
Robust Alternating-Time Temporal Logic

Aniello Murano1[0000−0003−4876−3448], Daniel Neider2,3[0000−0001−9276−6342], and
Martin Zimmermann4[0000−0002−8038−2453]

1 Università degli Studi di Napoli “Federico II”, Naples, Italy
2 TU Dortmund University, Germany

daniel.neider@tu-dortmund.de
3 Center for Trustworthy Data Science and Security, UA Ruhr, Germany

4 Aalborg University, Denmark

Abstract. In multi-agent system design, a crucial aspect is to ensure
robustness, meaning that for a coalition of agents A, small violations of
adversarial assumptions only lead to small violations of A’s goals. In this
paper we introduce a logical framework for robust strategic reasoning
about multi-agent systems. Specifically, inspired by recent works on
robust temporal logics, we introduce and study rATL and rATL∗, logics
that extend the well-known Alternating-time Temporal Logic ATL and
ATL∗ by means of an opportune multi-valued semantics for the strategy
quantifiers and temporal operators. We study the model-checking and
satisfiability problems for rATL and rATL∗ and show that dealing with
robustness comes at no additional computational cost. Indeed, we show
that these problems are PTime-complete and ExpTime-complete for
rATL, respectively, while both are 2ExpTime-complete for rATL∗.

Keywords: Multi-Agents · Temporal Logic · Robustness.

1 Introduction

Multi-agent system verification has been receiving a lot of attention in recent years,
thanks to the introduction of powerful logics for strategic reasoning [5,22,44,39,12].
Along this line of research, a story of success is Alternating-Time Temporal Logic
(ATL) introduced by Alur, Henzinger, and Kupferman [5]. ATL is a generalization
of Computation Tree Logic (CTL) [23], obtained by replacing the path quantifier
∃ (and its dual ∀), with the modality 〈〈A〉〉 (and its dual [[A]]), where A is a set of
agents. The interpretation of 〈〈A〉〉ϕ is that the coalition A has a strategy such
that the outcome of this strategy satisfies ϕ, no matter how the coalition of the
agents not in A behaves. ATL formulas are interpreted over concurrent game
structures, which extend classical Kripke structures to represent the dynamism
of the agents. The model-checking problem of ATL is PTime-complete [5], while
the satisfiability problem is ExpTime-complete [54].

A crucial aspect in multi-agent system design is to ensure system robustness,
which should reflect the ability of a coalition of agents to tolerate violations
(possibly up to some extent) of adversarial assumptions [21]. Numerous studies
have shown that reactive AI systems can be very sensitive to intentional or

2 Aniello Murano, Daniel Neider, and Martin Zimmermann

unintentional external perturbations, posing huge risks to safety-critical appli-
cations [36]. Notably, the formal methods community has put large efforts in
reasoning about system robustness in several specific settings, mainly concerning
closed system verification or (two-player) reactive synthesis [19,31,17,25,27,28].
As far as we are aware of, there are no logic-based works dealing with robust
strategic reasoning in multi-agent systems. To highlight the significance of this
challenge, we describe a few specific contexts in which multi-agent systems act
as the natural model and robustness plays a crucial role.

Scenario 1. Climate change threatens people with food and water scarcity,
increased flooding, extreme heat, diseases, and economic loss. Human migration
and conflict can be a result. The World Health Organization calls climate change
the greatest threat to global health in the 21st century. Recently, researchers
examining alternative policies to address the threat of climate change have become
increasingly concerned about uncertainty and the fact that we cannot predict the
future. This requires to develop mathematical models to properly represent the
intricate interaction among all decision makers and the ability to define strategies
that are robust against a wide range of plausible climate-change futures [40]. For
risk-averse policy-makers, such strategies would perform reasonably well, at least
compared to the alternatives, even if confronted with surprises or catastrophes.
Robust strategies may also provide a more solid basis for consensus on political
action among stakeholders with different views of the future, because it would
provide reasonable outcomes no matter whose view proved correct.

Scenario 2. The fast-evolving domain of autonomous vehicles is one of the
best examples of multi-agent modelling, where safety-critical decisions strongly
rely on sensor observations (e.g., ultrasound, radar, GPS, Lidar, and camera
signals) [53]. It is of primary importance that the resulting decisions are robust
to perturbations, which often are treated as adversarial perturbations [43]. A
careful evaluation of such adversarial behaviours is necessary to build and deploy
safer autonomous vehicle systems.

Scenario 3. Power systems play an important role in all sectors of the national
economy and in our daily lives. Ensuring a safe and reliable power supply from the
power network is a fundamental requirement. As renewable energy-based smart
grid and micro-grid systems rise in popularity, multi-agent system technology
has been establishing itself as a useful paradigm of choice for modelling, analysis,
control and optimization of power systems [33,48,51]. The model usually consists
of several agents competing not only among themselves to get energy resources,
but also playing against the unpredictable behaviour of nature. Then, a classical
safety requirement amounts to ensuring system robustness, in the meaning that
the power system has to keep operating, possibly by rationing resources, despite
the loss of any single asset such as lines or power plants at any time [1,16]. This
is usually enforced by following a simple guiding redundancy principle while
developing the system: designers have to predict the effect of having any line
disconnected in any moment and cope with it, in real time and even at larger
scales [46]. This may also require the players to coordinate and/or play rational
while keeping the system under equilibrium [14].

Robust Alternating-Time Temporal Logic 3

Our Contribution In this paper we introduce rATL, a robust version of the logic
ATL. Our approach here follows and extends an approach originally introduced
for robust Linear Temporal Logic (rLTL) [52] and later extended to robust Com-
putation Tree Logic (rCTL and rCTL∗) [45]. To illustrate the robust semantics,
consider an invariant of the form p specifying that the proposition p always
holds. There are several ways this invariant can be violated, with varying degrees
of severity. For example, p failing to hold a finite number of times is less severe
than p failing infinitely often. An even worse situation is p holding only finitely
often while p not even holding once is the worst way to violate the invariant.
The authors in [52] argue that these five degrees are canonical and use them as
the basis of a five-valued robust semantics for temporal logics. The semantics of
the Boolean operators are then defined to capture the intuition that there are
different degrees of violation of a formula while the other temporal operators,
e.g., next and eventually, are defined as usual. In particular, the definition of
implications captures the idea that, in a specification of the form ϕ → ψ, a
“small” violation of an environment assumption ϕ must lead to only a “small”
(proportional) violation of a system’s guarantee ψ.

Here, we devise a meaningful robust semantics for the strategy quantifiers
to obtain a robust variant of ATL, and show that it is capable to reason about
the robustness of multi-agent systems. More precisely, rATL allows to assess
whether a strategy f of a coalition A is robust in the sense that, with respect
to the outcome of f , small violations of the adversarial team assumptions only
lead to small violations of A’s goals. We study expressiveness of rATL and show
that it strictly subsumes ATL, as rATL can express fairness. We also study the
model-checking and satisfiability problems for rATL and show that dealing with
robustness comes at no additional computational cost. Indeed, we show that
these problems are PTime-complete and ExpTime-complete, respectively. This
is in line with the results on rLTL and rCTL, for which model-checking and
satisfiability are also not harder than for LTL [52] and CTL [45], respectively.

Finally, we also study rATL∗, the robustification of ATL∗, showing that also
in this setting, robustness comes for free: model-checking and satisfiability for
rATL∗ are 2ExpTime-complete, as they are already for ATL∗ [5,49].

All proofs omitted due to space restrictions can be found in the appendix.

Related work There are several works done in formal strategic reasoning that
have been used (or can be easily adapted) to develop robust systems. Besides
those reported above, we recall the works dealing with strategy logics extended
with probabilistic [34,50,7] and knowledge (imperfect information) aspects [26].
These works allow to reason about the unpredictable behaviour of the environ-
ment. Unfortunately, in both cases, the model-checking problem becomes highly
undecidable, unless one restricts strategies to be memoryless. In the imperfect
information case, memoryfull strategies with less severe restrictions have been
also studied (e.g., hierarchical visibility [15] and public action [13]) although
model-checking remains infeasible, i.e., non-elementary, in practice.

Other lines of research have considered quantitative aspects of the logic, in
different directions. Bouyer et al. [18] considered a fuzzy extension of ATL∗,

4 Aniello Murano, Daniel Neider, and Martin Zimmermann

namely ATL∗[F]. The satisfaction value of ATL∗[F] formulas is a real value
in [0, 1], reflecting “how much” or “how well” the strategic on-going objectives of the
underlying agents are satisfied. In [18] a double exponential-time model-checking
procedure for ATL∗[F] is presented. A careful inspection of that procedure yields,
for the special case of ATL[F], an ExpTime-completeness result by means of
an exponential reduction to Büchi games. Faella, Napoli, and Parente [30] and
Aminof et al. [8] considered a graded extension of the logics ATL and ATL∗ with
the ability of checking for the existence of redundant winning strategies.

Module checking is another example of a formal method to devise robust
systems. Indeed, module checking amounts to checking whether a strategic
behaviour of a coalition of agents satisfies a goal, irrespective to all possible
nondeterministic behaviours of an external environment [38,35].

Finally, robustness is also an active field of study in reinforcement learning
[47], which treats environment mismatches as adversarial perturbations against
a coalition of agents. In the simplest version, the underlying model is a two-
player zero-sum simultaneous game between the protagonist who aims to find a
robust strategy across environments and the adversary who exerts perturbations.
Computational methods have been proposed to solve this game and to find a
robust strategy for the protagonist (see Pinto et al. [47] and the references therein).

2 Preliminaries

We denote the nonnegative integers by N, and the power set of a set S by 2S .
Throughout the paper, we fix a finite set AP of atomic propositions.

A concurrent game structure S = (St,Ag,Ac, δ, `) consists of a finite set St
of states, a finite set Ag of agents, a finite set Ac of actions, and a labeling
function ` : St→ 2AP. An action vector for a subset A ⊆ Ag is a mapping v : A→
Ac. Let AV denote the set of action vectors for the full set Ag of agents. The
transition function δ : St × AV → St maps a state and an action vector to a
state. The size of S is defined as |St×AV |.

