \models \mathbf{G} \circ \mathbf{n}_{\pi} \leftrightarrow \circ \mathbf{n}_{\pi'} \quad \text{for all } t' \in T$ $\{\pi \mapsto t[n, \infty), \pi' \mapsto t'[n, \infty)\} \models \circ \mathbf{n}_{\pi} \leftrightarrow \circ \mathbf{n}_{\pi'} \quad \text{for all } n \in \mathbb{N}$

 $\varphi = \forall \pi. \, \forall \pi'. \, \mathbf{G} \, \mathrm{on}_{\pi} \leftrightarrow \mathrm{on}_{\pi'}$

 $\mathcal{T} \subseteq (2^{\operatorname{AP}})^\omega$ is a model of arphi iff

 $\{\} \models \forall \pi. \forall \pi'. \mathbf{G} \circ \mathbf{n}_{\pi} \leftrightarrow \circ \mathbf{n}_{\pi'}$ $\{\pi \mapsto t\} \models \forall \pi'. \mathbf{G} \circ \mathbf{n}_{\pi} \leftrightarrow \circ \mathbf{n}_{\pi'} \quad \text{for all } t \in T$ $\{\pi \mapsto t, \pi' \mapsto t'\} \models \mathbf{G} \circ \mathbf{n}_{\pi} \leftrightarrow \circ \mathbf{n}_{\pi'} \quad \text{for all } t' \in T$ $\{\pi \mapsto t[n, \infty), \pi' \mapsto t'[n, \infty)\} \models \circ \mathbf{n}_{\pi} \leftrightarrow \circ \mathbf{n}_{\pi'} \quad \text{for all } n \in \mathbb{N}$ $\circ \mathbf{n} \in t(n) \Leftrightarrow \circ \mathbf{n} \in t'(n)$

Applications

- Uniform framework for information-flow control
 - Does a system leak information?
- Symmetries in distributed systems
 - Are clients treated symmetrically?
- Error resistant codes
 - Do codes for distinct inputs have at least Hamming distance d?
- Software doping
 - Think emission scandal in automotive industry

The Virtues of LTL

LTL has many desirables properties:

- 1. Every satisfiable LTL formula is satisfied by an ultimately periodic trace, i.e., by a finite and finitely-represented model.
- 2. LTL satisfiability and model-checking are PSPACE -complete.
- 3. LTL and FO[<] are expressively equivalent.

Which properties does HyperLTL retain ?

Agenda

1. HyperLTL

2. The Models Of HyperLTL

- 3. HyperLTL Satisfiability
- 4. HyperLTL Model-checking
- 5. The First-order Logic of Hyperproperties
- 6. Conclusion

Fix AP = {*a*} and consider the conjunction φ of $\forall \pi$. $(\neg a_{\pi}) \cup (a_{\pi} \land \mathbf{X} \cup \mathbf{G} \neg a_{\pi})$

Fix AP = {a} and consider the conjunction φ of $\forall \pi. (\neg a_{\pi}) U (a_{\pi} \land X G \neg a_{\pi})$ $\exists \pi. a_{\pi}$

Fix AP = {a} and consider the conjunction φ of $\forall \pi$. $(\neg a_{\pi}) U (a_{\pi} \land X G \neg a_{\pi})$ $\exists \pi$. a_{π}

{a} Ø Ø Ø Ø Ø Ø ····

Fix AP = {a} and consider the conjunction φ of $\forall \pi$. $(\neg a_{\pi}) \cup (a_{\pi} \land \mathbf{X} \mathbf{G} \neg a_{\pi})$ $\exists \pi$. a_{π} $\forall \pi$. $\exists \pi'$. $\mathbf{F} (a_{\pi} \land \mathbf{X} a_{\pi'})$

Fix AP = {a} and consider the conjunction φ of $\forall \pi$. $(\neg a_{\pi}) \cup (a_{\pi} \land \mathbf{X} \mathbf{G} \neg a_{\pi})$ $\exists \pi$. a_{π} $\forall \pi$. $\exists \pi'$. $\mathbf{F} (a_{\pi} \land \mathbf{X} a_{\pi'})$

Fix AP = {a} and consider the conjunction φ of $\forall \pi$. $(\neg a_{\pi}) U (a_{\pi} \land X \mathbf{G} \neg a_{\pi})$ $\exists \pi$. a_{π} $\forall \pi$. $\exists \pi'$. $\mathbf{F} (a_{\pi} \land X a_{\pi'})$

 $\begin{cases} a \} & \emptyset & 0 & \cdots \\ \emptyset & \{a \} & \emptyset & \emptyset & \emptyset & \emptyset & \emptyset & \emptyset & 0 & \cdots \\ \emptyset & \emptyset & \{a \} & \emptyset & \emptyset & \emptyset & \emptyset & \emptyset & 0 & \cdots \\ \vdots & \end{cases}$

The unique model of φ is $\{\emptyset^n \{a\} \emptyset^\omega \mid n \in \mathbb{N}\}$.

