
Science of Computer Programming 231 (2024) 103012
Contents lists available at ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

The complexity of evaluating nfer

Sean Kauffman ∗, Martin Zimmermann ∗

Aalborg University, Denmark

a r t i c l e i n f o a b s t r a c t

Article history:
Received 29 November 2022
Received in revised form 7 July 2023
Accepted 15 August 2023
Available online 22 August 2023

Keywords:
Interval logic
Complexity
Runtime verification

Nfer is a rule-based language for abstracting event streams into a hierarchy of intervals 
with data. Nfer has multiple implementations and has been applied in the analysis of 
spacecraft telemetry and autonomous vehicle logs. This work provides the first complexity 
analysis of nfer evaluation, i.e., the problem of deciding whether a given interval is 
generated by applying rules.
We show that the full nfer language is undecidable and that this depends on both 
recursion in the rules and an infinite data domain. By restricting either or both of those 
capabilities, we obtain tight decidability results. We also examine the impact on complexity 
of exclusive rules and minimality. For the most practical case, which is minimality with 
finite data, we provide a polynomial-time algorithm.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Nfer is a rule-based language for event stream analysis, developed with scientists from the National Aeronautics and 
Space Administration (NASA)’s Jet Propulsion Laboratory (JPL) to analyze telemetry from spacecraft [1–3]. Nfer rules cal-
culate data over periods of time called intervals. Nfer compares and combines these intervals to form a hierarchy of 
abstractions that is easier for humans and machines to comprehend than a trace of discrete events. This differs from tradi-
tional Runtime Verification (RV) which computes language inclusion and returns verdicts. The equivalent problem for nfer, 
called the evaluation problem, is to determine if an interval will be present in nfer’s output given a list of rules and an 
input trace.

The nfer syntax is based on Allen’s Temporal Logic (ATL) [4] and is designed for simplicity and brevity in many contexts. 
When it was originally introduced, nfer was used to find false positives among warning messages from the Mars Science 
Laboratory (MSL), i.e., the Curiosity rover, at JPL [2]. Researchers found the language to be much more concise than the ad 
hoc Python scripts in common use. Nfer has also been deployed to capture disagreements between parallel Proportional-
Integral-Derivative (PID) controllers in an embedded system ionizing radiation experiment [5,3] and to locate unstable gear 
shifts in an autonomous vehicle [6]. The nfer language is implemented in a tool available under the GPLv3 license with 
support for interfaces in multiple programming environments [7].

Nfer is expressive enough for many applications and termination of nfer has been conjectured to be undecidable [8]. 
The intuition for nfer undecidability is that recursion in its rules is possible and the intervals nfer computes may carry 
data from an infinite domain.

Despite this expressiveness, nfer’s implementations have been demonstrated to be fast in practice. Both the C [9] and 
Scala [10] versions have been compared against tools such as LogFire and Prolog [3], Siddhi [6], MonAmi and DejaVu [11], 
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Table 1
Overview of our complexity results. The asterisk ∗ signifies that only cycles consisting of inclusive rules are 
allowed.

Semantics Cycles Data Minimality Complexity Reference

inclusive yes infinite no undecidable Theorem 1
inclusive no finite no PSpace-complete Theorem 2
inclusive yes finite no ExpTime-complete Theorem 3
inclusive no infinite no NExpTime-complete Theorem 4
full no finite no PSpace-complete Theorem 5
full no infinite no AExpTime(poly)-complete Theorem 6
extended yes∗ finite no ExpTime-complete Theorem 7
extended yes∗ infinite no undecidable Theorem 1
extended yes∗ finite yes PTime Theorem 8
extended yes∗ infinite yes ExpTime Theorem 9

and TeSSLa [12] and in every case found to be faster than the alternatives performing the same analysis. The question re-
mains if nfer evaluation is indeed undecidable and, if so, if there are useful fragments of nfer with a tractable evaluation 
problem.

1.1. Our contribution

In this work, we determine the complexity of evaluating different fragments of nfer. We find that any one of several 
restrictions on the language permit decidable evaluation and we prove tight bounds for almost all of these fragments. This 
article extends the TASE 2022 [13] paper on the same topic, which was the first work to examine the complexity of any 
problem in nfer.

We begin by defining a natural syntactic fragment of nfer using only inclusive rules called inc-nfer. Full nfer
supports a form of negation using what are called exclusive rules, but we show that these are unnecessary to obtain 
undecidability. The result relies, instead, on recursion between rules and on intervals carrying data from an infinite domain. 
This proves the conjecture mentioned above.

To regain decidability, we then examine language fragments where either or both of these capabilities are restricted. We 
prove that, without recursion, inc-nfer evaluation is NExpTime-complete, without infinite data it is ExpTime-complete, 
and without either it is PSpace-complete.

We then introduce exclusive rules and examine the full nfer language. It has been openly questioned what effect 
negation has on the expressiveness of nfer [11]. Of note is that the semantics of exclusive rules restrict the use of recursion. 
In particular, to ensure that an nfer instance with exclusive rules yields a unique output, exclusive rules may not appear 
within cycles. Nfer previously only supported exclusive rules in cycle-free settings, but we extend the semantics here 
(called ext-nfer) to support exclusive rules alongside cycles in inclusive (i.e., non-exclusive) rules.