We say that a state s′ is a successor of a state s if there is an action vector v ∈
AV such that s′ = δ(s, v). A path of S is an infinite sequence π = s0s1s2 · · · of
states such that sn+1 is a successor of sn for every n ≥ 0. We write π[n] for sn.

A strategy for an agent is a function f : St+ → Ac. Given a set FA = {fa | a ∈
A} of strategies, one for each agent in some set A ⊆ Ag, out(s, FA) denotes the
set of paths starting in s that are consistent with FA. Formally, a path s0s1s2 · · ·
is in out(s, FA) if s0 = s and for all n ≥ 0, there is an action vector v ∈ AV
with v(a) = fa(s0 · · · sn) for all a ∈ A and sn+1 = δ(sn, v). Intuitively, out(s, FA)
contains all paths that are obtained by the agents in A picking their actions
according to their strategies and the other agents picking their actions arbitrarily.

3 rATL

The basic idea underlying our robust version of ATL, or rATL for short, is
that a “small” violation of an environment assumption (along the outcome of

Robust Alternating-Time Temporal Logic 5

a strategy) must lead to only a “small” violation of a system’s guarantee. This
is obtained by devising a robust semantics for the strategy quantifiers and by
stating formally what it is meant for a “small” violations of a property. For the
latter, we follow and adapt the approach by Tabuada and Neider [52], initially
proposed for a robust version of Linear Temporal Logic (rLTL), and use five
truth values: 1111, 0111, 0011, 0001, and 0000. Let B4 denote the set of these
truth values. Our motivation for using the seemingly odd-looking truth values
in B4 is that they represent five canonical ways how a system guarantee of the
form “always p” (p in LTL) can be satisfied or violated. Clearly, we prefer
that p always holds, represented by the truth value 1111. However, if this is
impossible, the following best situation is that p holds at least almost always,
represented by 0111. Similarly, we would prefer p being satisfied at least infinitely
often, represented by 0011, over p being satisfied at least once, represented by
0001. Finally, the worst situation is that p never holds, represented by 0000. Put
slightly differently, the bits of each truth value represent (from left to right) the
modalities “always” (), “eventually always” (), “always eventually” (),
and “eventually” (). We refer the reader to Anevlavis et al. [11] for an in-depth
explanation of why these five ways are canonical.

Following the intuition above, we order the truth values in B4 by

1111 � 0111 � 0011 � 0001 � 0000.

This order spans a spectrum of truth values ranging from 1111, corresponding
to true, on one end, to 0000, corresponding to false, on the other end. Since
we arrived at the set B4 by considering the canonical ways of how the invariant
property p can fail, we interpret all truth values different from 1111 as shades
of false. We return to this interpretation when we later define the semantics for
the negation in rATL.

Having formally discussed how we “grade” the violation of a property along
paths, we are now ready to define the syntax of rATL via the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ→ ϕ | 〈〈A〉〉Φ | [[A]]Φ
Φ ::= ϕ | ϕ | ϕ

where p ranges over atomic propositions and A ranges over subsets of agents. We
distinguish between state formulas (those derivable from ϕ) and path formulas
(those derivable from Φ). If not specified, an rATL formula is a state formula.

Various critical remarks should be made concerning the syntax of rATL.
First, we add “dots” to temporal operators (following the notation by Tabuada
and Neider [52]) to distinguish between the original operators in ATL and their
robustified counterparts in rATL—otherwise, the syntax stays the same. Second,
many operators of rATL, most notably the negation and implication, can no
longer be derived via DeMorgan’s law or simple logical equivalencies due to
rATL’s many-valued nature. Hence, they need to be added explicitly. Third, we
omit the until and release operators here to avoid cluttering our presentation too
much. Both can be added easily, as in rLTL [10,9].

6 Aniello Murano, Daniel Neider, and Martin Zimmermann

We define the semantics of rATL by an evaluation function V that maps a
state formula and a state or a path formula and a path to a truth value in B4.
To simplify our presentation, we use b[k] as a shorthand notation for addressing
the k-th bit, k ∈ {1, 2, 3, 4}, of a truth value b = b1b2b3b4 ∈ B4 (i.e., b[k] = bk). It
is worth emphasizing that our semantics for rATL is a natural extension of the
Boolean semantics of ATL and is deliberately designed to generalize the original
Boolean semantics of ATL (see Subsection 3.3).

Turning to the definition of rATL’s semantics, let us begin with state formulas.
For atomic propositions p ∈ AP, we define the valuation function by

V (s, p) =

{
1111 if p ∈ `(s); and
0000 if p /∈ `(s).

Note that this definition mimics the semantics of ATL in that propositions
get mapped to one of the two truth values true (1111) or false (0000). As
a consequence, the notion of robustness in rATL does not arise from atomic
propositions (e.g., as in LTL[F] by Almagor, Boker, and Kupferman [4] or fuzzy
logics) but from the evolution of the temporal operators (see the semantics of
path formulas). This design choice is motivated by the observation that assigning
meaningful (robustness) values to atomic propositions is often highly challenging
in practice—if not impossible.

The semantics of conjunctions and disjunctions are defined as usual for
many-valued logics in terms of the functions min and max:

V (s, ϕ1 ∨ ϕ2) = max
(
V (s, ϕ1), V (s, ϕ2)

)
V (s, ϕ1 ∧ ϕ2) = min

(
V (s, ϕ1), V (s, ϕ2)

)
To define the semantics of negation, remember our interpretation of the truth

values in B4: 1111 corresponds to true and all other truth values correspond to
different shades of false. Consequently, we map 1111 to 0000 and all other truth
values to 1111. This idea is formalized by

V (s,¬ϕ) =

{
0000 if V (s, ϕ) = 1111; and
1111 if V (s, ϕ) ≺ 1111.

Note that the definition of V (s,¬ϕ) is not symmetric, which is in contrast to other
many-valued logics, such as LTL[F]. However, it degenerates to the standard
Boolean negation if one considers only two truth values.

Since our negation is defined in a non-standard way, we cannot recover
implication from negation and disjunction. Instead, we define the implication
a→ b by requiring that c ≺ a→ b if and only if min {a, c} ≺ b for every c ∈ B4.
This notion leads to

V (s, ϕ1 → ϕ2) =

{
1111 if V (s, ϕ1) � V (s, ϕ2); and
V (s, ϕ2) if V (s, ϕ1) � V (s, ϕ2).

Robust Alternating-Time Temporal Logic 7

Again, this definition collapses to the usual Boolean definition in case one considers
only two truth values.

We now provide the robust semantics for the strategy quantifiers, which are
the key ingredient in rATL. First, notice that the strategy quantifiers 〈〈·〉〉 and
[[·]] are not dual in our robustified version of ATL and require their individual
definitions. Intuitively, 〈〈A〉〉Φ is the largest truth value that the coalition A of
agents can enforce for the path formula Φ, while [[A]]Φ is the largest truth value
that Ag \A can enforce against A. Formally, we have the following:

– V (s, 〈〈A〉〉Φ) is the maximal truth value b ∈ B4 such that there is a set FA of
strategies, one for each agent in A, such that for all paths π ∈ out(s, FA) we
have V (π, Φ) � b.

– V (s, [[A]]Φ) is the maximal truth value b ∈ B4 such that for all sets FA of
strategies, one for each agent in A, there exists a path π ∈ out(s, FA) with
V (π, Φ) � b.

Let us now turn to the semantics of path formulas. We begin with the -
operator. This operator captures the five canonical ways an invariant property
“always p” can be satisfied or violated, thereby implementing the intuition we
have presented at the beginning of this section. Formally, the valuation function
V (π, ϕ) is given by V (π, ϕ) = b1b2b3b4 where

b1 = mini≥0 V (π[i], ϕ)[1], b3 = mini≥0 maxj≥i V (π[j], ϕ)[3],

b2 = maxi≥0 minj≥i V (π[j], ϕ)[2], b4 = maxi≥0 V (π[i], ϕ)[4]).

Note that for p ∈ AP and a path π, the semantics of the formula p on π
amounts to the four-tuple (p, p, p, p) because V (s, p) is either 0000
or 1111 on every state s along π (i.e., all bits are either 0 or 1). However, the
interpretation of V (π, ϕ) becomes more involved once the formula ϕ is nested
since the semantics of the -operator refers to individual bits of V (π, ϕ).

Finally, the semantics for the -operator and -operator are straightforward
as there are only two possible outcomes: either the property is satisfied, or it is
violated. Consequently, we define the valuation function by

– V (π, ϕ) = b1b2b3b4 with bk = maxi≥0 V (π[i], ϕ)[k]; and
– V (π, ϕ) = b1b2b3b4 with bk = V (π[1], ϕ)[k].

Again, note that both V (π, ϕ) and V (π, ϕ) refer to individual bits of V (π, ϕ).

Example 1. Consider the formula ϕ = 〈〈A〉〉 p. We have

– V (s, ϕ) = 1111 if the coalition A has a (joint) strategy to ensure that p holds
at every position of every outcome.

– V (s, ϕ) = 0111 if the coalition A has strategy to ensure that p holds at all
but finitely many positions of every outcome.

– V (s, ϕ) = 0011 if the coalition A has strategy to ensure that p holds at
infinitely many positions of every outcome.

– V (s, ϕ) = 0001 if the coalition A has strategy to ensure that p holds at least
once on every outcome.

8 Aniello Murano, Daniel Neider, and Martin Zimmermann

3.1 rATL Model-Checking

The model-checking problem for rATL is as follows: Given a concurrent game
structure S, a state s, an rATL formula ϕ, and a truth value t ∈ B4, is V (s, ϕ) � t?

Theorem 1. rATL model-checking is PTime-complete.

The proof is based on capturing the semantics of the strategy quantifiers 〈〈A〉〉
and [[A]] by sequential two-player games, one player representing the agents in
A and the other representing the agents in the complement of A. We begin by
introducing the necessary background on such games.