Fix AP = {a} and consider the conjunction φ of $\forall \pi$. $(\neg a_{\pi}) U (a_{\pi} \land X \mathbf{G} \neg a_{\pi})$ $\exists \pi$. a_{π} $\forall \pi$. $\exists \pi'$. $\mathbf{F} (a_{\pi} \land X a_{\pi'})$

 $\begin{cases} a \} & \emptyset & 0 & \cdots \\ \emptyset & \{a \} & \emptyset & \emptyset & \emptyset & \emptyset & \emptyset & \emptyset & 0 & \cdots \\ \emptyset & \emptyset & \{a \} & \emptyset & \emptyset & \emptyset & \emptyset & \emptyset & 0 & \cdots \\ \vdots & \end{cases}$

The unique model of φ is $\{\emptyset^n \{a\} \emptyset^\omega \mid n \in \mathbb{N}\}$.

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any finite set of traces.

What about Countable Models?

Theorem

Every satisfiable HyperLTL sentence has a countable model.

What about Countable Models?

Theorem

Every satisfiable HyperLTL sentence has a countable model.

Proof

- W.I.o.g. $\varphi = \forall \pi_0. \ \exists \pi'_0. \dots \forall \pi_k. \ \exists \pi'_k. \ \psi$ with quantifier-free ψ .
- Fix a Skolem function f_j for every existentially quantified π'_j .

Theorem

Every satisfiable HyperLTL sentence has a countable model.

- W.I.o.g. $\varphi = \forall \pi_0. \ \exists \pi'_0. \dots \forall \pi_k. \ \exists \pi'_k. \ \psi$ with quantifier-free ψ .
- Fix a Skolem function f_j for every existentially quantified π'_j .

Theorem

Every satisfiable HyperLTL sentence has a countable model.

- W.I.o.g. $\varphi = \forall \pi_0. \exists \pi'_0 \dots \forall \pi_k. \exists \pi'_k. \psi$ with quantifier-free ψ .
- Fix a Skolem function f_j for every existentially quantified π'_j .

$$\begin{array}{c} f_0(t) \\ f_1(t,t) \end{array} \underbrace{t}_{f_1}(t,\ldots,t) \\ \end{array}$$

Theorem

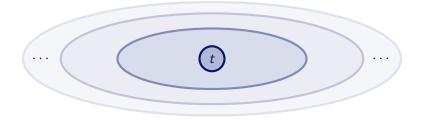
Every satisfiable HyperLTL sentence has a countable model.

- W.I.o.g. $\varphi = \forall \pi_0. \exists \pi'_0 \dots \forall \pi_k. \exists \pi'_k. \psi$ with quantifier-free ψ .
- Fix a Skolem function f_j for every existentially quantified π'_j .

Theorem

Every satisfiable HyperLTL sentence has a countable model.

- W.I.o.g. $\varphi = \forall \pi_0. \exists \pi'_0 \dots \forall \pi_k. \exists \pi'_k. \psi$ with quantifier-free ψ .
- Fix a Skolem function f_i for every existentially quantified π'_i .

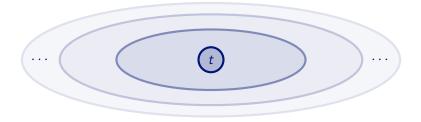


Theorem

Every satisfiable HyperLTL sentence has a countable model.

Proof

- W.I.o.g. $\varphi = \forall \pi_0. \exists \pi'_0 \dots \forall \pi_k. \exists \pi'_k. \psi$ with quantifier-free ψ .
- Fix a Skolem function f_i for every existentially quantified π'_i .



The limit is a model of φ and countable.

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any ω -regular set of traces.

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any ω -regular set of traces.

Proof

Express that a model T contains.. **1.** .. $(\{a\}\{b\})^n \emptyset^\omega$ for every n.

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any ω -regular set of traces.

Proof

Express that a model T contains.. $\{a\} \{b\} \{a\} \{b\} \{a\} \{b\} \{b\} \{b\} \{b\} \{b\} \{b\} \} \emptyset^{\omega}$ **1.** .. $(\{a\}\{b\})^n \emptyset^{\omega}$ for every n.

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any ω -regular set of traces.

Proof

Express that a model T contains..

1. .. $(\{a\}\{b\})^n \emptyset^\omega$ for every *n*.

2. .. for every trace of the form x{b}{a}y in T, also the trace x{a}{b}y. $\{a\} \ \{b\} \ \{a\} \ \{b\} \ \{a\} \ \{b\} \ \emptyset^{\omega}$

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any ω -regular set of traces.

Proof

Express that a model T contains..

