
Martin Zimmermann
Aalborg University

Logics for Hyperproperties

UniVr/UniUd Summer School on Formal Methods for
Cyber-Physical Systems, Udine, August 30, 2023

Hyperproperties

S
Isecret Osecret

Ipublic Opublic

The system S is input-deterministic: for all traces t, t ′ of S
t =I t

′ implies t =O t ′

Noninterference: for all traces t, t ′ of S
t =Ipublic t

′ implies t =Opublic
t ′

1

Hyperproperties

S
Isecret Osecret

Ipublic Opublic

The system S is input-deterministic: for all traces t, t ′ of S
t =I t

′ implies t =O t ′

Noninterference: for all traces t, t ′ of S
t =Ipublic t

′ implies t =Opublic
t ′

1

Hyperproperties

S
Isecret Osecret

Ipublic Opublic

The system S is input-deterministic: for all traces t, t ′ of S
t =I t

′ implies t =O t ′

Noninterference: for all traces t, t ′ of S
t =Ipublic t

′ implies t =Opublic
t ′

1

Hyperproperties

These are not trace properties, i.e., sets T ⊆ Traces(AP) of
traces.

They are hyperproperties, i.e., sets H ⊆ 2Traces(AP) of sets of
traces.

A system S satisfies a hyperproperty H, if Traces(S) ∈ H.

Example: Noninterference as hyperproperty:

{T ⊆ Traces(AP) | ∀t, t ′ ∈ T : t =Ipublic t
′ ⇒ t =Opublic

t ′}

Specification languages for hyperproperties

HyperLTL: Extend LTL by trace quantifiers.

HyperCTL∗: Extend CTL∗ by trace quantifiers.

2

Hyperproperties

These are not trace properties, i.e., sets T ⊆ Traces(AP) of
traces.

They are hyperproperties, i.e., sets H ⊆ 2Traces(AP) of sets of
traces.

A system S satisfies a hyperproperty H, if Traces(S) ∈ H.

Example: Noninterference as hyperproperty:

{T ⊆ Traces(AP) | ∀t, t ′ ∈ T : t =Ipublic t
′ ⇒ t =Opublic

t ′}

Specification languages for hyperproperties

HyperLTL: Extend LTL by trace quantifiers.

HyperCTL∗: Extend CTL∗ by trace quantifiers.

2

Hyperproperties

These are not trace properties, i.e., sets T ⊆ Traces(AP) of
traces.

They are hyperproperties, i.e., sets H ⊆ 2Traces(AP) of sets of
traces.

A system S satisfies a hyperproperty H, if Traces(S) ∈ H.

Example: Noninterference as hyperproperty:

{T ⊆ Traces(AP) | ∀t, t ′ ∈ T : t =Ipublic t
′ ⇒ t =Opublic

t ′}

Specification languages for hyperproperties

HyperLTL: Extend LTL by trace quantifiers.

HyperCTL∗: Extend CTL∗ by trace quantifiers.

2

Outline

1. HyperLTL

2. The Models Of HyperLTL

3. HyperLTL Satisfiability

4. HyperLTL Model-checking

5. The First-order Logic of Hyperproperties

6. Conclusion

3

Agenda

1. HyperLTL

2. The Models Of HyperLTL

3. HyperLTL Satisfiability

4. HyperLTL Model-checking

5. The First-order Logic of Hyperproperties

6. Conclusion

4

LTL in One Slide

Syntax

ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ

where a ∈ AP (atomic propositions).

Semantics
w , n |= ϕ for a trace w ∈ (2AP)ω and a position n ∈ N:

w , n |= Xϕ: w
n n + 1

ϕ

w , n |= ϕ0 Uϕ1: w
n

ϕ0 ϕ0 ϕ0 ϕ1

Syntactic Sugar
Fψ = true Uψ Gψ = ¬F¬ψ

5

LTL in One Slide

Syntax

ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ

where a ∈ AP (atomic propositions).

Semantics
w , n |= ϕ for a trace w ∈ (2AP)ω and a position n ∈ N:

w , n |= Xϕ: w
n n + 1

ϕ

w , n |= ϕ0 Uϕ1: w
n

ϕ0 ϕ0 ϕ0 ϕ1

Syntactic Sugar
Fψ = true Uψ Gψ = ¬F¬ψ

5

LTL in One Slide

Syntax

ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ

where a ∈ AP (atomic propositions).

Semantics
w , n |= ϕ for a trace w ∈ (2AP)ω and a position n ∈ N:

w , n |= Xϕ: w
n n + 1

ϕ

w , n |= ϕ0 Uϕ1: w
n

ϕ0 ϕ0 ϕ0 ϕ1

Syntactic Sugar
Fψ = true Uψ Gψ = ¬F¬ψ

5

HyperLTL

HyperLTL = LTL + trace quantification

ϕ ::=∃π. ϕ | ∀π. ϕ | ψ
ψ ::= aπ | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Xψ | ψUψ

where a ∈ AP (atomic propositions) and π ∈ V (trace variables).

Prenex normal form, but

closed under boolean combinations.

6

HyperLTL

HyperLTL = LTL + trace quantification

ϕ ::=∃π. ϕ | ∀π. ϕ | ψ
ψ ::= aπ | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Xψ | ψUψ

where a ∈ AP (atomic propositions) and π ∈ V (trace variables).

Prenex normal form, but

closed under boolean combinations.

6

Semantics

Trace assignment: partial mapping Π: V → (2AP)ω

Empty trace assignment: Π∅

T ,Π, n |= ϕ for a set of traces T ∈ (2AP)ω, a trace assignment Π,
and a position n ∈ N:

7

Semantics

Trace assignment: partial mapping Π: V → (2AP)ω

Empty trace assignment: Π∅

T ,Π, n |= ϕ for a set of traces T ∈ (2AP)ω, a trace assignment Π,
and a position n ∈ N:

T ,Π, n |= aπj :

Π(π1)
...

Π(πj)
...

Π(πk)

n

a

7

Semantics

Trace assignment: partial mapping Π: V → (2AP)ω

Empty trace assignment: Π∅

T ,Π, n |= ϕ for a set of traces T ∈ (2AP)ω, a trace assignment Π,
and a position n ∈ N:

T ,Π, n |= ϕ0 Uϕ1:

Π(π1)
...

Π(πj)
...

Π(πk)

n

ϕ0 ϕ0 ϕ0 ϕ1

7

Semantics

Trace assignment: partial mapping Π: V → (2AP)ω

Empty trace assignment: Π∅

T ,Π, n |= ϕ for a set of traces T ∈ (2AP)ω, a trace assignment Π,
and a position n ∈ N:

T ,Π, n |= ∃π. ϕ if T ,Π[π 7→ t], n |= ϕ for some t ∈ T .

T ,Π, n |= ∀π. ϕ if T ,Π[π 7→ t], n |= ϕ for all t ∈ T .

T is a model of a sentence ϕ, written T |= ϕ, if T ,Π∅, 0 |= ϕ.