We prove that, with finite data, adding exclusive rules has no effect and nfer evaluation remains PSpace-complete 
without cycles and ExpTime-complete with cycles. Without cycles and infinite data, however, we prove that the problem is
AExpTime(poly)-complete. The remaining combination, i.e., exclusive rules with cycles and infinite data is undecidable, as 
the problem is already so without exclusive rules.

We go on to examine the effect of minimality on the complexity of nfer evaluation. Minimality is a so-called meta-
constraint on the results of nfer that was a primary motivator of nfer’s development, since it was discovered existing 
tools like Prolog struggled with such meta-constraints [3]. We show that minimality has a substantial effect on the com-
plexity of nfer evaluation. With infinite data, we prove that the problem is in ExpTime. The most common method of using
nfer is with minimality and finite data, however, and we prove evaluation for this configuration is in PTime. These results 
are independent of the use of exclusive rules and cycles.

Table 1 shows an overview of our results.
This work extends the authors’ previous paper presented at TASE 2022 [13]. Here, we present the complete proofs for 

each complexity result, including for Theorems 4, 6, and 9. We also prove a new AExpTime(poly) lower bound for full 
semantics with infinite data, thereby closing a gap that was left open in the conference version. Finally, we introduce the 
new nfer extended semantics to support exclusive rules in the same specification as cycles. Along with the semantics, we 
provide complexity results for the relevant fragments under it.

1.2. Related work

Nfer is closely related to other classes of declarative programming systems but it differs from them all in several ways. 
For example, a rule-based programming system modifies a database of facts [14,15]. Unlike these systems, however, nfer
is monotonic and can only add intervals, not remove them. Nfer also resembles Complex Event Processing (CEP) systems 
where declarative rules are applied to compute information from a trace of events [16–18]. Zhang, Diao, and Immerman 
2
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examined the complexity of pattern queries in a number of popular CEP languages [19]. They focused on which features of 
pattern queries increased expressiveness and were, therefore, more expensive. CEP systems do not usually include explicit 
notions of time or temporal relationships, though, which are central to nfer. In this way, nfer more closely resembles 
stream-RV systems [20–22]. Convent et al. translated fragments of TeSSLa into timed automata to inherit decidability re-
sults [21]. Still, nfer is differentiated from these systems by its emphasis on temporal intervals and its ATL-based syntax.

Languages like the Planning Domain Definition Language (PDDL) [23], the Action Notation Modeling Language Light 
(ANMLite) [24], and the Clock Constraints Specification Language (CCSL) [25] model clock constraints in ways that resemble
nfer and are used in planning. These languages are used to limit what inputs may satisfy a model, while nfer rules 
describe a hierarchy of abstractions of inputs. Note that the planning problem more closely resembles the nfer satisfiability
problem which will be addressed in future work.

Some research has examined the complexity of logics based on ATL, specifically Halpern and Shoham’s modal logic 
of intervals (HS) [26]. Montanari et al. showed that the satisfiability problem for the subset of HS consisting of only the 
temporal operators begins/begun by and meets is ExpSpace-complete over the natural numbers [27]. Later, they showed that 
adding the met by operator increases the complexity such that the language is only decidable over finite total orders [28]. 
Aceto et al. identified the expressive power of all fragments of HS over total orders as well as only dense total orders [29].
Nfer is not a modal logic, however, and these complexity results are not relevant to its evaluation problem.

2. The inclusive nfer language

The nfer language supports two types of rules: inclusive rules and exclusive rules. This section describes the
inclusive-nfer formalism, subsequently abbreviated inc-nfer, that supports only inclusive rules. Inc-nfer is suf-
ficiently expressive to obtain an undecidability result and we find that initially omitting exclusive rules simplifies our 
presentation. Inc-nfer is also a natural subset of nfer that was first introduced in [2]. It supports many use cases, 
including the MSL case-study described above. The implementation of nfer written in Scala at JPL [10,3] also supports 
only inclusive rules. We expand our analysis to include exclusive rules in Section 4 (without any cycles) and in Section 6
(with cycles in inclusive rules). Finally, Section 8 addresses minimality, an important extension of nfer semantics. Note 
that, to improve comprehensibility and simplify later proofs, the semantics presented in this section differs slightly from 
prior work but these changes do not affect the language capabilities.

2.1. Preliminary notation

We denote the set of nonnegative integers as N . The set of Booleans is given as B = {true, false}. We fix a finite set I of 
identifiers. M is the set of all of maps, where a map M ∈M is a partial function M : I �→N ∪B.

An event represents a named state change in an observed system. An event is a triple (η, t, M) where η ∈ I is its 
identifier, t ∈N is the timestamp when it occurred, and M ∈M is its map of data. The set of all events is E = I ×N ×M. 
A sequence of events τ ∈E∗ is called a trace.

Intervals represent a named period of state in an observed system. An interval is a 4-tuple (η, s, e, M) where η ∈ I is 
its identifier, s, e ∈ N are the starting and ending timestamps where s ≤ e, and M ∈ M is its map of data. The set of all 
intervals with data is I = I ×N ×N ×M. A set of intervals is called a pool and the set of all pools is P = 2I . We say that 
an interval i = (η, s, e, M) is labeled by η. We define the functions id(i) = η, start(i) = s, end(i) = e, and map(i) = M .