- **1.** .. $(\{a\}\{b\})^n \emptyset^\omega$ for every *n*.
- 2. .. for every trace of the form $x\{b\}\{a\}y$ in T, also the trace $x\{a\}\{b\}y$.

 $\{a\} \ \{b\} \ \{a\} \ \{b\} \ \{a\} \ \{b\} \ \emptyset^{\omega} \\ \{a\} \ \{a\} \ \{b\} \ \{b\} \ \{b\} \ \{a\} \ \{b\} \ \emptyset^{\omega}$

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any ω -regular set of traces.

Proof

Express that a model T contains..

- **1.** .. $(\{a\}\{b\})^n \emptyset^\omega$ for every *n*.
- 2. .. for every trace of the form $x\{b\}\{a\}y$ in T, also the trace $x\{a\}\{b\}y$.

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any ω -regular set of traces.

Proof

Express that a model T contains..

- **1.** .. $(\{a\}\{b\})^n \emptyset^\omega$ for every *n*.
- 2. .. for every trace of the form $x\{b\}\{a\}y$ in T, also the trace $x\{a\}\{b\}y$.

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any ω -regular set of traces.

Proof

Express that a model T contains..

- **1.** .. $(\{a\}\{b\})^n \emptyset^\omega$ for every *n*.
- 2. .. for every trace of the form
 x{b}{a}y in T, also the
 trace x{a}{b}y.

Then, $T \cap \{a\}^* \{b\}^* \emptyset^\omega = \{\{a\}^n \{b\}^n \emptyset^\omega \mid n \in \mathbb{N}\}$ is not ω -regular.

What about Ultimately Periodic Models?

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any set of traces that contains an ultimately periodic trace.

What about Ultimately Periodic Models?

Theorem

There is a satisfiable HyperLTL sentence that is not satisfied by any set of traces that contains an ultimately periodic trace.

One can even encode the prime numbers in HyperLTL!

Agenda

1. HyperLTL

2. The Models Of HyperLTL

3. HyperLTL Satisfiability

- 4. HyperLTL Model-checking
- 5. The First-order Logic of Hyperproperties

6. Conclusion

The HyperLTL satisfiability problem:

Given φ , is there a non-empty set T of traces with $T \models \varphi$?

Theorem

HyperLTL satisfiability is undecidable.

The HyperLTL satisfiability problem:

Given φ , is there a non-empty set T of traces with $T \models \varphi$?

Theorem

HyperLTL satisfiability is undecidable.

Proof:

By a reduction from Post's correspondence problem.

Example

Blocks (a, baa) (ab, aa) (bba, bb)

The HyperLTL satisfiability problem:

Given φ , is there a non-empty set T of traces with $T \models \varphi$?

Theorem

HyperLTL satisfiability is undecidable.

Proof:

By a reduction from Post's correspondence problem.

Example

		Blocks	(a, l	baa)	(ab	, <i>aa</i>)	(bb	a, bb)	
A solut	ion:								
	b	b	а	а	b	b	b	а	а
	b	b	а	а	b	b	b	а	а

The HyperLTL satisfiability problem:

Given φ , is there a non-empty set T of traces with $T \models \varphi$?

Theorem

HyperLTL satisfiability is undecidable.

Proof:

By a reduction from Post's correspondence problem.

Example

Blocks (a, baa) (ab, aa) (bba, bb) A solution: b b a a b b b a a b b a a b b b a a

1. There is a (solution) trace where top matches bottom.

- 1. There is a (solution) trace where top matches bottom.

- 1. There is a (solution) trace where top matches bottom.
- 2. Every trace is *finite* and starts with a block or is *empty*.

- 1. There is a (solution) trace where top matches bottom.
- 2. Every trace is *finite* and starts with a block or is *empty*.

- 1. There is a (solution) trace where top matches bottom.
- 2. Every trace is *finite* and starts with a block or is *empty*.
- For every non-empty trace, the trace obtained by removing the first block also exists.

- 1. There is a (solution) trace where top matches bottom.
- 2. Every trace is *finite* and starts with a block or is *empty*.
- For every non-empty trace, the trace obtained by removing the first block also exists.

- 1. There is a (solution) trace where top matches bottom.
- 2. Every trace is *finite* and starts with a block or is *empty*.
- For every non-empty trace, the trace obtained by removing the first block also exists.

- 1. There is a (solution) trace where top matches bottom.
- 2. Every trace is *finite* and starts with a block or is *empty*.
- For every non-empty trace, the trace obtained by removing the first block also exists.

- 1. There is a (solution) trace where top matches bottom.
- 2. Every trace is *finite* and starts with a block or is *empty*.
- For every non-empty trace, the trace obtained by removing the first block also exists.