7

Semantics: Example

ϕ = ∀π.∀π′.G onπ ↔ onπ′

T ⊆ (2AP)ω is a model of ϕ iff

{} |= ∀π.∀π′.G onπ ↔ onπ′

{π 7→ t} |= ∀π′.G onπ ↔ onπ′ for all t ∈ T

{π 7→ t, π′ 7→ t ′} |= G onπ ↔ onπ′ for all t ′ ∈ T

{π 7→ t[n,∞), π′ 7→ t ′[n,∞)} |= onπ ↔ onπ′ for all n ∈ N

on ∈ t(n)⇔ on ∈ t ′(n)

8

Semantics: Example

ϕ = ∀π.∀π′.G onπ ↔ onπ′

T ⊆ (2AP)ω is a model of ϕ iff

{} |= ∀π.∀π′.G onπ ↔ onπ′

{π 7→ t} |= ∀π′.G onπ ↔ onπ′ for all t ∈ T

{π 7→ t, π′ 7→ t ′} |= G onπ ↔ onπ′ for all t ′ ∈ T

{π 7→ t[n,∞), π′ 7→ t ′[n,∞)} |= onπ ↔ onπ′ for all n ∈ N

on ∈ t(n)⇔ on ∈ t ′(n)

8

Semantics: Example

ϕ = ∀π.∀π′.G onπ ↔ onπ′

T ⊆ (2AP)ω is a model of ϕ iff

{} |= ∀π.∀π′.G onπ ↔ onπ′

{π 7→ t} |= ∀π′.G onπ ↔ onπ′ for all t ∈ T

{π 7→ t, π′ 7→ t ′} |= G onπ ↔ onπ′ for all t ′ ∈ T

{π 7→ t[n,∞), π′ 7→ t ′[n,∞)} |= onπ ↔ onπ′ for all n ∈ N

on ∈ t(n)⇔ on ∈ t ′(n)

8

Semantics: Example

ϕ = ∀π.∀π′.G onπ ↔ onπ′

T ⊆ (2AP)ω is a model of ϕ iff

{} |= ∀π.∀π′.G onπ ↔ onπ′

{π 7→ t} |= ∀π′.G onπ ↔ onπ′ for all t ∈ T

{π 7→ t, π′ 7→ t ′} |= G onπ ↔ onπ′ for all t ′ ∈ T

{π 7→ t[n,∞), π′ 7→ t ′[n,∞)} |= onπ ↔ onπ′ for all n ∈ N

on ∈ t(n)⇔ on ∈ t ′(n)

8

Semantics: Example

ϕ = ∀π.∀π′.G onπ ↔ onπ′

T ⊆ (2AP)ω is a model of ϕ iff

{} |= ∀π.∀π′.G onπ ↔ onπ′

{π 7→ t} |= ∀π′.G onπ ↔ onπ′ for all t ∈ T

{π 7→ t, π′ 7→ t ′} |= G onπ ↔ onπ′ for all t ′ ∈ T

{π 7→ t[n,∞), π′ 7→ t ′[n,∞)} |= onπ ↔ onπ′ for all n ∈ N

on ∈ t(n)⇔ on ∈ t ′(n)

8

Semantics: Example

ϕ = ∀π.∀π′.G onπ ↔ onπ′

T ⊆ (2AP)ω is a model of ϕ iff

{} |= ∀π.∀π′.G onπ ↔ onπ′

{π 7→ t} |= ∀π′.G onπ ↔ onπ′ for all t ∈ T

{π 7→ t, π′ 7→ t ′} |= G onπ ↔ onπ′ for all t ′ ∈ T

{π 7→ t[n,∞), π′ 7→ t ′[n,∞)} |= onπ ↔ onπ′ for all n ∈ N

on ∈ t(n)⇔ on ∈ t ′(n)

8

Applications

Uniform framework for information-flow control

Does a system leak information?

Symmetries in distributed systems

Are clients treated symmetrically?

Error resistant codes

Do codes for distinct inputs have at least Hamming
distance d?

Software doping

Think emission scandal in automotive industry

9

The Virtues of LTL

LTL has many desirables properties:

1. Every satisfiable LTL formula is satisfied by an ultimately
periodic trace, i.e., by a finite and finitely-represented model.

2. LTL satisfiability and model-checking are PSpace-complete.

3. LTL and FO[<] are expressively equivalent.

Which properties does HyperLTL retain ?

10

Agenda

1. HyperLTL

2. The Models Of HyperLTL

3. HyperLTL Satisfiability

4. HyperLTL Model-checking

5. The First-order Logic of Hyperproperties

6. Conclusion

11

What about Finite Models?

Fix AP = {a} and consider the conjunction ϕ of

∀π. (¬aπ) U (aπ ∧ X G¬aπ)

∃π. aπ
∀π. ∃π′. F (aπ ∧ X aπ′)

{a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ · · ·
∅ {a} ∅ ∅ ∅ ∅ ∅ ∅ · · ·
∅ ∅ {a} ∅ ∅ ∅ ∅ ∅ · · ·
...

...
...

...
...

...
...

...

The unique model of ϕ is {∅n {a} ∅ω | n ∈ N}.

Theorem
There is a satisfiable HyperLTL sentence that is not satisfied by
any finite set of traces.

12

What about Finite Models?

Fix AP = {a} and consider the conjunction ϕ of

∀π. (¬aπ) U (aπ ∧ X G¬aπ)

∃π. aπ

∀π. ∃π′. F (aπ ∧ X aπ′)

{a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ · · ·
∅ {a} ∅ ∅ ∅ ∅ ∅ ∅ · · ·
∅ ∅ {a} ∅ ∅ ∅ ∅ ∅ · · ·
...

...
...

...
...

...
...

...

The unique model of ϕ is {∅n {a} ∅ω | n ∈ N}.

Theorem
There is a satisfiable HyperLTL sentence that is not satisfied by
any finite set of traces.

12

What about Finite Models?

Fix AP = {a} and consider the conjunction ϕ of

∀π. (¬aπ) U (aπ ∧ X G¬aπ)

∃π. aπ

∀π. ∃π′. F (aπ ∧ X aπ′)

{a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ · · ·

∅ {a} ∅ ∅ ∅ ∅ ∅ ∅ · · ·
∅ ∅ {a} ∅ ∅ ∅ ∅ ∅ · · ·
...

...
...

...
...

...
...

...

The unique model of ϕ is {∅n {a} ∅ω | n ∈ N}.

Theorem
There is a satisfiable HyperLTL sentence that is not satisfied by
any finite set of traces.

12

What about Finite Models?

Fix AP = {a} and consider the conjunction ϕ of

∀π. (¬aπ) U (aπ ∧ X G¬aπ)

∃π. aπ
∀π. ∃π′. F (aπ ∧ X aπ′)

{a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ · · ·

∅ {a} ∅ ∅ ∅ ∅ ∅ ∅ · · ·
∅ ∅ {a} ∅ ∅ ∅ ∅ ∅ · · ·
...

...
...

...
...

...
...

...

The unique model of ϕ is {∅n {a} ∅ω | n ∈ N}.

Theorem
There is a satisfiable HyperLTL sentence that is not satisfied by
any finite set of traces.

12

What about Finite Models?

Fix AP = {a} and consider the conjunction ϕ of

∀π. (¬aπ) U (aπ ∧ X G¬aπ)

∃π. aπ
∀π. ∃π′. F (aπ ∧ X aπ′)

{a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ · · ·
∅ {a} ∅ ∅ ∅ ∅ ∅ ∅ · · ·

∅ ∅ {a} ∅ ∅ ∅ ∅ ∅ · · ·
...

...
...

...
...

...
...

...

The unique model of ϕ is {∅n {a} ∅ω | n ∈ N}.

Theorem
There is a satisfiable HyperLTL sentence that is not satisfied by
any finite set of traces.

12

What about Finite Models?

Fix AP = {a} and consider the conjunction ϕ of

∀π. (¬aπ) U (aπ ∧ X G¬aπ)

∃π. aπ
∀π. ∃π′. F (aπ ∧ X aπ′)

{a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ · · ·
∅ {a} ∅ ∅ ∅ ∅ ∅ ∅ · · ·
∅ ∅ {a} ∅ ∅ ∅ ∅ ∅ · · ·
...