A (sequential) two-player game structure S = (St, St1, St2, Ac1, Ac2, δ) con-
sists of a set St of states partitioned into the states Stp ⊆ St of Player p ∈ {1, 2},
an action set Acp for Player p ∈ {1, 2}, and a transition function δ : St1 ×Ac1 ∪
St2 × Ac2 → St. The size of S is |St1 × Ac1 ∪ St2 × Ac2|. A path of S is an
infinite sequence s0s1s2 · · · of states such that sn+1 = δ(sn, α) for some action α.
A strategy for Player 1 is a mapping f : St∗St1 → Ac1. A path s0s1s2 · · · is an
outcome of f starting in s, if s0 = s and sn+1 = δ(sn, f(s0 · · · sn)) for all n ≥ 0
such that sn ∈ St1. A two player game G = (S,Win) consists of a two-player
game structure S and a winning condition Win ⊆ Stω, where St is the set of
states of S. We say that a strategy f for Player 1 is a winning strategy for G
from a state s, if every outcome of f starting in s is in Win.

Given a concurrent game structure S = (St,Ag,Ac, δ, `) and A ⊆ Ag, we
define the two-player game structure SA = (St1∪St2, St1, St2, Ac1, Ac2, δ′) where
St1 = St and St2 = St×Ac1, Ac1 is the set of action vectors for A, Ac2 is the
set of action vectors for Ag \ A, δ′(s, v) = (s, v) for s ∈ St1 and v ∈ Ac1, and
δ′((s, v), v′) = δ(s, v⊕v′) for (s, v) ∈ St2 and v′ ∈ Ac2, where v⊕v′ is the unique
action vector for Ag induced by v and v′. Note that the size of SA is at most
linear in the size of S.

A path in SA alternates between states of S and auxiliary states (those in
St×Ac1), i.e., it is in (St · (St×Ac1))ω. Thus, when translating paths between
S and SA, only states at even positions are relevant (assuming we start the
path in SA in St). Hence, given a property P ⊆ Stω of paths in S, we extend it
to the corresponding winning condition P ′ = {s0s1s2 · · · ∈ (St · (St × Ac1))ω |
s0s2s4 · · · ∈ P} of paths in SA.

The next lemma reduces the (non-) existence of strategies that allow a set A
of agents to enforce a property in S (which formalize the semantics of 〈〈A〉〉 and
[[A]]) to the (non-) existence of winning strategies for Player 1 in SA. It derives
from results of de Alfaro and Henzinger [2] for concurrent ω-regular games.

Lemma 1. Let S be a concurrent game structure with set St of states containing
s, let A be a subset of its agents, and let P ⊆ Stω.

1. There is a set FA of strategies, one for each agent a ∈ A, such that
out(s, FA) ⊆ P iff Player 1 has a winning strategy for (SA, P ′) from s.

2. For all sets FA of strategies, one for each agent a ∈ A, out(s, FA) ∩ P 6= ∅
iff Player 1 does not have a winning strategy for (SA, (Stω \ P)′) from s.

Robust Alternating-Time Temporal Logic 9

In the following, we consider the following winning conditions for a two-player
game played in SA, all induced by a set F ⊆ St of states:

Next(F) = {s0s1s2 · · · ∈ (St · (St×Ac1))ω | s2 ∈ F}
Reach(F) = {s0s1s2 · · · ∈ (St · (St×Ac1))ω | sn ∈ F for some even n}
Safety(F) = {s0s1s2 · · · ∈ (St · (St×Ac1))ω | sn ∈ F for all even n}
Büchi(F) = {s0s1s2 · · · ∈ (St · (St×Ac1))ω |

sn ∈ F for infinitely many even n}
coBüchi(F) = {s0s1s2 · · · ∈ (St · (St×Ac1))ω |

sn ∈ F for all but finitely many even n}

Again, note that these conditions only refer to even positions, as they will be
used to capture a property of paths in S, i.e., the auxiliary states are irrelevant.

Collectively, we refer to games with any of the above winning conditions as
NRSBC games. The following result is a generalization of standard results on
infinite games (see, e.g., Grädel, Thomas, and Wilke [32]) that accounts for the
fact that only states at even positions are relevant.

Proposition 1. The following problem is in PTime: Given an NRSBC game G
and a state s, does Player 1 have a winning strategy for G from s?

Proof of Theorem 1. Consider a concurrent game structure S with set St of states
and an rATL formula ϕ. We show how to inductively compute the satisfaction
sets Sat(ϕ′, t) = {s ∈ St | V (s, ϕ′) � t} for all (state) subformulas ϕ′ of ϕ and
all truth values t ∈ B4. Note that Sat(ϕ′, 0000) = St for all formulas ϕ′, so these
sets can be computed trivially.

The cases of atomic propositions and Boolean connectives follow straightfor-
wardly from the definition of their semantics (cp. the semantics of rCTL [45]),
so we focus on the case of formulas of the form 〈〈A〉〉Φ or [[A]]Φ. Note that we
only have to consider three cases for Φ, e.g., Φ = ϕ′, Φ = ϕ′, and Φ = ϕ′

for some state formula ϕ′. The following characterizations are consequences of
Lemma 1:

– s ∈ Sat(〈〈A〉〉 ϕ′, t) if and only if Player 1 has a winning strategy for
(SA,Next(Sat(ϕ′, t))) from s.

– s ∈ Sat(〈〈A〉〉 ϕ′, t) if and only if Player 1 has a winning strategy for
(SA,Reach(Sat(ϕ′, t))) from s.

– s ∈ Sat(〈〈A〉〉 ϕ′, 1111) if and only if Player 1 has a winning strategy for
(SA,Safety(Sat(ϕ′, 1111))) from s.

– s ∈ Sat(〈〈A〉〉 ϕ′, 0111) if and only if Player 1 has a winning strategy for
(SA, coBüchi(Sat(ϕ′, 0111))) from s.

– s ∈ Sat(〈〈A〉〉 ϕ′, 0011) if and only if Player 1 has a winning strategy for
(SA,Büchi(Sat(ϕ′, 0011))) from s.

– s ∈ Sat(〈〈A〉〉 ϕ′, 0001) if and only if Player 1 has a winning strategy for
(SA,Reach(Sat(ϕ′, 0001))) from s.

10 Aniello Murano, Daniel Neider, and Martin Zimmermann

Analogously, the satisfaction of formulas [[A]]Φ can be characterized by the
non-existence of winning strategies for Player 1, relying on the duality of the
reachability (Büchi) and safety (coBüchi) winning conditions and the self-duality
of the winning condition capturing the next operator. For example, we have
s ∈ Sat([[A]] ϕ′, t) if and only if Player 1 does not have a winning strategy for
(SA,Next(St \ Sat(ϕ′, t))) from s.

Now, to solve the model-checking problem with inputs S, ϕ, s and t, we
inductively compute all satisfaction sets Sat(ϕ′, t′) and check whether s is in
Sat(ϕ, t). Using Proposition 1 and the fact that each NRSBC game we have to
solve during the computation is of linear size (in |S|), these O(|ϕ| · |S|) many
sets can be computed in polynomial time, where |ϕ| is the number of state
subformulas of ϕ.

Finally, the lower bound follows from the PTime-hardness of CTL model-
checking [24], which is a fragment of rATL (see Subsection 3.3). Furthermore, let
us note that the PTime lower bound for CTL model-checking already holds for
fragment without until and release [37] (recall that we do not include until and
release in rATL for the sake of simplicity).

3.2 rATL Satisfability

This subsection considers the satisfiability problem for rATL, which is stated as
follows: Given an rATL formula ϕ and a truth value t ∈ B4, is there a concurrent
game structure S with a state s such that V (s, ϕ) � t?

Theorem 2. rATL satisfiability is ExpTime-complete.

Proof sketch. The upper bound is proven by embedding rATL into the alternating
µ-calculus while the lower bound already holds for CTL, a fragment of rATL.

3.3 Expressiveness

The main impetus for introducing rATL is to devise a robust generalization of
ATL as a powerful formalism to deal with robust strategic reasoning in multi-agent
systems. A natural question is to state the expressive power of rATL with respect
to ATL and the robust version of CTL (rCTL) [45]. In this subsection, we show
that both ATL and rCTL can be embedded into rATL, i.e., rATL generalizes
both of these logics. Furthermore, we show that rATL is strictly more expressive
than both of them. We begin by comparing rATL and ATL, and show first that
rATL is at least as expressive as ATL, witnessing that our robust extension is
set up correctly. This fact is formalized in the lemma below, intuitively stating
that the first bit of the evaluation function captures the semantics of ATL.

Lemma 2. Let ϕ be an ATL formula. Then, there exists an rATL formula ϕ?
such that for every concurrent game structure S and all states s of S: V (s, ϕ?) =
1111 if and only if S, s |= ϕ.

Robust Alternating-Time Temporal Logic 11

Proof sketch. We obtain the rATL formula ϕ? as follows: First, we eliminate
every implication ϕ1 → ϕ2 in the ATL formula ϕ by replacing it with the
expression ¬ϕ1 ∨ ϕ2. Second, we bring the formula into negation normal form by
pushing all negations inwards to the level of atomic propositions. Finally, we dot
all the temporal operators to obtain the rATL formula ϕ?. The claim of Lemma 2
can then be shown by induction over the structure of ϕ.

As we have observed above with Example 1, rATL is able to express basic
forms of fairness such as "for a given structure S there exists a strategy for
a coalition of agents A such that a certain property p holds infinitely often".
Formally this corresponds to the formula ϕ = 〈〈A〉〉 p with V (s, ϕ) � 0011.
As shown by Alur, Henzinger, and Kupferman [5], such a property cannot be
expressed in ATL, but rather requires the more expressive logic ATL∗. Indeed,
it corresponds to the ATL∗ formula ϕ = 〈〈A〉〉 p. So, by using the result
reported in Lemma 2, the following holds.

Theorem 3. rATL is strictly more expressive than ATL.