${b} \\ {b} \\ {b}$	{b} {b}	$\{a\}$ $\{a\}$	$\{a\}$ $\{a\}$	{b} {b}	{b} {b}	{b} {b}	{a} {a}	$\{a\}$ $\{a\}$	$\substack{\emptyset \omega \\ \emptyset \omega}$
{a} {a}	{ <i>b</i> } { <i>a</i> }	{b} {b}	{b} {b}	$\{a\}$ $\{b\}$	{a} {a}	Ø {a}	Ø Ø	Ø Ø	$_{\phi\omega}^{\omega}$
{b} {b}					Ø Ø	Ø Ø	Ø Ø	Ø Ø	$\substack{\emptyset^{\omega}\\ \emptyset^{\omega}}$

- 1. There is a (solution) trace where top matches bottom.
- 2. Every trace is *finite* and starts with a block or is *empty*.
- For every non-empty trace, the trace obtained by removing the first block also exists.

{b} {b}	$b \{a\}$ $b \{a\}$	$\{a\}$ $\{a\}$	{b} {b}	{b} {b}	{b} {b}	{a} {a}	{a} {a}	$\substack{\emptyset^{\omega}\\ \emptyset^{\omega}}$
{a} {a}	$ \begin{array}{c c} \{b\} & \{b\} \\ \{a\} & \{b\} \end{array} \end{array} $	{b} {b}	{a} {b}	{a} {a}	\emptyset {a}	Ø Ø	Ø Ø	$_{\emptyset \omega }^{\omega }$
{b} {b}	$b \{a\} \{a\} \{b\} \{b\} \{b\} \{b\} \{b\}$	{a} {a}	Ø {a}	Ø Ø	Ø Ø	Ø Ø	Ø Ø	$\substack{\emptyset^{\omega}\\ \emptyset^{\omega}}$

- 1. There is a (solution) trace where top matches bottom.
- 2. Every trace is *finite* and starts with a block or is *empty*.
- For every non-empty trace, the trace obtained by removing the first block also exists.

- 1. There is a (solution) trace where top matches bottom.
- 2. Every trace is *finite* and starts with a block or is *empty*.
- For every non-empty trace, the trace obtained by removing the first block also exists.

${b} {\{b\}} {\{b\}}$	{b} {b}	$\{a\}$ $\{a\}$	$\{a\}$ $\{a\}$	{b} {b}	{b} {b}	{b} {b}	$\{a\}$ $\{a\}$	$\{a\}$ $\{a\}$	$\substack{\emptyset^{\omega}\\ \emptyset^{\omega}}$
{a}	{ <i>b</i> }	{b}	{b}	{a}	$\{a\}$	Ø	Ø	Ø	$_{\emptyset \omega }^{\omega }$
{a}	{a}	{b}	{b}	{b}	$\{a\}$	{a}	Ø	Ø	
{b}	{b}	$\{a\}$	{a}	∅	Ø	Ø	Ø	Ø	$\substack{\emptyset^{\omega}\\ \emptyset^{\omega}}$
{b}	{b}	$\{b\}$	{a}	{a}	Ø	Ø	Ø	Ø	
{a} {b}	Ø {a}		Ø Ø	Ø Ø	Ø Ø	Ø Ø	Ø Ø	Ø Ø	$_{\emptyset \omega }^{\omega }$

- 1. There is a (solution) trace where top matches bottom.
- 2. Every trace is *finite* and starts with a block or is *empty*.
- For every non-empty trace, the trace obtained by removing the first block also exists.

${b} {\{b\}} {\{b\}}$	{b} {b}	$\{a\}$ $\{a\}$	$\{a\}$ $\{a\}$	{b} {b}	{b} {b}	{b} {b}	$\begin{array}{c} \{a\}\\ \{a\} \end{array}$	$\{a\}$ $\{a\}$	$\substack{\emptyset^{\omega}\\ \emptyset^{\omega}}$
{a}	$\left\{b ight\}$	{b}	{b}	{a}	$\{a\}$	Ø	Ø	Ø	$_{\phi\omega}^{\omega}$
{a}	$\left\{a ight\}$	{b}	{b}	{b}	$\{a\}$	{a}	Ø	Ø	
{b}	{b}	$\{a\}$	{a}	∅	Ø	Ø	Ø	Ø	$\substack{\emptyset^{\omega}\\ \emptyset^{\omega}}$
{b}	{b}	$\{b\}$	{a}	{a}	Ø	Ø	Ø	Ø	
{a}	Ø		Ø	Ø	Ø	Ø	Ø	Ø	\emptyset^{ω}
{b}	{a}		Ø	Ø	Ø	Ø	Ø	Ø	\emptyset^{ω}

- 1. There is a (solution) trace where top matches bottom.
- 2. Every trace is *finite* and starts with a block or is *empty*.
- For every non-empty trace, the trace obtained by removing the first block also exists.