...
...

...
...

...
...

...

The unique model of ϕ is {∅n {a} ∅ω | n ∈ N}.

Theorem
There is a satisfiable HyperLTL sentence that is not satisfied by
any finite set of traces.

12

What about Finite Models?

Fix AP = {a} and consider the conjunction ϕ of

∀π. (¬aπ) U (aπ ∧ X G¬aπ)

∃π. aπ
∀π. ∃π′. F (aπ ∧ X aπ′)

{a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ · · ·
∅ {a} ∅ ∅ ∅ ∅ ∅ ∅ · · ·
∅ ∅ {a} ∅ ∅ ∅ ∅ ∅ · · ·
...

...
...

...
...

...
...

...

The unique model of ϕ is {∅n {a} ∅ω | n ∈ N}.

Theorem
There is a satisfiable HyperLTL sentence that is not satisfied by
any finite set of traces.

12

What about Countable Models?

Theorem
Every satisfiable HyperLTL sentence has a countable model.

Proof

W.l.o.g. ϕ = ∀π0. ∃π′0. · · · ∀πk . ∃π′k . ψ with quantifier-free ψ.

Fix a Skolem function fj for every existentially quantified π′j .

· · · · · ·
f0(t)

f1(t, t) · · ·
fk(t, . . . , t)t

The limit is a model of ϕ and countable.

13

What about Countable Models?

Theorem
Every satisfiable HyperLTL sentence has a countable model.

Proof

W.l.o.g. ϕ = ∀π0. ∃π′0. · · · ∀πk . ∃π′k . ψ with quantifier-free ψ.

Fix a Skolem function fj for every existentially quantified π′j .

· · · · · ·
f0(t)

f1(t, t) · · ·
fk(t, . . . , t)t

The limit is a model of ϕ and countable.

13

What about Countable Models?

Theorem
Every satisfiable HyperLTL sentence has a countable model.

Proof

W.l.o.g. ϕ = ∀π0. ∃π′0. · · · ∀πk . ∃π′k . ψ with quantifier-free ψ.

Fix a Skolem function fj for every existentially quantified π′j .

· · · · · ·
f0(t)

f1(t, t) · · ·
fk(t, . . . , t)

t

The limit is a model of ϕ and countable.

13

What about Countable Models?

Theorem
Every satisfiable HyperLTL sentence has a countable model.

Proof

W.l.o.g. ϕ = ∀π0. ∃π′0. · · · ∀πk . ∃π′k . ψ with quantifier-free ψ.

Fix a Skolem function fj for every existentially quantified π′j .

· · · · · ·

f0(t)

f1(t, t) · · ·
fk(t, . . . , t)t

The limit is a model of ϕ and countable.

13

What about Countable Models?

Theorem
Every satisfiable HyperLTL sentence has a countable model.

Proof

W.l.o.g. ϕ = ∀π0. ∃π′0. · · · ∀πk . ∃π′k . ψ with quantifier-free ψ.

Fix a Skolem function fj for every existentially quantified π′j .

· · · · · ·
f0(t)

f1(t, t) · · ·
fk(t, . . . , t)

t

The limit is a model of ϕ and countable.

13

What about Countable Models?

Theorem
Every satisfiable HyperLTL sentence has a countable model.

Proof

W.l.o.g. ϕ = ∀π0. ∃π′0. · · · ∀πk . ∃π′k . ψ with quantifier-free ψ.

Fix a Skolem function fj for every existentially quantified π′j .

· · · · · ·

f0(t)

f1(t, t) · · ·
fk(t, . . . , t)

t

The limit is a model of ϕ and countable.

13

What about Countable Models?

Theorem
Every satisfiable HyperLTL sentence has a countable model.

Proof

W.l.o.g. ϕ = ∀π0. ∃π′0. · · · ∀πk . ∃π′k . ψ with quantifier-free ψ.

Fix a Skolem function fj for every existentially quantified π′j .

· · · · · ·

f0(t)

f1(t, t) · · ·
fk(t, . . . , t)

t

The limit is a model of ϕ and countable.

13

What about Regular Models?

Theorem
There is a satisfiable HyperLTL sentence that is not satisfied by
any ω-regular set of traces.

Proof

Express that a model T contains..

1. .. ({a}{b})n∅ω for every n.

2. .. for every trace of the form
x{b}{a}y in T , also the
trace x{a}{b}y .

{a} {b} {a} {b} {a} {b} ∅ω

{a} {b}{a} {b} {a} {b} ∅ω

{a} {b}{a} {b}{a} {b} ∅ω

{a} {b}{a} {b}{a} {b} ∅ω

Then, T ∩ {a}∗{b}∗∅ω = {{a}n{b}n∅ω | n ∈ N} is not ω-regular.

14

What about Regular Models?

Theorem
There is a satisfiable HyperLTL sentence that is not satisfied by
any ω-regular set of traces.

Proof

Express that a model T contains..

1. .. ({a}{b})n∅ω for every n.

2. .. for every trace of the form
x{b}{a}y in T , also the
trace x{a}{b}y .

{a} {b} {a} {b} {a} {b} ∅ω

{a} {b}{a} {b} {a} {b} ∅ω

{a} {b}{a} {b}{a} {b} ∅ω

{a} {b}{a} {b}{a} {b} ∅ω

Then, T ∩ {a}∗{b}∗∅ω = {{a}n{b}n∅ω | n ∈ N} is not ω-regular.

14

What about Regular Models?

Theorem
There is a satisfiable HyperLTL sentence that is not satisfied by
any ω-regular set of traces.

Proof

Express that a model T contains..

1. .. ({a}{b})n∅ω for every n.

2. .. for every trace of the form
x{b}{a}y in T , also the
trace x{a}{b}y .

{a} {b} {a} {b} {a} {b} ∅ω

{a} {b}{a} {b} {a} {b} ∅ω

{a} {b}{a} {b}{a} {b} ∅ω

{a} {b}{a} {b}{a} {b} ∅ω

Then, T ∩ {a}∗{b}∗∅ω = {{a}n{b}n∅ω | n ∈ N} is not ω-regular.

14

What about Regular Models?

Theorem
There is a satisfiable HyperLTL sentence that is not satisfied by
any ω-regular set of traces.

Proof

Express that a model T contains..

1. .. ({a}{b})n∅ω for every n.

2. .. for every trace of the form
x{b}{a}y in T , also the
trace x{a}{b}y .

{a} {b} {a} {b} {a} {b} ∅ω

{a} {b}{a} {b} {a} {b} ∅ω

{a} {b}{a} {b}{a} {b} ∅ω

{a} {b}{a} {b}{a} {b} ∅ω

Then, T ∩ {a}∗{b}∗∅ω = {{a}n{b}n∅ω | n ∈ N} is not ω-regular.

14

What about Regular Models?

Theorem
There is a satisfiable HyperLTL sentence that is not satisfied by
any ω-regular set of traces.

Proof

Express that a model T contains..

1. .. ({a}{b})n∅ω for every n.

2. .. for every trace of the form
x{b}{a}y in T , also the
trace x{a}{b}y .

{a} {b} {a} {b} {a} {b} ∅ω

{a} {b}{a} {b} {a} {b} ∅ω

{a} {b}{a} {b}{a} {b} ∅ω

{a} {b}{a} {b}{a} {b} ∅ω

Then, T ∩ {a}∗{b}∗∅ω = {{a}n{b}n∅ω | n ∈ N} is not ω-regular.