2.2. Syntax

Inclusive rules test for the existence of two intervals matching constraints. When such a pair is found, a new interval is 
produced with an identifier specified by the rule. The new interval has timestamps and a map derived by applying functions, 
specified in the rule, to the matched pair of intervals. We define the syntax of these rules, including mathematical functions 
to simplify the presentation, as follows:

η ← η1 ⊕ η2 where � map �

where, η, η1, η2 ∈ I are identifiers, ⊕ ∈ {before, meet, during, coincide, start, finish, overlap, slice} is a clock predicate on 
three intervals (one for each of η, η1, and η2), � :M ×M →B is a map predicate taking two maps and returning a Boolean 
representing satisfaction of a constraint, and � :M ×M →M is a map update taking two maps and returning a map.

We omit the precise syntax for specifying map predicates and updates, but we require that these functions are limited to 
only simple arithmetic operations. This matches what is possible using the C nfer tool [12]. Specifically, map predicates and 
map updates must be expressible using the standard mathematical operations +, −, · (multiplication), / (division), mod, 
the comparisons <, ≤, >, ≥, =, and the Boolean operators ∧, ∨, ¬. This limitation excludes exponentiation and any form 
of recursion in the functions. Since we do not support real numbers in the theory, division is limited to integer quotients. 
These decisions are discussed in Section 9.
3
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Fig. 1. nfer clock predicates for inclusive rules.

Table 2
Formal definition of nfer clock predicates for inclusive rules.

Syntax Definition of ⊕(i, i1, i2)

before end(i1) < start(i2) ∧ start(i) = start(i1) ∧ end(i) = end(i2)

meet end(i1) = start(i2) ∧ start(i) = start(i1) ∧ end(i) = end(i2)

during start(i1) ≥ start(i2) = start(i) ∧ end(i1) ≤ end(i2) = end(i)
coincide start(i1) = start(i2) = start(i) ∧ end(i1) = end(i2) = end(i)
start start(i1) = start(i2) = start(i) ∧ end(i) = max(end(i1), end(i2))

finish start(i) = min(start(i1), start(i2)) ∧ end(i) = end(i1) = end(i2)

overlap start(i1) < end(i2) ∧ start(i2) < end(i1) ∧
start(i) = min(start(i1), start(i2)) ∧
end(i) = max(end(i1), end(i2))

slice start(i1) < end(i2) ∧ start(i2) < end(i1) ∧
start(i) = max(start(i1), start(i2)) ∧
end(i) = min(end(i1), end(i2))

2.3. Semantics

Inc-nfer defines how rules are interpreted to generate pools of intervals from inputs. The semantics utilizes functions, 
referenced by the rule syntax, that specify the temporal and data relationships between intervals. The semantics of the
nfer language is defined in three steps: the semantics R of individual rules on pools, the semantics S of a specification (a 
list of rules) on pools, and finally the semantics T of a specification on traces of events.

We first define the semantics of inclusive rules with the interpretation function R . Let � be the set of all rules. Semantic 
functions are defined using the brackets �_� around syntax being given semantics.

R � _ � : � →P →P
R � η ←η1 ⊕ η2 where� map� � π =

{ i ∈ I : i1,i2 ∈π .
id( i ) = η ∧ id(i1) = η1∧ id(i2) = η2 ∧
⊕( i , i1,i2) ∧�(map(i1),map(i2)) ∧
map(i) = �(map(i1),map(i2)) }

In the definition, a new interval i is produced when two existing intervals in π match the identifiers η1 and η2, the 
temporal constraint ⊕, and the map constraint �. ⊕ defines the start and end timestamps of i and � defines its map.

The possibilities referenced by ⊕ are shown in Fig. 1 and formally defined in Table 2. These clock predicates relate 
two intervals using the familiar ATL temporal operators and also specify the start and end timestamps of the produced 
intervals. In the figure, the two matched intervals are shown as dark-gray boxes where time flows from left to right and 
the light-gray box is the produced interval. Note that the generated interval labeled by C has start and end timestamps 
inherited from the intervals labeled A and B , i.e., no new timestamps are generated by applying a rule. For example, given 
intervals i, i1, i2 where id(i) = A, id(i1) = B and id(i2) = C , A ← B meet C holds when end(i1) = start(i2), start(i) = start(i1), 
and end(i) = end(i2).

The following one-step interpretation function S defines the semantics of a finite list of rules, also called a specification. 
Given a specification δ1 · · · δn ∈ �∗ and a pool π ∈ P , S�_� returns a new pool obtained by recursively applying R�_� to 
every rule in δ1 · · · δn in order, where each is called using the union of π with the new intervals returned thus far.

S �_� : �∗ → P → P
4
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S � δ1 · · · δn � π =
{

S � δ2 · · · δn � (π ∪ R � δ1 � π ) if n > 0

π otherwise

Inc-nfer specifications may contain recursion in the rules, so one application of the specification may not be sufficient to 
produce all of the intervals. The interpretation function Tinc�_� for inclusive nfer defines the semantics of a specification 
on a pool by applying S until the inflationary fixed point is reached.

Tinc�_� : �∗→P →P
Tinc�δ1· · · δn �π =

⋃
i>0 πi .π1 = π ∧ πi+1 = S � δ1 · · · δn � (πi )

To maintain consistency with prior work and simplify our presentation, we also overload Tinc to operate on a trace of events 
τ ∈E∗ by first converting τ to the pool {init(e) : e is an element of τ } where init(η, t, M) = (η, t, t, M).

Example 1. Here, we present an example of an inc-nfer specification with rules useful for our complexity analysis. Fix 
I = {η j : 0 ≤ j ≤ n} ∪ {d} and consider the specification Dn = δ1 · · · δn where δ j is the rule

η j+1 ← η j coincide η j where m1,m2 �→ m1(d) = m2(d) map m1,m2 �→ {d �→ m1(d)2}.
Here, m1 and m2 denote the maps of the intervals matched by the left and right side of the coincide operator and d
represents the only element in their domain.