$\binom{\{b\}}{\{b\}}$	{b} {b}	{a} {a}	$\{a\}$ $\{a\}$	{b} {b}	{b} {b}	{b} {b}	$\{a\}$ $\{a\}$	$\{a\}$ $\{a\}$	$_{\emptyset \omega}^{\omega}$
{a} {a}	{ <i>b</i> } {a}	{b} {b}	{b} {b}	{a} {b}	$\{a\}$ $\{a\}$	Ø {a}	Ø Ø	Ø Ø	$_{\emptyset \omega }^{\omega }$
{ <i>b</i> } { <i>b</i> }	{b} {b}	{a} {b}	$\{a\}$ $\{a\}$		Ø Ø	Ø Ø	Ø Ø	Ø Ø	$_{\emptyset \omega }^{\omega }$
$\left\{ a ight\} \left\{ b ight\}$		Ø {a}	Ø Ø	Ø Ø	Ø Ø	Ø Ø	Ø Ø	Ø Ø	$_{\phi\omega}^{\omega}$
Ø	Ø Ø	Ø Ø	Ø Ø	Ø Ø	Ø Ø	Ø Ø	Ø Ø	Ø Ø	$\substack{\emptyset^{\omega}\\ \emptyset^{\omega}}$

Decidability

Theorem

 \exists *-HyperLTL satisfiability is PSPACE-complete.

Decidability

Theorem

 \exists *-HyperLTL satisfiability is PSPACE-complete.

- Membership:
 - Consider $\varphi = \exists \pi_0 \dots \exists \pi_k. \psi$.
 - Obtain ψ' from ψ by replacing each a_{πj} by a fresh proposition a_j.
 - \blacksquare Then: φ and the LTL formula ψ' are equi-satisfiable.
- Hardness: trivial reduction from LTL satisfiability

Theorem

 \forall^* -HyperLTL satisfiability is PSPACE-complete.

Theorem

 \forall^* -HyperLTL satisfiability is PSPACE-complete.

Proof:

- Membership:
 - Consider $\varphi = \forall \pi_0 \dots \forall \pi_k. \psi.$
 - Obtain ψ' from ψ by replacing each a_{π_i} by a.
 - \blacksquare Then: φ and the LTL formula ψ' are equi-satisfiable.
- Hardness: trivial reduction from LTL satisfiability

Theorem

 $\exists^*\forall^*$ -HyperLTL satisfiability is EXPSPACE-complete.

Theorem

 $\exists^*\forall^*$ -HyperLTL satisfiability is EXPSPACE-complete.

Proof:

- Membership:
 - Consider $\varphi = \exists \pi_0 \dots \exists \pi_k. \forall \pi'_0 \dots \forall \pi'_{\ell}. \psi$. • Let

$$\varphi' = \exists \pi_0 \dots \exists \pi_k \bigwedge_{j_0=0}^k \dots \bigwedge_{j_\ell=0}^k \psi_{j_0,\dots,j_\ell}$$

where $\psi_{j_0,...,j_\ell}$ is obtained from ψ by replacing each occurrence of π'_i by π_{j_i} .

• Then: φ and φ' are equi-satisfiable.

Hardness: encoding of exponential-space Turing machines.

Further Results

HyperLTL implication checking: given φ and φ' , does, for every T, $T \models \varphi$ imply $T \models \varphi'$?

Lemma

 φ does not imply φ' iff $(\varphi \land \neg \varphi')$ is satisfiable.

Further Results

HyperLTL implication checking: given φ and φ' , does, for every T, $T \models \varphi$ imply $T \models \varphi'$?

Lemma

arphi does not imply arphi' iff $(arphi \wedge \neg arphi')$ is satisfiable.

Corollary

Implication checking for alternation-free HyperLTL formulas is EXPSPACE-complete.

Tool EAHyper:

 satisfiability, implication, and equivalence checking for HyperLTL

Latest Results

Recently, the exact complexity of HyperLTL satisfiability was settled: it is highly undecidable.

Theorem (Fortin, Kuijer, Totzke, Z. 2021) HyperLTL satisfiability is Σ_1^1 -complete.

Latest Results

Recently, the exact complexity of HyperLTL satisfiability was settled: it is highly undecidable.

Theorem (Fortin, Kuijer, Totzke, Z. 2021) HyperLTL satisfiability is Σ_1^1 -complete.

Corollary (Fortin, Kuijer, Totzke, Z. 2021)

The membership problem for each level of the HyperLTL quantifier alternation hierarchy is Σ_1^1 -complete.

Agenda

1. HyperLTL

- 2. The Models Of HyperLTL
- 3. HyperLTL Satisfiability

4. HyperLTL Model-checking

- 5. The First-order Logic of Hyperproperties
- 6. Conclusion

The HyperLTL model-checking problem:

Given a transition system S and φ , does Traces $(S) \models \varphi$?