14

What about Regular Models?

Theorem
There is a satisfiable HyperLTL sentence that is not satisfied by
any ω-regular set of traces.

Proof

Express that a model T contains..

1. .. ({a}{b})n∅ω for every n.

2. .. for every trace of the form
x{b}{a}y in T , also the
trace x{a}{b}y .

{a} {b} {a} {b} {a} {b} ∅ω

{a} {b}{a} {b} {a} {b} ∅ω

{a} {b}{a} {b}{a} {b} ∅ω

{a} {b}{a} {b}{a} {b} ∅ω

Then, T ∩ {a}∗{b}∗∅ω = {{a}n{b}n∅ω | n ∈ N} is not ω-regular.

14

What about Regular Models?

Theorem
There is a satisfiable HyperLTL sentence that is not satisfied by
any ω-regular set of traces.

Proof

Express that a model T contains..

1. .. ({a}{b})n∅ω for every n.

2. .. for every trace of the form
x{b}{a}y in T , also the
trace x{a}{b}y .

{a} {b} {a} {b} {a} {b} ∅ω

{a} {b}{a} {b} {a} {b} ∅ω

{a} {b}{a} {b}{a} {b} ∅ω

{a} {b}{a} {b}{a} {b} ∅ω

Then, T ∩ {a}∗{b}∗∅ω = {{a}n{b}n∅ω | n ∈ N} is not ω-regular.

14

What about Regular Models?

Theorem
There is a satisfiable HyperLTL sentence that is not satisfied by
any ω-regular set of traces.

Proof

Express that a model T contains..

1. .. ({a}{b})n∅ω for every n.

2. .. for every trace of the form
x{b}{a}y in T , also the
trace x{a}{b}y .

{a} {b} {a} {b} {a} {b} ∅ω

{a} {b}{a} {b} {a} {b} ∅ω

{a} {b}{a} {b}{a} {b} ∅ω

{a} {b}{a} {b}{a} {b} ∅ω

Then, T ∩ {a}∗{b}∗∅ω = {{a}n{b}n∅ω | n ∈ N} is not ω-regular.

14

What about Ultimately Periodic Models?

Theorem
There is a satisfiable HyperLTL sentence that is not satisfied by
any set of traces that contains an ultimately periodic trace.

One can even encode the prime numbers in HyperLTL!

15

What about Ultimately Periodic Models?

Theorem
There is a satisfiable HyperLTL sentence that is not satisfied by
any set of traces that contains an ultimately periodic trace.

One can even encode the prime numbers in HyperLTL!

15

Agenda

1. HyperLTL

2. The Models Of HyperLTL

3. HyperLTL Satisfiability

4. HyperLTL Model-checking

5. The First-order Logic of Hyperproperties

6. Conclusion

16

Undecidability

The HyperLTL satisfiability problem:

Given ϕ, is there a non-empty set T of traces with T |= ϕ?

Theorem
HyperLTL satisfiability is undecidable.

Proof:
By a reduction from Post’s correspondence problem.

Example

Blocks (a, baa) (ab, aa) (bba, bb)

A solution:

b b a a b b b a a

b b a a b b b a a

17

Undecidability

The HyperLTL satisfiability problem:

Given ϕ, is there a non-empty set T of traces with T |= ϕ?

Theorem
HyperLTL satisfiability is undecidable.

Proof:
By a reduction from Post’s correspondence problem.

Example

Blocks (a, baa) (ab, aa) (bba, bb)

A solution:

b b a a b b b a a

b b a a b b b a a

17

Undecidability

The HyperLTL satisfiability problem:

Given ϕ, is there a non-empty set T of traces with T |= ϕ?

Theorem
HyperLTL satisfiability is undecidable.

Proof:
By a reduction from Post’s correspondence problem.

Example

Blocks (a, baa) (ab, aa) (bba, bb)

A solution:

b b a a b b b a a

b b a a b b b a a

17

Undecidability

The HyperLTL satisfiability problem:

Given ϕ, is there a non-empty set T of traces with T |= ϕ?

Theorem
HyperLTL satisfiability is undecidable.

Proof:
By a reduction from Post’s correspondence problem.

Example

Blocks (a, baa) (ab, aa) (bba, bb)

A solution:

b b a a b b b a a

b b a a b b b a a

17

Undecidability

1. There is a (solution)
trace where top
matches bottom.

2. Every trace is finite
and starts with a
block or is empty.

3. For every non-empty
trace, the trace
obtained by
removing the first
block also exists.

{b} {b} {a} {a} {b} {b} {b} {a} {a} ∅ω
{b} {b} {a} {a} {b} {b} {b} {a} {a} ∅ω

{a} {b} {b} {b} {a} {a} ∅ ∅ ∅ ∅ω
{a} {a} {b} {b} {b} {a} {a} ∅ ∅ ∅ω

{b} {b} {a} {a} ∅ ∅ ∅ ∅ ∅ ∅ω
{b} {b} {b} {a} {a} ∅ ∅ ∅ ∅ ∅ω

{a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω
{b} {a} {a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ω

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω

18

Undecidability

1. There is a (solution)
trace where top
matches bottom.

2. Every trace is finite
and starts with a
block or is empty.

3. For every non-empty
trace, the trace
obtained by
removing the first
block also exists.

{b} {b} {a} {a} {b} {b} {b} {a} {a} ∅ω
{b} {b} {a} {a} {b} {b} {b} {a} {a} ∅ω

{a} {b} {b} {b} {a} {a} ∅ ∅ ∅ ∅ω
{a} {a} {b} {b} {b} {a} {a} ∅ ∅ ∅ω

{b} {b} {a} {a} ∅ ∅ ∅ ∅ ∅ ∅ω
{b} {b} {b} {a} {a} ∅ ∅ ∅ ∅ ∅ω

{a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω
{b} {a} {a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ω

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω

18

Undecidability

1. There is a (solution)
trace where top
matches bottom.

2. Every trace is finite
and starts with a
block or is empty.

3. For every non-empty
trace, the trace
obtained by
removing the first
block also exists.

{b} {b} {a} {a} {b} {b} {b} {a} {a} ∅ω
{b} {b} {a} {a} {b} {b} {b} {a} {a} ∅ω

{a} {b} {b} {b} {a} {a} ∅ ∅ ∅ ∅ω
{a} {a} {b} {b} {b} {a} {a} ∅ ∅ ∅ω

{b} {b} {a} {a} ∅ ∅ ∅ ∅ ∅ ∅ω
{b} {b} {b} {a} {a} ∅ ∅ ∅ ∅ ∅ω

{a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω
{b} {a} {a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ω

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω

18

Undecidability

1. There is a (solution)
trace where top
matches bottom.

2. Every trace is finite
and starts with a
block or is empty.

3. For every non-empty
trace, the trace
obtained by
removing the first
block also exists.

{b} {b} {a} {a} {b} {b} {b} {a} {a} ∅ω
{b} {b} {a} {a} {b} {b} {b} {a} {a} ∅ω

{a} {b} {b} {b} {a} {a} ∅ ∅ ∅ ∅ω
{a} {a} {b} {b} {b} {a} {a} ∅ ∅ ∅ω

{b} {b} {a} {a} ∅ ∅ ∅ ∅ ∅ ∅ω
{b} {b} {b} {a} {a} ∅ ∅ ∅ ∅ ∅ω

{a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω
{b} {a} {a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ω