Now, we compare rATL and rCTL: The latter logic is obtained by robustifying
CTL along the same lines as described in Section 3 (see [45] for detailed defini-
tions). Let us just remark that rCTL formulas, as CTL formulas, are evaluated
over Kripke structures by means of a valuation function VrCTL. Thus, to compare
the expressiveness of both logics, as usual, we have to interpret a Kripke structure
as a (one-agent) concurrent game structure. We start by showing that rATL is
at least as expressive as rCTL, just as ATL is at least as expressive as CTL.

Lemma 3. Let ϕ be an rCTL formula. Then, there exists an rATL formula ϕ?
such that for every Kripke structure K the following holds for all states s of K:
V (s, ϕ?) = VrCTL(s, ϕ).

Proof sketch. Our construction proceeds as follows: First, we turn a Kripke
structure K into a concurrent game structure with one agent a, having the same
states and state labels, a suitable set of actions, and a transition function δ such
that there is a transition in K from s to s′ if and only if s′ = δ(s, α) for some
action α. Second, we replace each existential path quantifier ∃ in ϕ by 〈〈{a}〉〉 and
each universal path quantifier ∀ by 〈〈∅〉〉, obtaining the rATL formula ϕ?. The
claim of Lemma 3 can then be shown by induction over the structure of ϕ.

Now, we recall that Alur, Henzinger, and Kupferman [5] have observed that
in ATL there are formulas that cannot be expressed in CTL. The reason is that,
given a concurrent game structure, CTL can only reason about a single path (with
the existential modality) or all paths (with the universal modality). Conversely,
ATL can reason about an arbitrary number of paths by means of strategies. The
same argument can be extend to rATL and rCTL. Thus, by putting together
this observation with the statement of Lemma 3, the following holds.

Theorem 4. rATL is strictly more expressive than rCTL.

12 Aniello Murano, Daniel Neider, and Martin Zimmermann

Notice that the argument that rATL formulas expressing fairness properties
such as "infinitely often" cannot be expressed in ATL (used in Theorem 3 for
the strict containment of ATL in rATL) can also be applied to rCTL. Similarly,
the argument used above to show that rATL formulas cannot be translated into
rCTL (used in Theorem 4 for the strict containment of rCTL in rATL) can also
be applied to ATL. This leads to the following corollary.

Corollary 1. ATL and rCTL are incomparable.

4 Robust ATL*

Just as one generalizes CTL, rCTL, and ATL by allowing nesting of temporal op-
erators in the scope of a single path/strategy quantifier (obtaining CTL∗, rCTL∗,
and ATL∗, respectively), we now study rATL∗, the analogous generalization of
rATL. Again, we will prove that adding robustness comes for free.

The formulas of rATL∗ are given by the grammar

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ→ ϕ | 〈〈A〉〉Φ | [[A]]Φ
Φ ::= ϕ | ¬Φ | Φ ∨ Φ | Φ ∧ Φ | Φ→ Φ | Φ | Φ | Φ

where p ranges over atomic propositions and A over subsets of agents. Again, we
distinguish between state formulas (those derivable from ϕ) and path formulas
(those derivable from Φ). If not specified, an rATL∗ formula is a state formula.

The semantics of rATL∗ are again defined via an evaluation function V that
maps a state formula and a state or a path formula and a path to a truth value
in B4. The cases for state formulas are defined as for rATL and we define for
every path π, every state formula ϕ, and all path formulas Φ1 and Φ2

– V (π, ϕ) = V (π[0], ϕ),

– V (π,¬Φ) =

{
0000 if V (π, Φ) = 1111,
1111 if V (π, Φ) ≺ 1111,

– V (π, Φ1 ∨ Φ2) = max
(
V (π, Φ1), V (π, Φ2)

)
,

– V (π, Φ1 ∧ Φ2) = min
(
V (π, Φ1), V (π, Φ2)

)
,

– V (π, Φ1 → Φ2) =

{
1111 if V (π, Φ1) � V (π, Φ2),
V (π, Φ2) if V (π, Φ1) � V (s, Φ2),

– V (π, Φ) = b1b2b3b4 with bk = V (π[1], Φ)[k],
– V (π, Φ) = b1b2b3b4 with bk = maxi≥0 V (π[i], Φ)[k], and
– V (π, Φ) = b1b2b3b4 where

b1 = mini≥0 V (π[i], Φ)[1], b3 = mini≥0 maxj≥i V (π[j], Φ)[3],

b2 = maxi≥0 minj≥i V (π[j], Φ)[2], b4 = maxi≥0 V (π[i], Φ)[4]).

We show that every rATL∗ formula (w.r.t. a fixed truth value) can be trans-
lated into an equivalent ATL∗ formula of polynomial size. This allows us to
settle the complexity of rATL∗ model-checking and satisfiability as well as the
expressiveness of rATL∗. Below, |= denotes the ATL∗ satisfaction relation [5].

Robust Alternating-Time Temporal Logic 13

Lemma 4. For every rATL∗ formula ϕ and every truth value t ∈ B4, there is
an ATL∗ formula ϕt such that V (s, ϕ) � t if and only if S, s |= ϕt. Furthermore,
the function mapping ϕ and t to ϕt is polynomial-time computable.

The rATL∗ model-checking and satisfiability problems are defined as their
counterparts for rATL. Both model-checking and satisfiability for ATL∗ are
2ExpTime-complete [5,49]. Due to Lemma 4, we obtain the same results for
rATL∗, thereby showing that adding robustness comes indeed for free.

Theorem 5. The rATL∗ model-checking problem and the rATL∗ satisfiability
problem are both 2ExpTime-complete.

Another consequence of the translation from rATL∗ to ATL∗ and the fact
that ATL∗ is a fragment of rATL∗ is that both logics are equally expressive.

Corollary 2. rATL∗ and ATL∗ are equally expressive.

5 A Practical Example

Let us consider a smart grid with a set U of utility companies and a set C of
consumers. Assume that for every consumer c ∈ C there is a proposition `c
indicating that c’s energy consumption is within the pre-agreed limit. Conversely,
c’s consumption is higher than the limit if `c is violated. Furthermore, there is
a proposition “stable” that holds true if and only if the grid is stable (i.e., the
utility companies coordinate to provide the right amount of electricity).

Let us now consider the ATL∗ formula

〈〈U〉〉[[C]](
∧

c∈C
`c)→ stable.

This formula expresses that the utility companies U have a strategy such that no
matter how the consumers behave, the following is satisfied: if each consumer’s
consumption always stays within their limit, then the utility companies keep the
grid always stable. However, this specification is not robust and provides only
limited information when satisfied: even if a single consumer exceeds their limit
once, there is no further obligation on the utility companies, and the formula is
satisfied independently of whether the grid is always stable or not.

So, let us illustrate how the rATL∗ formula

ϕ = 〈〈U〉〉[[C]](
∧

c∈C
`c)→ stable

does capture robustness. To this end, assume for now that ϕ evaluates to 1111.
Then, there is a strategy for U such that for all outcomes π that are consistent
with that strategy, the following holds:

– If
∧
c∈C `c holds in every position of π, i.e.,

∧
c∈C `c evaluates to 1111 then

by the semantics of → the formula stable also evaluates to 1111. This
means the proposition “stable” also holds in every position. Therefore, the
grid supply is always stable. Hence, the desired goal is retained when the
assumption regarding the consumers holds with no violation. Note that this
is equivalent to what the original ATL∗ formula above expresses.

14 Aniello Murano, Daniel Neider, and Martin Zimmermann

– Assume now that the consumer assumption
∧
c∈C `c is violated finitely many

times, i.e., finitely often some consumer violates their consumption limit. This
means that the formula

∧
c∈C `c evaluates to 0111. Then, by the semantics

of rATL∗, stable evaluates to 0111 or higher, which means that “stable”
holds at every state, except for a finite number of times. So, the degree of
violation of the guarantee required by U is at most the degree of violation of
the assumptions on the consumers.

– Similarly, if
∧
c∈C `c holds infinitely (finitely) often, then stable holds

infinitely (finitely) often.

If the formula ϕ evaluates to 1111, then U has a strategy that does not be-
have arbitrarily in case the assumption

∧
c∈C `c fails, but instead satisfies the

guarantee stable to at least the same degree that the guarantee holds.
Finally, even if ϕ evaluates to a truth value t ≺ 1111, this reveals crucial infor-

mation about U ’s ability to guarantee a stable grid, i.e., the premise
∧
c∈C `c

evaluates to some truth value t′ � t while the conclusion “stable” evaluates to t.

6 Discussion and Future Work

This paper introduces rATL and rATL∗, the first logic formalisms able to deal
with robust strategic reasoning in multi-agent systems. As we have shown along
the paper, rATL results to be very expressive, useful in practice, and not more
costly than the subsumed logics ATL and rCTL. Similarly, rATL∗ is not more
costly than the subsumed logic ATL∗.

The positive results about rATL represent the foundation for a number of
useful extensions, mainly by extending robustness to logics for strategic reasoning
that are more expressive than ATL and ATL∗ such as Strategy Logic [44] and the
like. Notably, Strategy Logic is much more expressive than ATL∗ [5]. Indeed it
can express several game-theoretic concepts including Nash Equilibria over LTL
goals. Interestingly, the formula expressing Nash Equilibria uses an implication.
In words the formula says that n agents’ strategies σ1, . . . , σn form an equilibrium
if, for every agent, it holds that whenever by unilaterally changing her strategy
the goal is also satisfied, then it implies that the goal is satisfied with the original
tuple of strategies as well. Robustness in Strategy Logic (by means of rLTL goals
in place of LTL) then allows to define a stronger notion of Nash Equilibrium.

Another interesting direction for future work is to come up with an implemen-
tation of the model-checking procedure for rATL, possibly by extending existing
tools such as MCMAS [41,20].

Acknowledgments. This research has been supported by the PRIN project RIPER
(No. 20203FFYLK), the PNRR MUR project PE0000013-FAIR, the InDAM
project “Strategic Reasoning in Mechanism Design”, and DIREC - Digital Re-
search Centre Denmark. Furthermore, this work has been financially supported
by Deutsche Forschungsgemeinschaft, DFG Project numbers 434592664 and
459419731, and the Research Center Trustworthy Data Science and Security
(https://rc-trust.ai), one of the Research Alliance centers within the UA Ruhr
(https://uaruhr.de).