Theorem (Finkbeiner, Rabe, Sánchez 2015) *The HyperLTL model-checking problem is decidable.*

Proof:

- Consider $\varphi = \exists \pi_1, \forall \pi_2, \ldots \exists \pi_{k-1}, \forall \pi_k, \psi$.
- **Rewrite as** $\exists \pi_1. \neg \exists \pi_2. \neg \ldots \exists \pi_{k-1}. \neg \exists \pi_k. \neg \psi$.

Proof:

- Consider $\varphi = \exists \pi_1, \forall \pi_2, \ldots \exists \pi_{k-1}, \forall \pi_k, \psi$.
- **Rewrite as** $\exists \pi_1. \neg \exists \pi_2. \neg \ldots \exists \pi_{k-1}. \neg \exists \pi_k. \neg \psi$.
- By induction over quantifier prefix construct non-deterministic Büchi automaton \mathcal{A} with $L(\mathcal{A}) \neq \emptyset$ iff $\operatorname{Traces}(\mathcal{S}) \models \varphi$.
 - Induction start: build automaton for LTL formula obtained from $\neg \psi$ by replacing a_{π_i} by a_i .
 - For $\exists \pi_j \theta$ restrict automaton for θ in dimension j to traces of S.
 - For $\neg \theta$ complement automaton for θ .

Proof:

- Consider $\varphi = \exists \pi_1, \forall \pi_2, \ldots \exists \pi_{k-1}, \forall \pi_k, \psi$.
- **Rewrite as** $\exists \pi_1. \neg \exists \pi_2. \neg \ldots \exists \pi_{k-1}. \neg \exists \pi_k. \neg \psi$.
- By induction over quantifier prefix construct non-deterministic Büchi automaton \mathcal{A} with $L(\mathcal{A}) \neq \emptyset$ iff $\operatorname{Traces}(\mathcal{S}) \models \varphi$.
 - Induction start: build automaton for LTL formula obtained from $\neg \psi$ by replacing a_{π_i} by a_i .
 - For $\exists \pi_j \theta$ restrict automaton for θ in dimension j to traces of S.
 - For $\neg \theta$ complement automaton for θ .

 \Rightarrow Non-elementary complexity, but alternation-free fragments are as hard as LTL.

Agenda

1. HyperLTL

- 2. The Models Of HyperLTL
- 3. HyperLTL Satisfiability
- 4. HyperLTL Model-checking
- 5. The First-order Logic of Hyperproperties
- 6. Conclusion

First-order Logic vs. LTL

FO[<]: first-order order logic over signature $\{<\} \cup \{P_a \mid a \in AP\}$ over structures with universe \mathbb{N} .

Theorem (Kamp '68, Gabbay et al. '80)

LTL and FO[<] are expressively equivalent.

First-order Logic vs. LTL

FO[<]: first-order order logic over signature $\{<\} \cup \{P_a \mid a \in AP\}$ over structures with universe \mathbb{N} .

Theorem (Kamp '68, Gabbay et al. '80) LTL and FO[<] are expressively equivalent.

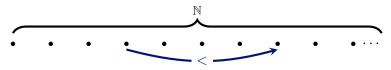
Example

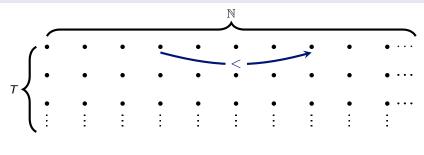
$$\forall x (P_q(x) \land \neg P_p(x)) \to \exists y (x < y \land P_p(y))$$

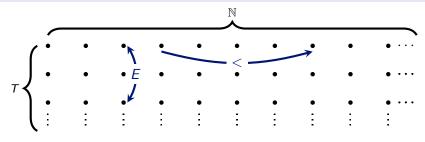
and

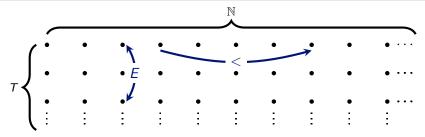
$$\mathbf{G}(q
ightarrow \mathbf{F} p)$$

are equivalent.



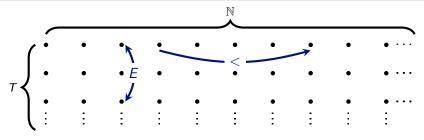






FO[<, E]: first-order logic with equality over the signature {<, E} ∪ {P_a | a ∈ AP} over structures with universe T × N.
 Example

$$\forall x \forall x' \ E(x, x') \rightarrow (P_{\text{on}}(x) \leftrightarrow P_{\text{on}}(x'))$$



FO[<, E]: first-order logic with equality over the signature {<, E} ∪ {P_a | a ∈ AP} over structures with universe T × N.
 Proposition

For every HyperLTL sentence there is an equivalent FO[<, E] sentence.