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω

18

Undecidability

1. There is a (solution)
trace where top
matches bottom.

2. Every trace is finite
and starts with a
block or is empty.

3. For every non-empty
trace, the trace
obtained by
removing the first
block also exists.

{b} {b} {a} {a} {b} {b} {b} {a} {a} ∅ω
{b} {b} {a} {a} {b} {b} {b} {a} {a} ∅ω

{a} {b} {b} {b} {a} {a} ∅ ∅ ∅ ∅ω
{a} {a} {b} {b} {b} {a} {a} ∅ ∅ ∅ω

{b} {b} {a} {a} ∅ ∅ ∅ ∅ ∅ ∅ω
{b} {b} {b} {a} {a} ∅ ∅ ∅ ∅ ∅ω

{a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω
{b} {a} {a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ω

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω

18

Undecidability

1. There is a (solution)
trace where top
matches bottom.

2. Every trace is finite
and starts with a
block or is empty.

3. For every non-empty
trace, the trace
obtained by
removing the first
block also exists.

{b} {b} {a} {a} {b} {b} {b} {a} {a} ∅ω
{b} {b} {a} {a} {b} {b} {b} {a} {a} ∅ω

{a} {b} {b} {b} {a} {a} ∅ ∅ ∅ ∅ω
{a} {a} {b} {b} {b} {a} {a} ∅ ∅ ∅ω

{b} {b} {a} {a} ∅ ∅ ∅ ∅ ∅ ∅ω
{b} {b} {b} {a} {a} ∅ ∅ ∅ ∅ ∅ω

{a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω
{b} {a} {a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ω

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω

18

Undecidability

1. There is a (solution)
trace where top
matches bottom.

2. Every trace is finite
and starts with a
block or is empty.

3. For every non-empty
trace, the trace
obtained by
removing the first
block also exists.

{b} {b} {a} {a} {b} {b} {b} {a} {a} ∅ω
{b} {b} {a} {a} {b} {b} {b} {a} {a} ∅ω

{a} {b} {b} {b} {a} {a} ∅ ∅ ∅ ∅ω
{a} {a} {b} {b} {b} {a} {a} ∅ ∅ ∅ω

{b} {b} {a} {a} ∅ ∅ ∅ ∅ ∅ ∅ω
{b} {b} {b} {a} {a} ∅ ∅ ∅ ∅ ∅ω

{a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω
{b} {a} {a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ω

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω

18

Undecidability

1. There is a (solution)
trace where top
matches bottom.

2. Every trace is finite
and starts with a
block or is empty.

3. For every non-empty
trace, the trace
obtained by
removing the first
block also exists.

{b} {b} {a} {a} {b} {b} {b} {a} {a} ∅ω
{b} {b} {a} {a} {b} {b} {b} {a} {a} ∅ω

{a} {b} {b} {b} {a} {a} ∅ ∅ ∅ ∅ω
{a} {a} {b} {b} {b} {a} {a} ∅ ∅ ∅ω

{b} {b} {a} {a} ∅ ∅ ∅ ∅ ∅ ∅ω
{b} {b} {b} {a} {a} ∅ ∅ ∅ ∅ ∅ω

{a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω
{b} {a} {a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ω

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω

18

Undecidability

1. There is a (solution)
trace where top
matches bottom.

2. Every trace is finite
and starts with a
block or is empty.

3. For every non-empty
trace, the trace
obtained by
removing the first
block also exists.

{b} {b} {a} {a} {b} {b} {b} {a} {a} ∅ω
{b} {b} {a} {a} {b} {b} {b} {a} {a} ∅ω

{a} {b} {b} {b} {a} {a} ∅ ∅ ∅ ∅ω
{a} {a} {b} {b} {b} {a} {a} ∅ ∅ ∅ω

{b} {b} {a} {a} ∅ ∅ ∅ ∅ ∅ ∅ω
{b} {b} {b} {a} {a} ∅ ∅ ∅ ∅ ∅ω

{a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω
{b} {a} {a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ω

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω

18

Undecidability

1. There is a (solution)
trace where top
matches bottom.

2. Every trace is finite
and starts with a
block or is empty.

3. For every non-empty
trace, the trace
obtained by
removing the first
block also exists.

{b} {b} {a} {a} {b} {b} {b} {a} {a} ∅ω
{b} {b} {a} {a} {b} {b} {b} {a} {a} ∅ω

{a} {b} {b} {b} {a} {a} ∅ ∅ ∅ ∅ω
{a} {a} {b} {b} {b} {a} {a} ∅ ∅ ∅ω

{b} {b} {a} {a} ∅ ∅ ∅ ∅ ∅ ∅ω
{b} {b} {b} {a} {a} ∅ ∅ ∅ ∅ ∅ω

{a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω
{b} {a} {a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ω

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω

18

Undecidability

1. There is a (solution)
trace where top
matches bottom.

2. Every trace is finite
and starts with a
block or is empty.

3. For every non-empty
trace, the trace
obtained by
removing the first
block also exists.

{b} {b} {a} {a} {b} {b} {b} {a} {a} ∅ω
{b} {b} {a} {a} {b} {b} {b} {a} {a} ∅ω

{a} {b} {b} {b} {a} {a} ∅ ∅ ∅ ∅ω
{a} {a} {b} {b} {b} {a} {a} ∅ ∅ ∅ω

{b} {b} {a} {a} ∅ ∅ ∅ ∅ ∅ ∅ω
{b} {b} {b} {a} {a} ∅ ∅ ∅ ∅ ∅ω

{a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω
{b} {a} {a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ω

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω

18

Undecidability

1. There is a (solution)
trace where top
matches bottom.

2. Every trace is finite
and starts with a
block or is empty.

3. For every non-empty
trace, the trace
obtained by
removing the first
block also exists.

{b} {b} {a} {a} {b} {b} {b} {a} {a} ∅ω
{b} {b} {a} {a} {b} {b} {b} {a} {a} ∅ω

{a} {b} {b} {b} {a} {a} ∅ ∅ ∅ ∅ω
{a} {a} {b} {b} {b} {a} {a} ∅ ∅ ∅ω

{b} {b} {a} {a} ∅ ∅ ∅ ∅ ∅ ∅ω
{b} {b} {b} {a} {a} ∅ ∅ ∅ ∅ ∅ω

{a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω
{b} {a} {a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ω

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω

18

Undecidability

1. There is a (solution)
trace where top
matches bottom.

2. Every trace is finite
and starts with a
block or is empty.

3. For every non-empty
trace, the trace
obtained by
removing the first
block also exists.

{b} {b} {a} {a} {b} {b} {b} {a} {a} ∅ω
{b} {b} {a} {a} {b} {b} {b} {a} {a} ∅ω

{a} {b} {b} {b} {a} {a} ∅ ∅ ∅ ∅ω
{a} {a} {b} {b} {b} {a} {a} ∅ ∅ ∅ω

{b} {b} {a} {a} ∅ ∅ ∅ ∅ ∅ ∅ω
{b} {b} {b} {a} {a} ∅ ∅ ∅ ∅ ∅ω

{a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω
{b} {a} {a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ω

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω

18

Undecidability

1. There is a (solution)
trace where top
matches bottom.

2. Every trace is finite
and starts with a
block or is empty.

3. For every non-empty
trace, the trace
obtained by
removing the first
block also exists.

{b} {b} {a} {a} {b} {b} {b} {a} {a} ∅ω
{b} {b} {a} {a} {b} {b} {b} {a} {a} ∅ω

{a} {b} {b} {b} {a} {a} ∅ ∅ ∅ ∅ω
{a} {a} {b} {b} {b} {a} {a} ∅ ∅ ∅ω

{b} {b} {a} {a} ∅ ∅ ∅ ∅ ∅ ∅ω
{b} {b} {b} {a} {a} ∅ ∅ ∅ ∅ ∅ω

{a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω
{b} {a} {a} ∅ ∅ ∅ ∅ ∅ ∅ ∅ω

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ω

18

Decidability

Theorem
∃∗-HyperLTL satisfiability is PSpace-complete.