Robust Alternating-Time Temporal Logic 15

References

1. Afzal, S., Mokhlis, H., Illias, H.A., Mansor, N.N., Shareef, H.: State-of-the-art
review on power system resilience and assessment techniques. IET Generation,
Transmission & Distribution 14(25), 6107–6121 (2020)

2. de Alfaro, L., Henzinger, T.A.: Concurrent omega-regular games. In: LICS 2000. pp.
141–154. IEEE Computer Society (2000). https://doi.org/10.1109/LICS.2000.
855763

3. de Alfaro, L., Henzinger, T.A., Majumdar, R.: From verification to control: Dynamic
programs for omega-regular objectives. In: LICS 2001. pp. 279–290. IEEE (2001)

4. Almagor, S., Boker, U., Kupferman, O.: Formally reasoning about quality. J. ACM
63(3), 24:1–24:56 (2016). https://doi.org/10.1145/2875421

5. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. ACM
49(5), 672–713 (2002). https://doi.org/10.1145/585265.585270

6. Alur, R., Torre, S.L., Madhusudan, P.: Playing games with boxes and diamonds.
In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 127–141.
Springer (2003). https://doi.org/10.1007/978-3-540-45187-7_8

7. Aminof, B., Kwiatkowska, M., Maubert, B., Murano, A., Rubin, S.: Probabilistic
strategy logic. In: Kraus, S. (ed.) IJCAI 2019. pp. 32–38. ijcai.org (2019). https:
//doi.org/10.24963/ijcai.2019/5

8. Aminof, B., Malvone, V., Murano, A., Rubin, S.: Graded modalities in strategy
logic. Information and Computation 261, 634–649 (2018)

9. Anevlavis, T., Neider, D., Philippe, M., Tabuada, P.: Evrostos: the rLTL verifier.
In: Ozay, N., Prabhakar, P. (eds.) HSCC 2019. pp. 218–223. ACM (2019). https:
//doi.org/10.1145/3302504.3311812

10. Anevlavis, T., Philippe, M., Neider, D., Tabuada, P.: Verifying rLTL formulas:
now faster than ever before! In: CDC 2018. pp. 1556–1561. IEEE (2018). https:
//doi.org/10.1109/CDC.2018.8619014

11. Anevlavis, T., Philippe, M., Neider, D., Tabuada, P.: Being correct is not enough:
Efficient verification using robust linear temporal logic. ACM Trans. Comput. Log.
23(2), 8:1–8:39 (2022). https://doi.org/10.1145/3491216

12. Belardinelli, F., Jamroga, W., Kurpiewski, D., Malvone, V., Murano, A.: Strategy
logic with simple goals: Tractable reasoning about strategies. In: Kraus, S. (ed.)
IJCAI 2019. pp. 88–94. ijcai.org (2019). https://doi.org/10.24963/ijcai.2019/
13

13. Belardinelli, F., Lomuscio, A., Murano, A., Rubin, S.: Verification of multi-agent
systems with public actions against strategy logic. Artificial Intelligence 285, 103302
(2020)

14. Belhaiza, S., Baroudi, U.: A game theoretic model for smart grids demand manage-
ment. IEEE Transactions on Smart Grid 6(3), 1386–1393 (2014)

15. Berthon, R., Maubert, B., Murano, A., Rubin, S., Vardi, M.Y.: Strategy logic with
imperfect information. ACM Transactions on Computational Logic (TOCL) 22(1),
1–51 (2021)

16. Bevrani, H.: Robust power system frequency control, vol. 4. Springer (2014)
17. Bloem, R., Chatterjee, K., Greimel, K., Henzinger, T.A., Jobstmann, B.: Robustness

in the presence of liveness. In: CAV 2010. pp. 410–424. Springer (2010)
18. Bouyer, P., Kupferman, O., Markey, N., Maubert, B., Murano, A., Perelli, G.:

Reasoning about quality and fuzziness of strategic behaviors. ACM Trans. Comput.
Log. 24(3), 21:1–21:38 (2023)

https://doi.org/10.1109/LICS.2000.855763
https://doi.org/10.1109/LICS.2000.855763
https://doi.org/10.1109/LICS.2000.855763
https://doi.org/10.1109/LICS.2000.855763
https://doi.org/10.1145/2875421
https://doi.org/10.1145/2875421
https://doi.org/10.1145/585265.585270
https://doi.org/10.1145/585265.585270
https://doi.org/10.1007/978-3-540-45187-7_8
https://doi.org/10.1007/978-3-540-45187-7_8
https://doi.org/10.24963/ijcai.2019/5
https://doi.org/10.24963/ijcai.2019/5
https://doi.org/10.24963/ijcai.2019/5
https://doi.org/10.24963/ijcai.2019/5
https://doi.org/10.1145/3302504.3311812
https://doi.org/10.1145/3302504.3311812
https://doi.org/10.1145/3302504.3311812
https://doi.org/10.1145/3302504.3311812
https://doi.org/10.1109/CDC.2018.8619014
https://doi.org/10.1109/CDC.2018.8619014
https://doi.org/10.1109/CDC.2018.8619014
https://doi.org/10.1109/CDC.2018.8619014
https://doi.org/10.1145/3491216
https://doi.org/10.1145/3491216
https://doi.org/10.24963/ijcai.2019/13
https://doi.org/10.24963/ijcai.2019/13
https://doi.org/10.24963/ijcai.2019/13
https://doi.org/10.24963/ijcai.2019/13

16 Aniello Murano, Daniel Neider, and Martin Zimmermann

19. Bouyer, P., Markey, N., Reynier, P.A.: Robust analysis of timed automata via
channel machines. In: FOSSCAS 2008. pp. 157–171. Springer (2008)

20. Cermák, P., Lomuscio, A., Murano, A.: Verifying and synthesising multi-agent
systems against one-goal strategy logic specifications. In: Bonet, B., Koenig, S.
(eds.) Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,
January 25-30, 2015, Austin, Texas, USA. pp. 2038–2044. AAAI Press (2015)

21. Chaaban, Y., Müller-Schloer, C.: A survey of robustness in multi-agent systems. In:
Cognitive13, Fifth International Conference on Advanced Cognitive Technologies
and Applications. pp. 7–13 (2013)

22. Chatterjee, K., Henzinger, T.A., Piterman, N.: Strategy logic. Information and
Computation 208(6), 677–693 (2010). https://doi.org/10.1016/j.ic.2009.07.
004

23. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching-time temporal logic. In: Kozen, D. (ed.) Logics of Programs,
Workshop, Yorktown Heights, New York, USA, May 1981. pp. 52–71. Springer
(1981). https://doi.org/10.1007/BFb0025774

24. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program. Lang.
Syst. 8(2), 244–263 (1986). https://doi.org/10.1145/5397.5399

25. Dallal, E., Neider, D., Tabuada, P.: Synthesis of safety controllers robust to unmod-
eled intermittent disturbances. In: CDC 2016. pp. 7425–7430. IEEE (2016)

26. Dima, C., Tiplea, F.L.: Model-checking ATL under imperfect information and
perfect recall semantics is undecidable. arXiv preprint arXiv:1102.4225 (2011)

27. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: FORMATS 2010. pp. 92–106. Springer (2010)

28. Doyen, L., Henzinger, T.A., Legay, A., Nickovic, D.: Robustness of sequential
circuits. In: ACSD 2010. pp. 77–84. IEEE (2010)

29. Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the
temporal logic of branching time. J. Comput. Syst. Sci. 30(1), 1–24 (1985).
https://doi.org/10.1016/0022-0000(85)90001-7

30. Faella, M., Napoli, M., Parente, M.: Graded alternating-time temporal logic. Fun-
damenta Informaticae 105(1-2), 189–210 (2010)

31. French, T., Cabe-Dansted, M., John, C., Reynolds, M.: A temporal logic of robust-
ness. In: International Symposium on Frontiers of Combining Systems. pp. 193–205.
Springer (2007)

32. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games: A
Guide to Current Research, LNCS, vol. 2500. Springer (2002). https://doi.org/
10.1007/3-540-36387-4

33. Hassan, S.R.M., Hasan, N., Siddique, M.A., Fahim, K.S., Rahman, R., Iftekhar,
L.: Incorporating multi-agent systems technology in power and energy systems of
bangladesh: A feasibility study. In: ICREST 2021. pp. 342–347. IEEE (2021)

34. Huang, X., Luo, C.: A logic of probabilistic knowledge and strategy. In: AAMAS.
pp. 845–852. Citeseer (2013)

35. Jamroga, W., Murano, A.: On module checking and strategies. In: AAMAS 2014.
pp. 701–708 (2014)

36. Kaur, D., Uslu, S., Rittichier, K.J., Durresi, A.: Trustworthy artificial intelligence:
a review. ACM Computing Surveys (CSUR) 55(2), 1–38 (2022)

37. Krebs, A., Meier, A., Mundhenk, M.: The model checking fingerprints of CTL
operators. Acta Informatica 56(6), 487–519 (2019). https://doi.org/10.1007/
s00236-018-0326-9

https://doi.org/10.1016/j.ic.2009.07.004
https://doi.org/10.1016/j.ic.2009.07.004
https://doi.org/10.1016/j.ic.2009.07.004
https://doi.org/10.1016/j.ic.2009.07.004
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1145/5397.5399
https://doi.org/10.1145/5397.5399
https://doi.org/10.1016/0022-0000(85)90001-7
https://doi.org/10.1016/0022-0000(85)90001-7
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/s00236-018-0326-9
https://doi.org/10.1007/s00236-018-0326-9
https://doi.org/10.1007/s00236-018-0326-9
https://doi.org/10.1007/s00236-018-0326-9