A Setback

• Let φ be the following property of sets $T \subseteq (2^{\{p\}})^{\omega}$:

There is an *n* such that $p \notin t(n)$ for every $t \in T$.

Theorem (Bozzelli et al. '15)

 φ is not expressible in HyperLTL.

A Setback

• Let φ be the following property of sets $T \subseteq (2^{\{p\}})^{\omega}$:

There is an *n* such that $p \notin t(n)$ for every $t \in T$.

Theorem (Bozzelli et al. '15) φ is not expressible in HyperLTL.

But, φ is easily expressible in FO[<, *E*]:

 $\exists x \,\forall y \, E(x,y) \to \neg P_p(y)$

Corollary *FO*[<, *E*] *strictly subsumes HyperLTL*.

HyperFO

- $\exists^M x$ and $\forall^M x$: quantifiers restricted to initial positions.
- $\exists^G y \ge x$ and $\forall^G y \ge x$: if x is initial, then quantifiers restricted to positions on the same trace as x.

HyperFO

- $\exists^M x$ and $\forall^M x$: quantifiers restricted to initial positions.
- $\exists^G y \ge x$ and $\forall^G y \ge x$: if x is initial, then quantifiers restricted to positions on the same trace as x.

HyperFO: sentences of the form

 $\varphi = Q_1^M x_1 \cdots Q_k^M x_k, \ Q_1^G y_1 \ge x_{g_1} \cdots Q_\ell^G y_\ell \ge x_{g_\ell}, \ \psi$

- $\blacksquare \ Q \in \{\exists, \forall\},$
- $\{x_1, \ldots, x_k\}$ and $\{y_1, \ldots, y_\ell\}$ are disjoint,
- every guard x_{g_i} is in $\{x_1, \ldots, x_k\}$, and
- ψ is quantifier-free over signature {<, E} ∪ {P_a | a ∈ AP}
 with free variables in {y₁,..., y_ℓ}.

Equivalence

Theorem (Finkbeiner, Z. 2017)

HyperLTL and HyperFO are equally expressive.

Theorem (Finkbeiner, Z. 2017)

HyperLTL and HyperFO are equally expressive.

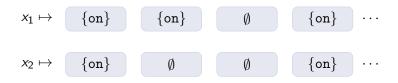
Proof

- From HyperLTL to HyperFO: structural induction.
- From HyperFO to HyperLTL: reduction to Kamp's theorem.

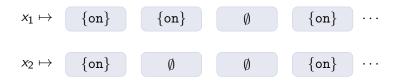
 $\forall_X \forall_{X'} \ E(x, x') \to (P_{\text{on}}(x) \leftrightarrow P_{\text{on}}(x'))$

 $\begin{array}{ll} \forall x \forall x' & E(x,x') \to (P_{\mathrm{on}}(x) \leftrightarrow P_{\mathrm{on}}(x')) \\ \\ \forall^{M} x_{1} \forall^{M} x_{2} & \forall^{G} y_{1} \geq x_{1} \forall^{G} y_{2} \geq x_{2} E(y_{1},y_{2}) \to (P_{\mathrm{on}}(y_{1}) \leftrightarrow P_{\mathrm{on}}(y_{2})) \end{array}$

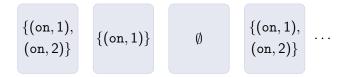
 $\begin{array}{l} \forall x \forall x' \quad E(x,x') \to (P_{\mathrm{on}}(x) \leftrightarrow P_{\mathrm{on}}(x')) \\ \\ \forall^{M} x_{1} \forall^{M} x_{2} \quad \forall^{G} y_{1} \geq x_{1} \forall^{G} y_{2} \geq x_{2} E(y_{1},y_{2}) \to (P_{\mathrm{on}}(y_{1}) \leftrightarrow P_{\mathrm{on}}(y_{2})) \end{array}$



 $\begin{array}{l} \forall x \forall x' \quad E(x,x') \to (P_{\mathrm{on}}(x) \leftrightarrow P_{\mathrm{on}}(x')) \\ \\ \forall^{G} y_{1} \geq x_{1} \forall^{G} y_{2} \geq x_{2} E(y_{1},y_{2}) \to (P_{\mathrm{on}}(y_{1}) \leftrightarrow P_{\mathrm{on}}(y_{2})) \end{array}$



 $\begin{aligned} \forall x \forall x' \quad E(x, x') &\to (P_{\text{on}}(x) \leftrightarrow P_{\text{on}}(x')) \\ &\forall^G y_1 \geq x_1 \forall^G y_2 \geq x_2 E(y_1, y_2) \to (P_{\text{on}}(y_1) \leftrightarrow P_{\text{on}}(y_2)) \\ &\forall y_1 \forall y_2 \ (y_1 = y_2) \to (P_{(\text{on}, 1)}(y_1) \leftrightarrow P_{(\text{on}, 2)}(y_2)) \end{aligned}$