Proof:

Membership:

Consider ϕ = ∃π0 . . . ∃πk . ψ.
Obtain ψ′ from ψ by replacing each aπj by a fresh
proposition aj .
Then: ϕ and the LTL formula ψ′ are equi-satisfiable.

Hardness: trivial reduction from LTL satisfiability

19

Decidability

Theorem
∃∗-HyperLTL satisfiability is PSpace-complete.

Proof:

Membership:

Consider ϕ = ∃π0 . . . ∃πk . ψ.
Obtain ψ′ from ψ by replacing each aπj by a fresh
proposition aj .
Then: ϕ and the LTL formula ψ′ are equi-satisfiable.

Hardness: trivial reduction from LTL satisfiability

19

Decidability

Theorem
∀∗-HyperLTL satisfiability is PSpace-complete.

Proof:

Membership:

Consider ϕ = ∀π0 . . . ∀πk . ψ.
Obtain ψ′ from ψ by replacing each aπj by a.
Then: ϕ and the LTL formula ψ′ are equi-satisfiable.

Hardness: trivial reduction from LTL satisfiability

20

Decidability

Theorem
∀∗-HyperLTL satisfiability is PSpace-complete.

Proof:

Membership:

Consider ϕ = ∀π0 . . . ∀πk . ψ.
Obtain ψ′ from ψ by replacing each aπj by a.
Then: ϕ and the LTL formula ψ′ are equi-satisfiable.

Hardness: trivial reduction from LTL satisfiability

20

Decidability

Theorem
∃∗∀∗-HyperLTL satisfiability is ExpSpace-complete.

Proof:

Membership:

Consider ϕ = ∃π0 . . . ∃πk .∀π′0 . . . ∀π′`. ψ.
Let

ϕ′ = ∃π0 . . . ∃πk
k∧

j0=0

· · ·
k∧

j`=0

ψj0,...,j`

where ψj0,...,j` is obtained from ψ by replacing each
occurrence of π′i by πji .
Then: ϕ and ϕ′ are equi-satisfiable.

Hardness: encoding of exponential-space Turing machines.

21

Decidability

Theorem
∃∗∀∗-HyperLTL satisfiability is ExpSpace-complete.

Proof:

Membership:

Consider ϕ = ∃π0 . . . ∃πk .∀π′0 . . . ∀π′`. ψ.
Let

ϕ′ = ∃π0 . . . ∃πk
k∧

j0=0

· · ·
k∧

j`=0

ψj0,...,j`

where ψj0,...,j` is obtained from ψ by replacing each
occurrence of π′i by πji .
Then: ϕ and ϕ′ are equi-satisfiable.

Hardness: encoding of exponential-space Turing machines.

21

Further Results

HyperLTL implication checking: given ϕ and ϕ′, does, for every T ,
T |= ϕ imply T |= ϕ′?

Lemma
ϕ does not imply ϕ′ iff (ϕ ∧ ¬ϕ′) is satisfiable.

Corollary

Implication checking for alternation-free HyperLTL formulas is
ExpSpace-complete.

Tool EAHyper:

satisfiability, implication, and equivalence checking for
HyperLTL

22

Further Results

HyperLTL implication checking: given ϕ and ϕ′, does, for every T ,
T |= ϕ imply T |= ϕ′?

Lemma
ϕ does not imply ϕ′ iff (ϕ ∧ ¬ϕ′) is satisfiable.

Corollary

Implication checking for alternation-free HyperLTL formulas is
ExpSpace-complete.

Tool EAHyper:

satisfiability, implication, and equivalence checking for
HyperLTL

22

Latest Results

Recently, the exact complexity of HyperLTL satisfiability was
settled: it is highly undecidable.

Theorem (Fortin, Kuijer, Totzke, Z. 2021)

HyperLTL satisfiability is Σ1
1-complete.

Corollary (Fortin, Kuijer, Totzke, Z. 2021)

The membership problem for each level of the HyperLTL quantifier
alternation hierarchy is Σ1

1-complete.

23

Latest Results

Recently, the exact complexity of HyperLTL satisfiability was
settled: it is highly undecidable.

Theorem (Fortin, Kuijer, Totzke, Z. 2021)

HyperLTL satisfiability is Σ1
1-complete.

Corollary (Fortin, Kuijer, Totzke, Z. 2021)

The membership problem for each level of the HyperLTL quantifier
alternation hierarchy is Σ1

1-complete.

23

Agenda

1. HyperLTL

2. The Models Of HyperLTL

3. HyperLTL Satisfiability

4. HyperLTL Model-checking

5. The First-order Logic of Hyperproperties

6. Conclusion

24

Model-Checking

The HyperLTL model-checking problem:

Given a transition system S and ϕ, does Traces(S) |= ϕ?

Theorem (Finkbeiner, Rabe, Sánchez 2015)

The HyperLTL model-checking problem is decidable.

25

Model-Checking

Proof:

Consider ϕ = ∃π1.∀π2. . . .∃πk−1.∀πk . ψ.

Rewrite as ∃π1.¬∃π2.¬ . . . ∃πk−1.¬∃πk .¬ψ.

By induction over quantifier prefix construct non-determinstic
Büchi automaton A with L(A) 6= ∅ iff Traces(S) |= ϕ.

Induction start: build automaton for LTL formula
obtained from ¬ψ by replacing aπj by aj .
For ∃πjθ restrict automaton for θ in dimension j to
traces of S.
For ¬θ complement automaton for θ.

⇒ Non-elementary complexity, but alternation-free fragments are
as hard as LTL.

26

Model-Checking

Proof:

Consider ϕ = ∃π1.∀π2. . . .∃πk−1.∀πk . ψ.

Rewrite as ∃π1.¬∃π2.¬ . . . ∃πk−1.¬∃πk .¬ψ.

By induction over quantifier prefix construct non-determinstic
Büchi automaton A with L(A) 6= ∅ iff Traces(S) |= ϕ.

Induction start: build automaton for LTL formula
obtained from ¬ψ by replacing aπj by aj .
For ∃πjθ restrict automaton for θ in dimension j to
traces of S.
For ¬θ complement automaton for θ.

⇒ Non-elementary complexity, but alternation-free fragments are
as hard as LTL.

26

Model-Checking

Proof:

Consider ϕ = ∃π1.∀π2. . . .∃πk−1.∀πk . ψ.

Rewrite as ∃π1.¬∃π2.¬ . . . ∃πk−1.¬∃πk .¬ψ.

By induction over quantifier prefix construct non-determinstic
Büchi automaton A with L(A) 6= ∅ iff Traces(S) |= ϕ.

Induction start: build automaton for LTL formula
obtained from ¬ψ by replacing aπj by aj .
For ∃πjθ restrict automaton for θ in dimension j to
traces of S.
For ¬θ complement automaton for θ.

⇒ Non-elementary complexity, but alternation-free fragments are
as hard as LTL.