Robust Alternating-Time Temporal Logic 17

38. Kupferman, O., Vardi, M.Y., Wolper, P.: Module checking. Information and Com-
putation 164(2), 322–344 (2001)

39. Laroussinie, F., Markey, N.: Augmenting ATL with strategy contexts. Information
and Computation 245, 98–123 (2015). https://doi.org/10.1016/j.ic.2014.12.
020

40. Lempert, R.J., Schlesinger, M.E.: Robust strategies for abating climate change.
Climatic Change 45(3-4), 387–401 (2000)

41. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: an open-source model checker for
the verification of multi-agent systems. Int. J. Softw. Tools Technol. Transf. 19(1),
9–30 (2017). https://doi.org/10.1007/s10009-015-0378-x

42. Meier, A., Mundhenk, M., Thomas, M., Vollmer, H.: The complexity of satisfiability
for fragments of CTL and CTL*. In: Halava, V., Potapov, I. (eds.) RP 2008. ENTCS,
vol. 223, pp. 201–213. Elsevier (2008). https://doi.org/10.1016/j.entcs.2008.
12.040

43. Modas, A., Sanchez-Matilla, R., Frossard, P., Cavallaro, A.: Toward robust sens-
ing for autonomous vehicles: An adversarial perspective. IEEE Signal Processing
Magazine 37(4), 14–23 (2020)

44. Mogavero, F., Murano, A., Perelli, G., Vardi, M.Y.: Reasoning about strategies: On
the model-checking problem. ACM Trans. Comput. Log. 15(4), 34:1–34:47 (2014).
https://doi.org/10.1145/2631917

45. Nayak, S.P., Neider, D., Roy, R., Zimmermann, M.: Robust computation tree
logic. In: NFM 2022. pp. 538–556. Springer (2022). https://doi.org/10.1007/
978-3-031-06773-0_29

46. Omnes, L., Marot, A., Donnot, B.: Adversarial training for a continuous robustness
control problem in power systems. In: 2021 IEEE Madrid PowerTech. pp. 1–6. IEEE
(2021)

47. Pinto, L., Davidson, J., Sukthankar, R., Gupta, A.: Robust adversarial reinforcement
learning. In: International Conference on Machine Learning. pp. 2817–2826. PMLR
(2017)

48. Sampaio, R.F., Melo, L.S., Leão, R.P., Barroso, G.C., Bezerra, J.R.: Automatic
restoration system for power distribution networks based on multi-agent systems.
IET Generation, Transmission & Distribution 11(2), 475–484 (2017)

49. Schewe, S.: ATL* satisfiability is 2EXPTIME-complete. In: Aceto, L., Damgård,
I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.)
ICALP 2008, Part II. LNCS, vol. 5126, pp. 373–385. Springer (2008). https:
//doi.org/10.1007/978-3-540-70583-3_31

50. Schnoor, H.: Epistemic and probabilistic ATL with quantification and explicit
strategies. In: ICAART. pp. 131–148. Springer (2013)

51. Singh, V.P., Kishor, N., Samuel, P.: Distributed multi-agent system-based load
frequency control for multi-area power system in smart grid. IEEE Transactions on
Industrial Electronics 64(6), 5151–5160 (2017)

52. Tabuada, P., Neider, D.: Robust linear temporal logic. In: CSL 2016. LIPIcs,
vol. 62, pp. 10:1–10:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016).
https://doi.org/10.4230/LIPIcs.CSL.2016.10

53. Veres, S.M., Molnar, L., Lincoln, N.K., Morice, C.P.: Autonomous vehicle control
systems—a review of decision making. Proceedings of the Institution of Mechanical
Engineers, Part I: Journal of Systems and Control Engineering 225(2), 155–195
(2011)

54. Walther, D., Lutz, C., Wolter, F., Wooldridge, M.: ATL satisfiability is indeed
EXPTIME-complete. Journal of Logic and Computation 16(6), 765–787 (2006)

https://doi.org/10.1016/j.ic.2014.12.020
https://doi.org/10.1016/j.ic.2014.12.020
https://doi.org/10.1016/j.ic.2014.12.020
https://doi.org/10.1016/j.ic.2014.12.020
https://doi.org/10.1007/s10009-015-0378-x
https://doi.org/10.1007/s10009-015-0378-x
https://doi.org/10.1016/j.entcs.2008.12.040
https://doi.org/10.1016/j.entcs.2008.12.040
https://doi.org/10.1016/j.entcs.2008.12.040
https://doi.org/10.1016/j.entcs.2008.12.040
https://doi.org/10.1145/2631917
https://doi.org/10.1145/2631917
https://doi.org/10.1007/978-3-031-06773-0_29
https://doi.org/10.1007/978-3-031-06773-0_29
https://doi.org/10.1007/978-3-031-06773-0_29
https://doi.org/10.1007/978-3-031-06773-0_29
https://doi.org/10.1007/978-3-540-70583-3_31
https://doi.org/10.1007/978-3-540-70583-3_31
https://doi.org/10.1007/978-3-540-70583-3_31
https://doi.org/10.1007/978-3-540-70583-3_31
https://doi.org/10.4230/LIPIcs.CSL.2016.10
https://doi.org/10.4230/LIPIcs.CSL.2016.10

18 Aniello Murano, Daniel Neider, and Martin Zimmermann

A Proof of Theorem 2

Recall that Theorem 2 states that rATL satisfiability is ExpTime-complete.

Proof of Theorem 2. For the upper bound we follow a reasoning similar to the
one used for the satisfiability for rCTL [45], opportunely extended to deal with
ATL. Precisely, rATL satisfiability can be solved by translating a given rATL
formula and a given truth value into an equivalent alternating µ-calculus formula
(see de Alfaro and Henzinger [2] and de Alfaro, Henzinger, and Majumdar [3]) of
linear size and then checking the resulting formula for satisfiability. The procedure
to which we refer is used to translate an ATL∗ formula ϕ into an equivalent
alternating µ-calculus formula ϕ′, and relies on the NRSBC games introduced in
Subsection 3.1.

Note that the translation from ATL∗ to alternating µ-calculus is in general
exponential in the maximal number of nested temporal operators. More precisely,
let Σ = { , U,R, , } the set of all classical temporal operators used in ATL∗.
The translation is exponential in the length i of the longest path in the syntax
tree labeled by operators in Σ. In our specific case of ϕ being an rATL formula,
we have i = 2 since the interpretations of the temporal operators , , and
correspond to a nesting of at most two classical temporal operators in Σ. Since
the satisfiability problem for the alternating µ-calculus is ExpTime-complete [5],
rATL satisfiability is in ExpTime.

A matching lower bound already holds for CTL [29], and thus also for rATL.
Aain, the lower bound for CTL already holds for the fragment without until and
release [42].

B Proof of Lemma 2

In order to prove Lemma 2, we have to introduce the logic ATL first [5]. We then
show the statement by induction.

The logic ATL The syntax of ATL is identical to that of rATL as introduced in
Section 3, except for “un-dotted” temporal operators. More precisely, its syntax
is given by the grammar

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈〈A〉〉Φ | [[A]]Φ
Φ ::= ϕ | ϕ | ϕ,

where p ranges over atomic propositions and A ranges over subsets of agents.
As usual, ATL distinguishes between state formulas (those derivable from ϕ)
and path formulas (those derivable from Φ). If not specified otherwise, an ATL
formula is a state formula.

Note that we have included conjunction and the [[]]-operator explicitly in
the syntax. We do this because we will later only consider ATL formulas in
negation normal form. Furthermore, let us mention that we do not consider the
until-operator since we have defined rATL without it.

Robust Alternating-Time Temporal Logic 19

The semantics of ATL is defined in terms of a satisfaction relation |= that
relates the states/paths of a concurrent game structure with all ATL formulas
that are satisfied at that state. In what follows, let S = (St,Ag,Ac, δ, `) be a
concurrent game structure, s a state of S, π a path of S, and S ⊆ Ag a set of
agents.

S, s |= p⇔ p ∈ `(s)
S, s |= ¬ϕ⇔ S, s 6|= ϕ,

S, s |= ϕ1 ∨ ϕ2 ⇔ S, s |= ϕ1 or S, s |= ϕ2,

S, s |= ϕ1 ∧ ϕ2 ⇔ S, s |= ϕ1 and S, s |= ϕ2,

S, s |= 〈〈A〉〉Φ⇔ there is a set FA of strategies, one for
each agent in A, such that for all paths
π ∈ out(s, FA) we have S, π |= Φ,

S, s |= [[A]]Φ⇔ for every set FA of strategies, one for
each agent in A, there exists a path
π ∈ out(s, FA) such that S, π |= Φ.

Moreover, we have

S, π |= ϕ⇔ S, π[1] |= ϕ

S, π |= ϕ⇔ S, π[i] |= ϕ for an i ≥ 0,

S, π |= ϕ⇔ S, π[i] |= ϕ for all i ≥ 0.

We are now ready to prove Lemma 2.

Proof Recall the statement of Lemma 2: for every ATL formula ϕ, there exists
an rATL formula ϕ? such that for every concurrent game structure S and every
state s of S we have V (s, ϕ?) = 1111 if and only if S, s |= ϕ.

Without loss of generality, we assume in the remainder that the ATL for-
mula ϕ is in negation normal form (i.e., the only Boolean operators are negation,
disjunction, and conjunction, and negation does only appear at atomic proposi-
tions). We make this assumption because the semantics of the implication does
not easily map to the semantics of its non-robust counterpart. Moreover, pushing
negations to the atomic propositions slightly simplifies the proof of Lemma 2. It
is worth noting, however, that this is a minor deviation from the literature (e.g.,
Nayak et al. [45] only removed implications but did not go to negation normal
form).

If ϕ is not in negation normal form, we can easily transform it as mentioned
in the proof sketch of Lemma 2 in Subsection 3.3:

1. We eliminate every implication ϕ1 → ϕ2 in ϕ by replacing it with the
expression ¬ϕ1 ∨ ϕ2.

2. We push all negations inwards to the level of atomic propositions.

20 Aniello Murano, Daniel Neider, and Martin Zimmermann

It is not hard to verify that these two steps indeed transform any ATL formula
into an equivalent ATL formula in negation normal form.