 $\forall x \forall x' \quad E(x, x') \to (P_{\text{on}}(x) \leftrightarrow P_{\text{on}}(x'))$ $\forall^{G} y_{1} \geq x_{1} \forall^{G} y_{2} \geq x_{2} E(y_{1}, y_{2}) \to (P_{\text{on}}(y_{1}) \leftrightarrow P_{\text{on}}(y_{2}))$ $\forall y_{1} \forall y_{2} (y_{1} = y_{2}) \to (P_{(\text{on}, 1)}(y_{1}) \leftrightarrow P_{(\text{on}, 2)}(y_{2}))$ $\mathbf{G} ((\text{on}, 1) \leftrightarrow (\text{on}, 2))$



 $\begin{aligned} \forall x \forall x' \quad E(x, x') &\to (P_{\text{on}}(x) \leftrightarrow P_{\text{on}}(x')) \\ \forall^{M} x_{1} \forall^{M} x_{2} \quad \forall^{G} y_{1} \geq x_{1} \forall^{G} y_{2} \geq x_{2} E(y_{1}, y_{2}) \to (P_{\text{on}}(y_{1}) \leftrightarrow P_{\text{on}}(y_{2})) \\ \forall y_{1} \forall y_{2} \ (y_{1} = y_{2}) \to (P_{(\text{on}, 1)}(y_{1}) \leftrightarrow P_{(\text{on}, 2)}(y_{2})) \\ \mathbf{G} \left((\text{on}, 1) \leftrightarrow (\text{on}, 2) \right) \end{aligned}$

 $\forall x \forall x' \quad E(x, x') \rightarrow (P_{on}(x) \leftrightarrow P_{on}(x'))$ $\forall^{M} x_1 \forall^{M} x_2 \quad \forall^{G} v_1 > x_1 \forall^{G} v_2 > x_2 E(v_1, v_2) \rightarrow (P_{on}(v_1) \leftrightarrow P_{on}(v_2))$ $\forall y_1 \forall y_2 (y_1 = y_2) \rightarrow (P_{(\text{on},1)}(y_1) \leftrightarrow P_{(\text{on},2)}(y_2))$ $\mathbf{G}((\texttt{on},1)\leftrightarrow(\texttt{on},2))$ $\forall \pi_1 \forall \pi_2 \quad \mathbf{G} (\mathrm{on}_{\pi_1} \leftrightarrow \mathrm{on}_{\pi_2})$ {on} ... $\pi_1 \mapsto \{ \mathsf{on} \}$ {on} Ø $\pi_2 \mapsto \{ \text{on} \}$ Ø Ø {on} ...

Agenda

1. HyperLTL

- 2. The Models Of HyperLTL
- 3. HyperLTL Satisfiability
- 4. HyperLTL Model-checking
- 5. The First-order Logic of Hyperproperties

6. Conclusion

Conclusion

HyperLTL behaves quite differently than LTL:

- The models of HyperLTL are rather not well-behaved, i.e., in general (countably) infinite, non-regular, and non-periodic.
- Satisfiability is in general undecidable.
- Model-checking is decidable, but non-elementary.

Conclusion

HyperLTL behaves quite differently than LTL:

- The models of HyperLTL are rather not well-behaved, i.e., in general (countably) infinite, non-regular, and non-periodic.
- Satisfiability is in general undecidable.
- Model-checking is decidable, but non-elementary.

But with the feasible problems, you can do exciting things. HyperLTL is a powerful tool for information security and beyond:

- Information-flow control
- Symmetries in distributed systems
- Error resistant codes
- Software doping

...

References (1)

The basics

- Michael R. Clarkson and Fred B. Schneider: "Hyperproperties." Journal of Computer Security 18(6), 2010.
- Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez: "Temporal logics for hyperproperties". POST 2014.
- Bernd Finkbeiner: "Logics and Algorithms for Hyperproperties", ACM SIGLOG News 10(2), 2023

References (2)

Satisfiability

- Bernd Finkbeiner and Christopher Hahn: "Deciding Hyperproperties". CONCUR 2016
- Bernd Finkbeiner, Christopher Hahn, and Marvin Stenger: "EAHyper: Satisfiability, Implication, and Equivalence Checking of Hyperproperties". CAV 2017
- Marie Fortin, Louwe B. Kuijer, Patrick Totzke, Martin Zimmermann: "HyperLTL Satisfiability Is Σ₁¹-complete, HyperCTL* Satisfiability Is Σ₁²-complete". MFCS 2021

References (3)

Model Checking

 Bernd Finkbeiner, Markus N. Rabe, and César Sánchez: "Algorithms for Model Checking HyperLTL and HyperCTL*". CAV 2015

First-order logic

....

 Finkbeiner, Zimmermann: "The first-order logic of hyperproperties". STACS 2017