26

Agenda

1. HyperLTL

2. The Models Of HyperLTL

3. HyperLTL Satisfiability

4. HyperLTL Model-checking

5. The First-order Logic of Hyperproperties

6. Conclusion

27

First-order Logic vs. LTL

FO[<]: first-order order logic over signature {<} ∪ {Pa | a ∈ AP}
over structures with universe N.

Theorem (Kamp ’68, Gabbay et al. ’80)

LTL and FO[<] are expressively equivalent.

Example

∀x(Pq(x) ∧ ¬Pp(x))→ ∃y(x < y ∧ Pp(y))

and

G (q → F p)

are equivalent.

28

First-order Logic vs. LTL

FO[<]: first-order order logic over signature {<} ∪ {Pa | a ∈ AP}
over structures with universe N.

Theorem (Kamp ’68, Gabbay et al. ’80)

LTL and FO[<] are expressively equivalent.

Example

∀x(Pq(x) ∧ ¬Pp(x))→ ∃y(x < y ∧ Pp(y))

and

G (q → F p)

are equivalent.

28

First-order Logic for Hyperproperties

· · ·
<

N

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

T
E

FO[<, E]: first-order logic with equality over the signature
{<,E} ∪ {Pa | a ∈ AP} over structures with universe T × N.

29

First-order Logic for Hyperproperties

· · ·
<

N

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

T

E

FO[<, E]: first-order logic with equality over the signature
{<,E} ∪ {Pa | a ∈ AP} over structures with universe T × N.

29

First-order Logic for Hyperproperties

· · ·
<

N

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

T
E

FO[<, E]: first-order logic with equality over the signature
{<,E} ∪ {Pa | a ∈ AP} over structures with universe T × N.

29

First-order Logic for Hyperproperties

· · ·
<

N

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

T
E

FO[<, E]: first-order logic with equality over the signature
{<,E} ∪ {Pa | a ∈ AP} over structures with universe T × N.

Example

∀x∀x ′ E (x , x ′)→ (Pon(x)↔ Pon(x ′))

29

First-order Logic for Hyperproperties

· · ·
<

N

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

T
E

FO[<, E]: first-order logic with equality over the signature
{<,E} ∪ {Pa | a ∈ AP} over structures with universe T × N.

Proposition

For every HyperLTL sentence there is an equivalent FO[<, E]
sentence.

29

A Setback

Let ϕ be the following property of sets T ⊆ (2{p})ω:

There is an n such that p /∈ t(n) for every t ∈ T .

Theorem (Bozzelli et al. ’15)

ϕ is not expressible in HyperLTL.

But, ϕ is easily expressible in FO[<, E]:

∃x ∀y E (x , y)→ ¬Pp(y)

Corollary

FO[<, E] strictly subsumes HyperLTL.

30

A Setback

Let ϕ be the following property of sets T ⊆ (2{p})ω:

There is an n such that p /∈ t(n) for every t ∈ T .

Theorem (Bozzelli et al. ’15)

ϕ is not expressible in HyperLTL.

But, ϕ is easily expressible in FO[<, E]:

∃x ∀y E (x , y)→ ¬Pp(y)

Corollary

FO[<, E] strictly subsumes HyperLTL.

30

HyperFO

∃Mx and ∀Mx : quantifiers restricted to initial positions.

∃Gy ≥ x and ∀Gy ≥ x : if x is initial, then quantifiers
restricted to positions on the same trace as x .

HyperFO: sentences of the form

ϕ = QM
1 x1. · · ·QM

k xk . Q
G
1 y1 ≥ xg1 . · · ·QG

` y` ≥ xg` . ψ

Q ∈ {∃,∀},
{x1, . . . , xk} and {y1, . . . , y`} are disjoint,

every guard xgj is in{x1, . . . , xk}, and

ψ is quantifier-free over signature {<,E} ∪ {Pa | a ∈ AP}
with free variables in {y1, . . . , y`}.

31

HyperFO

∃Mx and ∀Mx : quantifiers restricted to initial positions.

∃Gy ≥ x and ∀Gy ≥ x : if x is initial, then quantifiers
restricted to positions on the same trace as x .

HyperFO: sentences of the form

ϕ = QM
1 x1. · · ·QM

k xk . Q
G
1 y1 ≥ xg1 . · · ·QG

` y` ≥ xg` . ψ

Q ∈ {∃,∀},
{x1, . . . , xk} and {y1, . . . , y`} are disjoint,

every guard xgj is in{x1, . . . , xk}, and

ψ is quantifier-free over signature {<,E} ∪ {Pa | a ∈ AP}
with free variables in {y1, . . . , y`}.

31

Equivalence

Theorem (Finkbeiner, Z. 2017)

HyperLTL and HyperFO are equally expressive.

Proof

From HyperLTL to HyperFO: structural induction.

From HyperFO to HyperLTL: reduction to Kamp’s theorem.

32

Equivalence

Theorem (Finkbeiner, Z. 2017)

HyperLTL and HyperFO are equally expressive.

Proof

From HyperLTL to HyperFO: structural induction.

From HyperFO to HyperLTL: reduction to Kamp’s theorem.

32

From HyperFO to HyperLTL

∀x∀x ′ E (x , x ′)→ (Pon(x)↔ Pon(x ′))

∀Mx1 ∀Mx2 ∀Gy1 ≥ x1 ∀Gy2 ≥ x2E (y1, y2)→ (Pon(y1)↔ Pon(y2))

∀Mx1 ∀Mx2 ∀y1 ∀y2 (y1 = y2)→ (P(on,1)(y1)↔ P(on,2)(y2))

∀Mx1 ∀Mx2 G ((on, 1)↔ (on, 2))

∀Mx1 ∀Mx2

∀π1 ∀π2 G (onπ1 ↔ onπ2)

{on} {on} ∅ {on} · · ·

{on} ∅ ∅ {on} · · ·

x1 7→

x2 7→

π1 7→

π2 7→

{(on, 1),
{(on, 1)} ∅

{(on, 1),
· · ·

(on, 2)} (on, 2)}

33

From HyperFO to HyperLTL

∀x∀x ′ E (x , x ′)→ (Pon(x)↔ Pon(x ′))

∀Mx1 ∀Mx2 ∀Gy1 ≥ x1 ∀Gy2 ≥ x2E (y1, y2)→ (Pon(y1)↔ Pon(y2))

∀Mx1 ∀Mx2 ∀y1 ∀y2 (y1 = y2)→ (P(on,1)(y1)↔ P(on,2)(y2))

∀Mx1 ∀Mx2 G ((on, 1)↔ (on, 2))

∀Mx1 ∀Mx2

∀π1 ∀π2 G (onπ1 ↔ onπ2)

{on} {on} ∅ {on} · · ·

{on} ∅ ∅ {on} · · ·

x1 7→

x2 7→

π1 7→

π2 7→

{(on, 1),
{(on, 1)} ∅

{(on, 1),
· · ·

(on, 2)} (on, 2)}

33

From HyperFO to HyperLTL

∀x∀x ′ E (x , x ′)→ (Pon(x)↔ Pon(x ′))

∀Mx1 ∀Mx2 ∀Gy1 ≥ x1 ∀Gy2 ≥ x2E (y1, y2)→ (Pon(y1)↔ Pon(y2))

∀Mx1 ∀Mx2 ∀y1 ∀y2 (y1 = y2)→ (P(on,1)(y1)↔ P(on,2)(y2))

∀Mx1 ∀Mx2 G ((on, 1)↔ (on, 2))

∀Mx1 ∀Mx2

∀π1 ∀π2 G (onπ1 ↔ onπ2)