To construct the rATL formula ϕ?, we apply the following recursive transfor-
mation t, which essentially just “dots” the temporal operators. For state formulas,
we define

t(p) := p,

t(¬p) := ¬p,
t(ϕ1 ∨ ϕ2) := t(ϕ1) ∨ t(ϕ2),

t(ϕ1 ∧ ϕ2) := t(ϕ1) ∧ t(ϕ2),

t(〈〈A〉〉Φ) := 〈〈A〉〉t(Φ),
t([[A]]Φ) := [[A]]t(Φ).

For path formulas, we define

t(ϕ) := t(ϕ),

t(ϕ) := t(ϕ),

t(ϕ) := t(ϕ).

Given an ATL formula ϕ in negation normal form, we then simply set ϕ? := t(ϕ).
Note that ϕ and ϕ? are structurally identical, except for the “dotting” of temporal
operators.

To prove Lemma 2, we show the following, slightly more technical statement.

Lemma 5. For every ATL state formula ϕ in negation normal form, every ATL
path formula Φ in negation normal form, every concurrent game structure S,
every state s of S, and every path π of S, the transformed formulas t(ϕ) and t(Φ)
satisfy

1. V (s, t(ϕ)) = 1111 if and only if S, s |= ϕ; and
2. V (π, t(Φ)) = 1111 if and only if S, π |= Φ.

Proof of Lemma 5. We prove the statement by induction over the structure of ϕ.
For the base case, let ϕ = p. We first observe that t(ϕ) = p as well. Hence, we

have S, s |= p and V (s, p) = 1111 if p ∈ `(s) by the definitions of the ATL and
rATL semantics (recall that ` is the labeling function of the concurrent game
structure). Conversely, S, s 6|= p and V (s, p) = 0000 if p /∈ `(s). Thus, the claim
holds.

For the induction step, we make a case distinction:

– Let ϕ = ¬ϕ1. Since ϕ is in negation normal form, we know that negation
can only appear at the level of atomic propositions (i.e., ϕ1 = p). Therefore,
ϕ = ¬p and t(ϕ) = ¬p.
We now distinguish between p ∈ `(s) and p /∈ `(s). If p 6∈ `(s), then V (s, p) =
0000 and V (s,¬p) = 1111 by definition of the rATL semantics. Similarly, we
have S, s 6|= p and S, s |= ¬p by definition of the ATL semantics.

Robust Alternating-Time Temporal Logic 21

On the other hand, if p ∈ `(s), then V (s, p) = 1111 and V (s,¬p) = 0000.
Similarly, we have S, s |= p and S, s 6|= ¬p.

– Let ϕ = ϕ1∨ϕ2 and, hence, t(ϕ) = t(ϕ1)∨t(ϕ2). By induction hypothesis, we
know that V (s, t(ϕ1)) = 1111 if and only if S, s |= ϕ1 and V (s, t(ϕ2)) = 1111
if and only if S, s |= ϕ2.
We now distinguish the two cases V (s, t(ϕ)) = 1111 and V (s, t(ϕ)) 6= 1111.
If V (s, t(ϕ)) = 1111, then V (s, t(ϕ1)) = 1111 or V (s, t(ϕ2)) = 1111 because
V (s, t(ϕ)) = max

{
V (s, t(ϕ1)), V (s, t(ϕ2))

}
by definition of the rATL seman-

tics. Applying the induction hypothesis then yields S, s |= ϕ1 or S, s |= ϕ2.
Thus, S, s |= ϕ.
Similarly, if V (s, t(ϕ)) 6= 1111, then V (s, t(ϕ)) ≺ 1111 because 1111 is the
largest truth value in B4. Thus, V (s, t(ϕ1)) ≺ 1111 and V (s, t(ϕ2)) ≺ 1111
by definition of the rATL semantics, showing that V (s, t(ϕ1)) 6= 1111 and
V (s, t(ϕ2)) 6= 1111. Applying the induction hypothesis then yields S, s 6|= ϕ1

and S, s 6|= ϕ2, implying S, s 6|= ϕ since ϕ = ϕ1 ∨ ϕ2.
– Let ϕ = ϕ1∧ϕ2 and, hence, t(ϕ) = t(ϕ1)∧ t(ϕ2). Since this case in analogous

to ϕ = ϕ1 ∧ ϕ2 (with min used for max), we skip it here.
– For a set A ⊆ Ag of agents, let ϕ = 〈〈A〉〉Φ and, hence, t(ϕ) = 〈〈A〉〉t(Φ).

If V (s, t(ϕ)) = 1111, then there exists a set FA of strategies, one for each
agent in A, such that for all paths π ∈ out(s, FA) we have V (π, t(Φ)) �
1111. In particular, this means that V (π, t(Φ)) = 1111 holds for all such
paths π since 1111 is the largest truth value in B4. By applying the induction
hypothesis, we also know that the strategies in FA ensure S, π |= Φ for all
paths π ∈ out(s, FA). Thus, S, s |= ϕ since ϕ = 〈〈A〉〉Φ.
On the other hand, if V (s, t(ϕ)) 6= 1111, then V (s, t(ϕ)) ≺ 1111. This means
that for every set FA of strategies, there exists a path π ∈ out(s, FA) with
V (π, t(Φ)) ≺ 1111 (in particular, V (π, t(Φ)) 6= 1111). Applying the induction
hypothesis then yields that for every set FA of strategies, there exists a
path π ∈ out(s, FA) with S, π 6|= Φ. Hence, S, s 6|= ϕ.

– For a set A ⊆ Ag of agents, let ϕ = [[A]]Φ and, hence, t(ϕ) = [[A]]t(Φ).
Since this case in analogous to ϕ = 〈〈A〉〉Φ (with the case distinction for
V (s, t(ϕ)) = 1111 and V (s, t(ϕ)) 6= 1111 swapped), we skip it here.

– Let ϕ = ϕ1 and, hence, t(ϕ) = t(ϕ1).
Since V (π, t(ϕ1)) = b1b2b3b4 with bk = V (π[1], t(ϕ))[k] by definition of the
rATL semantics, we have V (π, t(ϕ1)) = 1111 if and only if V (π[1], t(ϕ1)) =
1111. By induction hypothesis, this is equivalent to S, π[1] |= ϕ1 and, by
definition of the ATL semantics, S, π |= ϕ since ϕ = ϕ1.

– Let ϕ = ϕ1 and, hence, t(ϕ) = t(ϕ1).
Since V (π, t(ϕ1)) = b1b2b3b4 with bk = maxi≥0 V (π[i], t(ϕ1))[k] by defini-
tion of the rATL semantics, we know that V (π, t(ϕ1)) = 1111 if and only
if there exists an i ≥ 0 with V (π[i], t(ϕ1)) = 1111. By induction hypothesis,
this is equivalent to S, π[i] |= ϕ1 and, by definition of the ATL semantics,
S, π |= ϕ since ϕ = ϕ1.

– Let ϕ = ϕ1 and, hence, t(ϕ) = t(ϕ1).
By definition of the rATL semantics, we know that V (π, t(ϕ1)) is a truth
value b1b2b3b4 ∈ B4 with b1 = mini≥0 V (π[i], t(ϕ1))[1]. Thus, V (π, t(ϕ1)) =

22 Aniello Murano, Daniel Neider, and Martin Zimmermann

1 can only hold if V (π[i], t(ϕ1))[1] = 1 holds for all i ≥ 0. Since 1111 is the
largest truth value, this is equivalent to the statement that V (π[i], t(ϕ1)) =
1111 holds for all i ≥ 0. Moreover, by applying the induction hypothesis, we
obtain that S, π[i] |= ϕ1 holds for all i ≥ 0. Thus, S, π |= ϕ since ϕ = ϕ1.

This concludes the proof.

Lemma 2 now follows immediately from Item 1 of Lemma 5, the fact that
every ATL formula can be transformed into negation normal form, and the fact
that ϕ? = t(ϕ).

C Definition of rCTL

For the reader’s convenience, we here repeat the definition of rCTL as introduced
by Nayak et al. [45].

Syntax of rCTL Formulas of rCTL are classified into state and path formulas.
rCTL state formulas are formed according to the grammar

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ→ ϕ | ∃Φ | ∀Φ,

where p ∈ AP is an atomic proposition and Φ is a path formula. On the other
hand, rCTL path formulas are derived from the grammar

Φ ::= ϕ | ϕ | ϕ.

If not stated otherwise, an rCTL formula is a state formula. Again, we omit the
until-operator for the sake of simplicity since our definition of rATL does not
contain it.

Kripke structures An rCTL formula is evaluated on a Kripke structure, a mathe-
matical object modeling a system. Following the notation of Nayak et al. [45], a
Kripke structure over a set AP of atomic propositions is a tuple K = (S, I,R, L)
where S is a finite set of states, I ⊆ S is the set of initial states, R ⊆ S × S is
the a transition relation, and L : S → 2AP is the labeling function. Without loss
of generality, we assume that for all states s ∈ S, there exists a state s′ satisfying
(s, s′) ∈ R.

A path of the Kripke structure K is an infinite sequence of states π = s0s1 · · ·
such that (si, si+1) ∈ R for every i ≥ 0. Moreover, let paths(s) denote the set of
all paths starting from state s ∈ S. Finally, for a path π and i ≥ 0, we use π[i] to
denote the i-th state of π and π[i..] to denote the suffix of π starting at index i.

Semantics of rCTL The rCTL semantics is a mapping VCTL that assigns an
element of B4 to every pair of state and state formula and to every pair of path

Robust Alternating-Time Temporal Logic 23

and path formula. Let us begin with state formulas, where s ∈ S is a state and
p ∈ AP is an atomic proposition:

VrCTL(s, p) =

{
0000 if p 6∈ L(s); and
1111 if p ∈ L(s),

VrCTL(s,¬Φ) =

{
0000 if VrCTL(s, ϕ) = 1111; and
1111 if VrCTL(s, ϕ) ≺ 1111,

VrCTL(s, Φ ∨ Ψ) = max{VrCTL(s, Φ), VrCTL(s, Ψ)},
VrCTL(s, Φ ∧ Ψ) = min{VrCTL(s, Φ), VrCTL(s, Ψ)},
VrCTL(s, Φ→ Ψ) = VrCTL(s, Φ)⇒ VrCTL(s, Ψ).

where, for two truth values a, b ∈ B4, we have

a⇒ b =

{
1111 if a � b; and
b if a � b.