When applying this specification to the trace τ = (η0, 0, {d �→ 2}) we obtain

Tinc�Dn� τ = {(η0,0,0, {d �→ 2}), (η1,0,0, {d �→ 4}), . . . , (ηn,0,0, {d �→ 22n })}.

Remark 1. In many of our lower bound proofs, the timestamps of intervals are irrelevant. For the sake of readability, we 
will therefore often disregard the timestamps and denote intervals by (η, y0, . . . , yk) where {y0, . . . , yk} is the image of the 
map function of the interval. Here, we assume a fixed order of the map domain that will be clear from context.

Also, note that the rules δ j in Example 1 produce an interval i′ labeled by η j+1 from an interval i such that i and i′ have 
the same timestamps and the map value of i′ is obtained by squaring the map value of i. Many of the rules we use in our 
lower bounds proofs have this format. Again, for the sake of readability, we will not spell out those rules but instead say 
that the rule produces the interval (η j+1, y2) from an interval of the form (η j, y).

2.4. The evaluation problem

We are interested in the nfer evaluation problem: Given a specification D , a trace τ of events, and a target identifier ηT , 
is there an ηT -labeled interval in Tinc�D� τ? Here, we measure the size of a single rule in D by the sum of the length of 
its map predicate and map update measured in their number of arithmetic and logical operators, with numbers encoded 
in binary. The size of an event is the sum of the binary encodings of its timestamps and its map values. We disregard the 
identifiers, as their number is bounded by the number of events in the input trace and the number of rules.

Example 2. Consider an extension of the specification from Example 1 that adds rules to generate a ηT -labeled interval if 
any η j -labeled interval has a map value equal to a given number T ∈ N . We define the specification DT

n = Dnδn+1 · · · δ2n

where δ j for j > n is the rule

ηT ← η j coincide η j where m1,m2 �→ m1(d) = m2(d) = T map { }.
If we fix T = 16, then

(ηT ,0,0, { }) ∈ Tinc�D16
n � τ for τ = (η0,0, {d �→ 2}), and

(ηT ,0,0, { }) ∈ Tinc�D16
n � τ for τ = (η0,0, {d �→ 4}), but

(ηT ,0,0, { }) /∈ Tinc�D16
n � τ for τ = (η0,0, {d �→ 3}).

The nfer evaluation problem is to determine whether or not an ηT -labeled interval is in the fixed point given a specifica-
tion D and a trace of events τ .

3. Complexity results for inclusive nfer

In this section, we determine the complexity of the inc-nfer evaluation problem. In its most general form it is shown 
to be undecidable, but we show decidability for three natural fragments.
5
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3.1. The unrestricted Inc-nfer language

The undecidability result relies on the recursive nature of inc-nfer, i.e., an η-labeled interval can be (directly or 
indirectly) produced from another η-labeled interval, and on the fact that the map functions range over the natural numbers, 
i.e., we have access to an infinite data domain.

Theorem 1. The evaluation problem for inc-nfer is undecidable.

Proof. We show how to simulate a two-counter Minsky machine [30] with inc-nfer rules so that the machine terminates 
iff an interval with a given target identifier can be generated by the rules.

Formally, a two-counter Minsky machine is a sequence

(0 : I0)(1 : I1) · · · (k − 2 : Ik−2)(k − 1 : STOP),

of pairs (	 : I	) where 	 is a line number and I	 for 0 ≤ 	 < k − 1 is one of INC(Xi), DEC(Xi), or IF Xi=0 GOTO 	′ with 
i ∈ {0, 1} and 	′ ∈ {0, · · · , k − 1}.

A configuration of the machine is a triple (	, c0, c1) consisting of a line number 	 and the contents ci ∈N of counter i. 
The semantics is defined as expected with the convention that a decrement of a zero counter has no effect. The problem 
of deciding whether the unique run of a given two-counter Minsky machine starting in the initial configuration (0, 0, 0)

reaches a stopping configuration (i.e., one of the form (k − 1, c0, c1)) is undecidable [30].
This problem is captured with inc-nfer as follows: We encode a configuration (	, c0, c1) by an interval with identi-

fier 	 and two map values c0, c1. These intervals use the same timestamps so we drop them from our notation and also 
write (	, c0, c1) for the interval encoding that configuration.

For every line number 0 ≤ 	 < k − 1 we have one or two rules that are defined as follows (here, we only consider 
instruction for the first counter, the rules for the second counter are analogous):

• I	 = INC(X0): We have a rule producing the interval (	 + 1, c0 + 1, c1) from an interval of the form (	, c0, c1).
• I	 = DEC(X0): We have two rules, one producing the interval (	 + 1, c0 − 1, c1) from an interval of the form (	, c0, c1)

with c0 > 0, and one producing the interval (	 + 1, c0, c1) from an interval of the form (	, c0, c1) with c0 = 0.
• I	 = IF X0=0 GOTO 	′: We have two rules, one producing the interval (	′, c0, c1) from an interval of the 

form (	, c0, c1) with c0 = 0, and one producing the interval (	 + 1, c0, c1) from an interval of the form (	, c0, c1)

with c0 > 0.