{on} {on} ∅ {on} · · ·

{on} ∅ ∅ {on} · · ·

x1 7→

x2 7→

π1 7→

π2 7→

{(on, 1),
{(on, 1)} ∅

{(on, 1),
· · ·

(on, 2)} (on, 2)}

33

From HyperFO to HyperLTL

∀x∀x ′ E (x , x ′)→ (Pon(x)↔ Pon(x ′))

∀Mx1 ∀Mx2

∀Gy1 ≥ x1 ∀Gy2 ≥ x2E (y1, y2)→ (Pon(y1)↔ Pon(y2))

∀Mx1 ∀Mx2 ∀y1 ∀y2 (y1 = y2)→ (P(on,1)(y1)↔ P(on,2)(y2))

∀Mx1 ∀Mx2 G ((on, 1)↔ (on, 2))

∀Mx1 ∀Mx2

∀π1 ∀π2 G (onπ1 ↔ onπ2)

{on} {on} ∅ {on} · · ·

{on} ∅ ∅ {on} · · ·

x1 7→

x2 7→

π1 7→

π2 7→

{(on, 1),
{(on, 1)} ∅

{(on, 1),
· · ·

(on, 2)} (on, 2)}

33

From HyperFO to HyperLTL

∀x∀x ′ E (x , x ′)→ (Pon(x)↔ Pon(x ′))

∀Mx1 ∀Mx2

∀Gy1 ≥ x1 ∀Gy2 ≥ x2E (y1, y2)→ (Pon(y1)↔ Pon(y2))

∀Mx1 ∀Mx2 ∀y1 ∀y2 (y1 = y2)→ (P(on,1)(y1)↔ P(on,2)(y2))

∀Mx1 ∀Mx2 G ((on, 1)↔ (on, 2))

∀Mx1 ∀Mx2

∀π1 ∀π2 G (onπ1 ↔ onπ2)

{on} {on} ∅ {on} · · ·

{on} ∅ ∅ {on} · · ·

x1 7→

x2 7→

π1 7→

π2 7→

{(on, 1),
{(on, 1)} ∅

{(on, 1),
· · ·

(on, 2)} (on, 2)}

33

From HyperFO to HyperLTL

∀x∀x ′ E (x , x ′)→ (Pon(x)↔ Pon(x ′))

∀Mx1 ∀Mx2

∀Gy1 ≥ x1 ∀Gy2 ≥ x2E (y1, y2)→ (Pon(y1)↔ Pon(y2))

∀Mx1 ∀Mx2 ∀y1 ∀y2 (y1 = y2)→ (P(on,1)(y1)↔ P(on,2)(y2))

∀Mx1 ∀Mx2 G ((on, 1)↔ (on, 2))

∀Mx1 ∀Mx2

∀π1 ∀π2 G (onπ1 ↔ onπ2)

{on} {on} ∅ {on} · · ·

{on} ∅ ∅ {on} · · ·

x1 7→

x2 7→

π1 7→

π2 7→

{(on, 1),
{(on, 1)} ∅

{(on, 1),
· · ·

(on, 2)} (on, 2)}

33

From HyperFO to HyperLTL

∀x∀x ′ E (x , x ′)→ (Pon(x)↔ Pon(x ′))

∀Mx1 ∀Mx2

∀Gy1 ≥ x1 ∀Gy2 ≥ x2E (y1, y2)→ (Pon(y1)↔ Pon(y2))

∀Mx1 ∀Mx2 ∀y1 ∀y2 (y1 = y2)→ (P(on,1)(y1)↔ P(on,2)(y2))

∀Mx1 ∀Mx2 G ((on, 1)↔ (on, 2))

∀Mx1 ∀Mx2

∀π1 ∀π2 G (onπ1 ↔ onπ2)

{on} {on} ∅ {on} · · ·

{on} ∅ ∅ {on} · · ·

x1 7→

x2 7→

π1 7→

π2 7→

{(on, 1),
{(on, 1)} ∅

{(on, 1),
· · ·

(on, 2)} (on, 2)}

33

From HyperFO to HyperLTL

∀x∀x ′ E (x , x ′)→ (Pon(x)↔ Pon(x ′))

∀Mx1 ∀Mx2

∀Gy1 ≥ x1 ∀Gy2 ≥ x2E (y1, y2)→ (Pon(y1)↔ Pon(y2))

∀Mx1 ∀Mx2 ∀y1 ∀y2 (y1 = y2)→ (P(on,1)(y1)↔ P(on,2)(y2))

∀Mx1 ∀Mx2 G ((on, 1)↔ (on, 2))

∀Mx1 ∀Mx2

∀π1 ∀π2 G (onπ1 ↔ onπ2)

{on} {on} ∅ {on} · · ·

{on} ∅ ∅ {on} · · ·

x1 7→

x2 7→

π1 7→

π2 7→

{(on, 1),
{(on, 1)} ∅

{(on, 1),
· · ·

(on, 2)} (on, 2)}

33

Agenda

1. HyperLTL

2. The Models Of HyperLTL

3. HyperLTL Satisfiability

4. HyperLTL Model-checking

5. The First-order Logic of Hyperproperties

6. Conclusion

34

Conclusion

HyperLTL behaves quite differently than LTL:

The models of HyperLTL are rather not well-behaved, i.e., in
general (countably) infinite, non-regular, and non-periodic.

Satisfiability is in general undecidable.

Model-checking is decidable, but non-elementary.

But with the feasible problems, you can do exciting things.
HyperLTL is a powerful tool for information security and beyond:

Information-flow control

Symmetries in distributed systems

Error resistant codes

Software doping

...

35

Conclusion

HyperLTL behaves quite differently than LTL:

The models of HyperLTL are rather not well-behaved, i.e., in
general (countably) infinite, non-regular, and non-periodic.

Satisfiability is in general undecidable.

Model-checking is decidable, but non-elementary.

But with the feasible problems, you can do exciting things.
HyperLTL is a powerful tool for information security and beyond:

Information-flow control

Symmetries in distributed systems

Error resistant codes

Software doping

...

35

References (1)

The basics

Michael R. Clarkson and Fred B. Schneider:
“Hyperproperties.” Journal of Computer Security 18(6), 2010.

Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini,
Kristopher K. Micinski, Markus N. Rabe, and César Sánchez:
“Temporal logics for hyperproperties”. POST 2014.

Bernd Finkbeiner: “Logics and Algorithms for
Hyperproperties”, ACM SIGLOG News 10(2), 2023

36

References (2)

Satisfiability

Bernd Finkbeiner and Christopher Hahn: “Deciding
Hyperproperties”. CONCUR 2016

Bernd Finkbeiner, Christopher Hahn, and Marvin Stenger:
“EAHyper: Satisfiability, Implication, and Equivalence
Checking of Hyperproperties”. CAV 2017

Marie Fortin, Louwe B. Kuijer, Patrick Totzke, Martin
Zimmermann: “HyperLTL Satisfiability Is Σ1

1-complete,
HyperCTL* Satisfiability Is Σ2

1-complete”. MFCS 2021

37

References (3)

Model Checking

Bernd Finkbeiner, Markus N. Rabe, and César Sánchez:
“Algorithms for Model Checking HyperLTL and HyperCTL∗”.
CAV 2015

...

First-order logic

Finkbeiner, Zimmermann: “The first-order logic of
hyperproperties”. STACS 2017

38

	HyperLTL
	The Models Of HyperLTL
	HyperLTL Satisfiability
	HyperLTL Model-checking
	The First-order Logic of Hyperproperties
	Conclusion