For the existential and universal path quantification, the definition of VrCTL
is as follows:

VrCTL(s,∃ϕ) = max
π∈paths(s)

VrCTL(π, ϕ),

VrCTL(s,∀ϕ) = min
π∈paths(s)

VrCTL(π, ϕ).

Finally, the semantics for path formulas is as follows:

VrCTL(π, Φ) = VrCTL(π[1], Φ),

VrCTL(π, Φ) = max
i≥0

VrCTL(π[i], Φ),

V (π, Φ) = b1b2b3b4,

where

b1 = min
i≥0

VrCTL(π[i], ϕ)[1],

b2 = max
j≥0

min
i≥j

VrCTL(π[i], ϕ)[2],

b3 = min
j≥0

max
i≥j

VrCTL(π[i], ϕ)[3],

b4 = max
i≥0

VrCTL(π[i], ϕ)[4].

We omit the semantics of the Boolean operators as it is same we have given for
rATL. Recall that for a truth value b = b1b2b3b4 ∈ B4 and i ∈ {1, . . . , 4}, we use
b[i] to denote the bit bi, as for rATL.

24 Aniello Murano, Daniel Neider, and Martin Zimmermann

D Proof of Lemma 3

Recall the statement of Lemma 3: for every rCTL formula ϕ, there exists an
rATL formula ϕ? such that for every Kripke structure K and every state s of K
we have V (s, ϕ?) = VrCTL(s, ϕ).

We proceed with the proof of Lemma 3 in three steps, as described in
Subsection 3.3.

Step 1 First, we transform the Kripke structure K = (S, I,R, L) into an “equiva-
lent” concurrent game structure SK with a single-agent a. This transformation is
required because rCTL formulas are evaluated over Kripke structures, whereas
rATL formulas are evaluated over concurrent game structures. Formally, we define
SK = (St,Ag,Ac, δ, `) with

– St = S;
– Ag = {a};
– Ac = S;

– δ(s, s′) =

{
s′ if (s, s′) ∈ R;
s′′ for some (s, s′′) ∈ R if (s, s′) /∈ R;

– `(s) = L(s) for each s ∈ S.

Note that actions in SK are the states of the Kripke structure, and δ is well
defined because K has no dead ends. Moreover, the transition function δ mimics
the transition relation R, except that it (potentially) contains additional parallel
edges to make the function complete. Overall, it is not hard to verify that K and
SK have the same set of paths.

Step 2 Second, given an rCTL formula ϕ, we construct the rATL formula ϕ?. To
this end, we use a mapping t′ that replaces the path quantifiers ∃ and ∀ with
the corresponding strategy quantifiers 〈〈{a}〉〉 and 〈〈∅〉〉, respectively. For state
formulas, we define

t′(p) := p,

t′(¬ϕ) := ¬t′(ϕ),
t′(ϕ1 ∨ ϕ2) := t′(ϕ1) ∨ t′(ϕ2)

t′(ϕ1 ∧ ϕ2) := t′(ϕ1) ∧ t′(ϕ2)

t′(ϕ1 → ϕ2) := t′(ϕ1)→ t′(ϕ2),

t′(∃Φ) := 〈〈{a}〉〉t′(Φ),
t′(∀Φ) := 〈〈∅〉〉t′(Φ).

For path formulas, we define

t′(ϕ) := t′(ϕ),

t′(ϕ) := t′(ϕ),

t′(ϕ) := t′(ϕ).

Given an rCTL formula ϕ, we then simply set ϕ? := t′(ϕ).

Robust Alternating-Time Temporal Logic 25

Step 3 It is left to show that V (s, ϕ?) = VrCTL(s, ϕ) holds for all states s. To
this end, we show the following, slightly stronger statement.

Lemma 6. For every rCTL state formula ϕ, every rCTL path formula Φ, every
Kripke structure K, every state s of K, and every path π of K, the transformed
formulas t′(ϕ) and t′(Φ) satisfy the following in the concurrent game structure
SK:
1. V (s, t′(ϕ)) = VrCTL(s, ϕ); and
2. V (π, t′(Φ)) = VrCTL(π, Φ).

Proof of Lemma 6. The base case (i.e., atomic propositions) and the induction
step for the Boolean operators (¬,∨,∧,→), and the robust temporal operators
(, ,) follow from applying the semantics of rCTL and rATL as expected.
Hence, we skip them here and only investigate the remaining two cases for the
existential and universal path quantifiers:

– Let ϕ = ∃Φ and, therefore, t′(ϕ) = 〈〈{a}〉〉t′(Φ).
Recall that the paths of K and SK are identical and SK is a concurrent game
structure with a single-agent. Thus, for every path π ∈ paths(s), there exists
a strategy fπ such that out(s, {fπ}) = {π}. Conversely, every strategy fa of
agent a produces exactly one path πfa ∈ paths(s).
Next, we apply the induction hypothesis and obtain V (π, t′(Φ)) = VrCTL(π, Φ)
for all paths π ∈ paths(s). Thus,

max
fa∈Fa

V (πfa , t
′(Φ)) = b = max

π∈paths(s)
VrCTL(π, Φ),

where Fa is the set of all strategies of agent a starting in state s. This
observation implies V (s, 〈〈{a}〉〉t′(Φ)) = b by definition of the 〈〈 〉〉-operator
(recall that out(s, fa) is a singleton set of all strategies fa ∈ Fa). On the other
hand, we have VrCTL(s,∃Φ) = b by definition of the ∃-operator, In total, we
obtain V (s, 〈〈{a}〉〉t′(Φ)) = VrCTL(s,∃Φ), proving the claim.

– Let ϕ = ∀Φ and, therefore, t′(ϕ) = 〈〈∅〉〉t′(Φ).
Again, recall now that the paths of K and SK are identical. Moreover, note
that out(s, ∅) = paths(s) because S is a concurrent game structure with a
single agent.
Next, we apply the induction hypothesis and obtain V (π, t′(Φ)) = VrCTL(π, Φ)
for all paths π ∈ paths(s), as before. Thus,

min
π∈out(s,∅)

V (π, t′(Φ)) = b = min
π∈paths(s)

VrCTL(π, Φ).

This observation implies V (s, 〈〈∅〉〉t′(Φ)) = b by definition of the 〈〈 〉〉-operator
(recall that out(s, fa) = paths(s)). On the other hand, we have VrCTL(s,∀Φ) =
b by definition of the ∃-operator, In total, we obtain V (s, 〈〈∅〉〉t′(Φ)) =
VrCTL(s,∀Φ), proving the claim.

This concludes the proof.

Lemma 3 now follows immediately from Item 1 of Lemma 6 and the fact
ϕ? = t′(ϕ).

26 Aniello Murano, Daniel Neider, and Martin Zimmermann

E Proof of Lemma 4

Recall that we want to prove that for every rATL∗ formula ϕ and every truth
value t ∈ B4, there is an ATL∗ formula ϕt such that V (s, ϕ) � t if and only
if S, s |= ϕt. Furthermore, we will show function mapping ϕ and t to ϕt is
polynomial-time computable.

Proof of Lemma 4. Before we show the inductive construction of ϕt, let us remark
that we can restrict ourselves to t � 0000, as V (s, ϕ) � 0000 is true for every
state s and every formula ϕ. Hence, we can pick ϕ0000 = p ∨ ¬p for some atomic
proposition p.

In the following, we assume t � 0000 and define

– pt = p,
– (¬ϕ)t = ¬ϕt,
– (ϕ1 ∨ ϕ2)t = (ϕ1)t ∨ (ϕ2)t,
– (ϕ1 ∧ ϕ2)t = (ϕ1)t ∧ (ϕ2)t,
– (ϕ1 → ϕ2)1111 =

∧
t�0000(ϕ2)t ∨ ¬(ϕ1)t and

– (ϕ1 → ϕ2)t = (ϕ1 → ϕ2)1111 ∨ (ϕ2)t for t ≺ 1111,
– (〈〈A〉〉Φ)t = 〈〈A〉〉Φt, and
– ([[A]]Φ)t = [[A]]Φt.

For Boolean combinations of path formulas, the translation is defined analogously
as for state formulas while for temporal operators, the translation is defined as

– (Φ)t = Φt,
– (Φ)t = Φt, and
– (Φ)1111 = Φ1111,
– (Φ)0111 = Φ0111,
– (Φ)0011 = Φ0011, and
– (Φ)0001 = Φ0001.

An induction over the construction of ϕ shows that ϕt has the desired properties.

F Proof of Theorem 5

Proof of Theorem 5. The upper bounds follow directly from Lemma 4 and that
fact that ATL∗ model-checking and satisfiability are in 2ExpTime [5,49], while
the lower bounds follow from the fact that ATL∗ (and thus CTL∗) is a fragment
of rATL∗: Generalizing the proof of Lemma 2, given an ATL∗ formula ϕ, we
eliminate all implications, push all negations to the atomic propositions, and
then dot every operator, thereby obtaining an rATL∗ formula ϕ? such that
S, s |= ϕ if and only if V (s, ϕ?) = 1111.

Now, as the CTL∗ satisfiability problem is 2ExpTime-complete (even for
the fragment without until and release [42]), the rATL∗ satisfiability problem is
2ExpTime-hard. To obtain 2ExpTime-hardness of the model-checking problem

Robust Alternating-Time Temporal Logic 27

we rely on the reduction from the LTL realizability problem to the ATL∗ model-
checking problem [5] and the fact that LTL realizability is 2ExpTime-hard, even
for the fragment without until and release [6].

	Robust Alternating-Time Temporal Logic