Then, we have an interval labeled by k − 1 in the fixed point iff the machine reaches a stopping configuration. �
As already discussed, the undecidability relies both on recursion in the rules and on the map functions having an infinite 

range. In the following, we show that restricting one of these two aspects allows us to recover decidability. In fact, we give 
tight complexity bounds for all three fragments. We continue by introducing some necessary notation to formalize these 
two restrictions.

First, recall that a map of an interval is a partial function from I to N ∪B, i.e., it has an infinite range. We will consider 
the evaluation problem restricted to intervals with maps that are partial functions from I to {0, 1, . . . , k − 1} ∪ B with a 
bound k given in binary and all arithmetic operations performed modulo k. We denote the fixed point resulting from these 
semantics by T k

inc�_�.
Second, for a rule η ← η1 ⊕ η2 where � map � we say that η appears on the left-hand side and the ηi appear on the 

right-hand side. An inc-nfer specification D ∈ �∗ forms a directed graph G(D) over the rules in D such that there is an 
edge from δ to δ′ iff there is an identifier η that appears on the left-hand side of δ and the right-hand side of δ′ . We say 
that D contains a cycle if G(D) contains one; otherwise D is cycle-free.

Example 3. Here, we present an example of an inc-nfer specification that captures the natural, even, and odd numbers 
via intervals. There are many ways to do so with nfer rules, but here we choose rules that serve to demonstrate the graph 
construction described above. Note that, like in our proofs, we use coincide rules and only have intervals that begin and 
end at timestamp zero. As such, we omit timestamps in our notation. Also, all intervals we consider have a single map 
value v storing an integer.

We define the following rules to compute intervals carrying values in the sets of naturals (labeled N), evens 
(E), and odds (O ). To simplify our presentation, we define a map predicate and two map updates. The map pred-
icate �eq = m1,m2 �→ m1(v) = m2(v) tests that the map values of the two intervals are equal. The map update 
�zero = m1,m2 �→{v �→ 0} sets the map value to zero and the map update �incr = m1,m2 �→{v �→ m1(v) + 1} sets the map 
value to one more than the value of the (equal, assuming �eq holds) value from the matched intervals.

Now, consider the input trace τ = (I, {v �→ 0}) and the rules

δ1 = N ← I coincide I where �eq map �zero
6
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δ1 δ2δ3

δ4

δ5

N

N

N
E

N
N

N

E O

Fig. 2. The directed graph formed by the rules to compute naturals, evens, and odds.

δ2 = E ← I coincide I where �eq map �zero

δ3 = N ← N coincide N where �eq map �incr

δ4 = E ← O coincide N where �eq map �incr

δ5 = O ← E coincide N where �eq map �incr.

These rules form the directed graph shown in Fig. 2. In the graph, edges are labeled by the identifier witnessing their 
existence. For example, there is an edge from δ2 to δ5 labeled by E because E apears on the left-hand side of δ2 and the 
right-hand side of δ5. The graph contains two cycles: one between δ4 and δ5 and one with only δ3, due to its self-loop.

Starting with the initial trace τ = (I, {v �→ 0}) we obtain the fixed point

Tinc�δ1 · · · δ5� (τ ) ={(N, {v �→ n}) : n ∈N}∪
{(E, {v �→ n}) : n ∈N is even}∪
{(O , {v �→ n}) : n ∈N is odd} ∪ {(I, {v �→ 0})}.

3.2. Cycle-free, finite-data Inc-nfer

We begin our study of decidable fragments of inc-nfer by considering both the restriction to cycle-free specifications 
and to finite data at the same time.

Theorem 2. The cycle-free inc-nfer evaluation problem with finite data is PSpace-complete.

Proof. We only prove the lower bound here, the upper bound is shown for full nfer in Theorem 5. We proceed by a 
reduction from TQBF, the problem of determining whether a formula of quantified propositional logic evaluates to true (see, 
e.g., [31] for a detailed definition), which is PSpace-hard. So, fix such a formula ϕ . Let π j for j ≥ 1 denote the j-th prime 
number. We assume without loss of generality that ϕ = Q 2x2 Q 3x3 · · · Q πn xπn

∧m
i=1(	i,1 ∨ 	i,2 ∨ 	i,3) where each Q π j is in 

{∃, ∀}, and each 	i,i′ is either xπ j or ¬xπ j for some j. As we label variables by prime numbers, we can uniquely identify a 
variable valuation V ⊆ {xπ j : 1 ≤ j ≤ n} by the number 

∏
xπ j ∈V π j . As the map values we will consider only have to encode 

valuations, and are therefore bounded by 
∏

j≤n π j , we can use the bound 1 + ∏
j≤n π j on the map values we consider.

We present three types of rules:

1. Rules to generate every possible variable valuation (encoded by an interval whose map contains the number representing 
the valuation).

2. A rule to check whether a valuation satisfies 
∧n

i=1(	i,1 ∨ 	i,2 ∨ 	i,3).
3. Rules to simulate the quantifier prefix to check whether the full formula evaluates to true.

Let us explain all steps in detail. As all intervals in this proof will have the same timestamps, we will drop those to 
simplify our notation. Furthermore, the map of an interval will contain a single integer value. For these reasons, we denote 
intervals by (η, s) where η is an identifier and s is the map value.

To generate the valuations, we start with the trace containing only a single fixed event that yields the interval (G0, 1). 
Further, for 1 ≤ j ≤ n we have rules producing the intervals (G j, s · π j) and (G j, s) from an interval of the form (G j−1, s)
for some s. The fixed point reached by applying these rules contains the 2n intervals of the form (Gn, s) where s encodes a 
variable valuation.
7
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In the valuation encoded by some s, a variable xπ j evaluates to true if s mod π j = 0 and evaluates to false if s mod π j �=
0. Hence, to check whether the valuation encoded by some s satisfies 

∧m
i=1(	i,1 ∨ 	i,2 ∨ 	i,3) we have a rule that produces 

the interval (Cn, s) from an interval of the form (Gn, s) for some s such that 
∧m

i=1(ψi,1 ∨ψi,2 ∨ψi,3) evaluates to true, where 
ψi,i′ is equal to s mod π j = 0 if 	i,i′ = xπ j , and where ψi,i′ is equal to s mod π j > 0 if 	i,i′ = ¬xπ j .

We now simulate the quantifier prefix. Intuitively, we check whether partial variable valuations cause the formula to 
hold. We do so by the following rules: If the variable xπ j is existentially quantified, we have a rule producing the inter-
val (C j−1, s) from an interval of the form (C j, s) with s mod π j > 0, and a rule producing the interval (C j−1, s/π j) from an 
interval of the form (C j, s) with s mod π j = 0. So, to generate an interval labeled by C j−1 at least one interval labeled by 
C j has to exist, and their maps must be compatible.

Finally, if the variable xπ j is universally quantified, we have a rule producing the interval (C j−1, s) from two intervals of 
the form (C j, s) and (C j, s · π j) (which can be done using a coincide-rule). Thus, to obtain an interval labeled by C j−1 both 
intervals labeled by C j with corresponding map values have to exist.

An induction shows that a partial valuation V ⊆ {xπ j : 1 ≤ j ≤ n′} for some 0 ≤ n′ ≤ n satisfies Q πn′+1
xπn′+1

· · ·
Q πn xπn

∧m
i=1(	i,1 ∨ 	i,2 ∨ 	i,3) iff the interval (Cn′ , 

∏
xπ j ∈V π j) is generated by applying these rules. So, for n′ = 0 we obtain 

the correctness of our reduction: The formula ϕ evaluates to true iff (C0, 1) is in the fixed point induced by the rules above.
Furthermore, the rules above are cycle-free, there are linearly many rules in the number n of variables and each rule is 

of polynomial size in the size of ϕ . Finally, as π j ≤ j(ln j + ln ln j) for all j ≥ 6 [32], all numbers appearing in the maps of 
the intervals are bounded by∏n

j=1
π j ≤ c ·

∏n

j=1
j(ln j + ln ln j) ≤ c · (n(ln n + ln lnn))n

whose binary representation is polynomial in the size of ϕ . Here, c is some constant that is independent of n. �
Now, we turn our attention to the remaining two fragments obtained by considering finite-data with cycles and cycle-

free specifications with infinite data. In both cases, we again prove tight complexity bounds. For both upper bounds, we 
rely on algorithms searching for witnesses for the existence of an interval in the fixed point. As these arguments are used 
in multiple proofs, we introduce them first in a general format. So, fix some specification D and some trace τ of events. If 
i is an interval in Tinc�D� τ , then either there is an event e in τ such that init(e) = i (we say that i is initial in this case) 
or there are intervals i1, i2 in Tinc�D� τ and a rule δ ∈ D such that i is obtained by applying δ to i1 and i2. So, for every 
interval i0 in Tinc�D� τ there is a binary (witness) tree whose nodes are labeled by intervals in Tinc�D� τ , whose root is 
labeled by i0, whose leaves are labeled by initial intervals, and where the children of a node labeled by i are labeled by i1
and i2 such that there is a rule δ so that i is obtained by applying δ to i1 and i2. Note that the tree might contain multiple 
occurrences of the same interval. But, we can assume without loss of generality that each path in the tree does not contain 
a repetition of an interval (if it does we can just remove the part of the tree between the repetitions). Hence, the height 
of the tree is bounded by the number of intervals, which might be infinite in the case of infinite data. Furthermore, if D is 
cycle-free then the height of a witness tree is also bounded by the number of rules in D . Note that the same arguments 
also apply to T k

inc�D� τ in case we deal with finite data.

Proposition 1. An interval is in Tinc�D� τ (T k
inc�D� τ ) iff it has a witness tree.

3.3. Finite-data Inc-nfer, with cycles

We continue by settling the case of specifications with cycles, but restricted to finite data.

Theorem 3. The inc-nfer evaluation problem with finite data is ExpTime-complete.

Proof. We first prove the lower bound by reducing from the word problem for alternating polynomial space Turing ma-
chines (see, e.g., [31] for detailed definitions). As ExpTime = APSpace, this yields the desired lower bound.

Recall that an alternating Turing machine has both existential states and universal states and a run of such a machine 
is a tree labeled by configurations. An accepting run is finite, labeled by the initial configuration in the root, every vertex 
labeled by an existential configuration (i.e., one with an existential state) has one child labeled by a successor configuration, 
every vertex labeled by a universal configuration has for all successor configurations a child labeled by it, and all leaves are 
labeled by accepting configurations. We refer to paths through such a (tree-like) run as run-branches.

So, fix an alternating polynomial space Turing machine M, i.e., there is some polynomial p such that M uses at most 
space p(|w|) when started on input w . Let us also fix some input w for M. We construct an instance of inc-nfer that 
simulates a run of M on w . To simplify our construction, we make some assumptions (all without loss of generality):

• The set Q of states of M is of the form {1, 2, . . . , |Q |} and 1 is the initial state.
• The tape alphabet � of M is equal to {0, 1, . . . , 9} and 0 is the blank symbol.
8
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• Every run of M has only finite branches, i.e., M terminates on every input. To this end, we assume the existence of a 
set of terminal states, which is split into accepting and rejecting ones.

• Every nonterminal configuration (one with a nonterminal state) has exactly two successor configurations. Such states 
are either existential or universal.

So, a configuration of M is of the form 	qr with q ∈ Q and 	, r ∈ �∗ such that |	| + |r| = p(|w|), with the convention that 
the head is on the first letter of r.

For c ∈ �∗ , let cR denote the reverse of c. Due to our assumption on � we can treat 	 and rR as natural numbers encoded 
in base ten. We uniquely identify a configuration 	qr by the triple (	, q, rR) of natural numbers. The initial configuration of 
M on w is encoded by the triple (0, 1, w R ) representing that the tape to the left of the head has only blanks, the machine 
is in the initial state 1, and w is to the right of the head with the remaining cells of the tape being blank.

This encoding allows us to read the tape cell the head is currently pointing to, update the tape cell the head is pointing 
to, and move the head by simple arithmetic operations. For example, whether the head points to a cell containing a 3 is 
captured by rR mod 10 being 3, and writing a 7 to the cell pointed to by the head is captured by adding −(rR mod 10) + 7
to rR . Finally, moving the head to, say, the right, is captured by multiplying 	 by 10 and then adding rR mod 10 to it, and 
then dividing rR by 10 (which is done without remainder and therefore removes the last digit of rR ). In the following, we 
use intervals of the form (A, 	, q, rR) to encode the configuration 	qr of M. Here, A is some identifier and we disregard 
timestamps, as all intervals have the same start and end. Hence, 	, q, and rR are three map values of the interval.

We now describe the rules simulating M on w . We start with some fixed event that yields the interval (G, 0, 1, w R)

encoding the initial configuration. As described above, the computation of a successor configuration can be implemented 
using arithmetic operations. Thus, given the interval encoding the initial configuration, one can write rules (one for each 
transition of M) that generate the set of all configurations, encoded as intervals of the form (G, 	, q, rR). Furthermore, one 
can write a rule that produces the interval (A, 	, q, rR) from every interval (G, 	, q, rR) with an accepting q.

Now, we describe rules to compute the set of accepting configurations, i.e., the smallest set A of configurations that 
contains all those with an accepting terminal state, all existential ones that have a successor in A, and all universal ones 
that have both successors in A. For every transition t from an existential state q, there is a rule to produce the inter-
val (A, 	, q, rR) if the intervals (G, 	, q, rR) and (A, 	′, q′, rR ′

) already exist, where (	′, q′, rR ′
) encodes the configuration 

obtained by applying the transition t to the configuration encoded by (	, q, rR). Thus, to declare an existential configuration 
as accepting at least one of its successor configurations has to be already declared as accepting.

Now, let us consider universal configurations. Due to our assumption, for every pair of a state and a tape symbol, there 
are exactly two transitions t1 and t2 that are applicable. There are two rules for this situation. The first one produces 
the interval (B, 	, q, rR) if the intervals (G, 	, q, rR) and (A, 	′, q′, rR ′

) already exist, where (	′, q′, rR ′
) encodes the config-

uration obtained by applying the transition t1 to the configuration encoded by (	, q, rR ). The second one produces the 
interval (A, 	, q, rR) if the intervals (B, 	, q, rR) and (A, 	′, q′, rR ′

) already exist, where (	′, q′, rR ′
) encodes the configuration 

obtained by applying the transition t2 to the configuration encoded by (	, q, rR). Thus, to declare a universal configuration 
as accepting both of its successor configurations have to be already declared as accepting.

Finally, there is a rule producing an interval with identifier ηT from the interval (A, 0, 1, w R), indicating that the initial 
configuration is accepting. Thus, the fixed point contains an interval labeled by ηT iff M accepts w .

It remains to show that the specification has the required properties. It is of polynomial size and each rule has poly-
nomial size (both measured in |M| + |w|). Further, all numbers used in the intervals are bounded by max{|Q |, 10p(|w|)}, 
whose binary representation is bounded polynomially in |M| + |w|.

Now, we prove the upper bound. We are given a specification D , an input trace τ of events, a k ∈N (given in binary), and 
a target label ηT and have to determine whether the fixed point T k

inc�D� τ contains an interval labeled by ηT . We describe 
an alternating polynomial space Turing machine solving this problem by searching for a witness tree. APSpace = ExpTime

yields the result.
To this end, we rely on the following properties.

1. Every interval in T k
inc�D� τ can be stored in polynomial space, as every value in its map can be stored using log k bits, 

and there are only linearly many such values (measured in |D| + |τ |).
2. There are only exponentially many intervals in T k

inc�D� τ , e.g.,

b(D, τ ,k) = ι · t2 · k|D|+|τ | ≤ ι · |τ |2 · 2(log k)(|D|+|τ |)

is a crude upper bound. Here, ι is the number of identifiers appearing in D and τ and t is the number of timestamps 
in τ (recall that inc-nfer does not create new timestamps).

3. Given three intervals i, i1, i2 and a rule δ ∈ D one can determine in polynomial space whether i is obtained by applying 
δ to i1 and i2.

Using alternation, Algorithm 1 determines whether a witness tree exists whose root is labeled by ηT and whose height 
is bounded by b(D, τ , k). Due to Proposition 1, this is equivalent to an interval labeled by ηT being in T k

inc�D� τ . Due to the 
above properties, one can easily implement the algorithm on an alternating polynomial space Turing machine, yielding the 
desired upper bound. �
9
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Algorithm 1 Algorithm checking the existence of a witness tree.
Input: Specification D , trace τ , bound k, target identifier ηT

1: n := 0
2: nondeterministically guess interval i labeled by ηT

3: while n < b(D, τ , k) and i is not initial do
4: n := n + 1
5: nondeterministically guess intervals i1, i2 and δ ∈ D such that i is obtained by applying δ to i1 and i2

6: universally pick i := i j for j ∈ 1,2
7: if i is initial then return accept
8: else return reject

3.4. Cycle-free, infinite data Inc-nfer

Finally, we consider the last fragment: cycle-free specifications with infinite data. A crucial aspect here is that cycle-free 
specifications imply an upper bound on the map values of intervals in the fixed point, as each interval in the fixed point can 
be generated by applying each rule at most once. For the lower bound, we generate large numbers using a set of cycle-free 
rules (cf. Example 1) and encode configurations using these numbers as before.

Theorem 4. The cycle-free inc-nfer evaluation problem with infinite data is NExpTime-complete.

Proof. We begin with the lower bound and reduce from the word problem for nondeterministic exponential-time Turing 
machines, which is NExpTime-hard. Thus, fix such a machine M, i.e., there is some polynomial p such that M uses at most 
time 2p(|w|) when started on input w . Let us also fix some input w for M and define n = p(|w|). We construct an instance 
of inc-nfer that simulates the run of M on w . To simplify our construction, we make some assumptions (all without 
loss of generality):

• The set Q of states of M is of the form {1, 2, . . . , |Q |} and 1 is the initial state.
• The tape alphabet � of M is equal to {0, 1, . . . , 9} and 0 is the blank symbol.
• Accepting states are equipped with a self-loop. This allows us to restrict our attention to runs of length 2n .

A configuration of M is of the form 	qr with q ∈ Q and 	, r ∈ �∗ such that |	| + |r| ≤ 2n , with the convention that the head 
of M is on the first letter of r. So, all the numbers encoding configurations are bounded by b = 22n+2 ≥ 102n

.
First we describe how to generate all natural numbers up to b using cycle-free rules (as before, we drop the timestamps 

and only write the identifier and map values). This construction is based on the fact that squaring two k times yields 22k

(cf. Example 1): We start with an initial interval (N0, 1) (coming from the input trace) and have, for every 1 ≤ j ≤ n + 2, a 
rule producing the interval (N j, s2 + s′) from the intervals (N j−1, s) and (N j−1, s′). An induction shows that applying these 
rules until a fixed point is reached generates all intervals (Nn+2, s) with 1 ≤ s ≤ b. Thus, we can also write a rule generating 
all intervals of the form (C, 	, q, rR) with 	 + r ≤ b. Thus, each C-labeled interval encodes a configuration of M.

Now, we piece together a run out of configurations as follows: We have a rule producing the interval (C0, 	, q, rR , 	, q, rR)

from an interval of the form (C, 	, q, rR). The resulting interval represents a run infix of length 1 = 20.
For all 0 < j ≤ n we have a rule producing the interval

(C j, 	0,q0, rR
0 , 	3,q3, rR

3 )

from two intervals of the form

(C j−1, 	0,q, rR
0 , 	1,q1, rR

1 )

and

(C j−1, 	2,q2, rR
2 , 	3,q3, rR

3 )

such that 	2q2r2 encodes a successor configuration of the configuration encoded by 	1q1r1. These rules allow to combine 
two run infixes of length 2 j−1 into a one of length 2 j , provided the second one starts with a successor configuration of 
the first one. As we can double the length of the run infix with each rule application, a linear number of rules suffices to 
construct a full run of exponential length.

Thus, we have a rule producing the interval (ηT ) from an interval of the form

(C0, 	0,q0, rR
0 , 	1,q1, rR

1 )

such that (	0, q0, rR
0 ) encodes the initial configuration of M on w and q1 is an accepting state. An induction shows that an 

interval labeled with ηT is generated iff M has an accepting run on w .
10
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For the matching upper bound, we show that a witness tree for an interval can be found in nondeterministic exponential 
time. This is the based on the following properties for a given specification D and a given trace τ of events. As D is cycle-
free, every interval in Tinc�D� τ has a witness tree whose height is bounded by |D|. Now, if an interval i is obtained 
from intervals i1, i2 by the application of some rule δ ∈ D , the maximal map value in i is only polynomial larger than the 
maximal map value in i1 and i2, with the polynomial only depending on δ. This is because map updates are limited to 
simple arithmetic operations including multiplication but excluding exponentiation.

Hence, there is some polynomial p (dependent on D and τ ) such that all map values of intervals in Tinc�D� τ are 
bounded by 22p(|D|+|τ |)

. Thus, every interval in Tinc�D� τ can be stored (with map values encoded in binary) in exponential 
space (measured in the size of D and τ ).

Furthermore, as the height of a witness tree (which is a binary tree) can be bounded by |D|, its size can be bounded 
by 2|D| . Combining both bounds shows that each interval in Tinc�D� τ has a witness tree that can be encoded using an 
exponential number of bits. Hence, given D , τ , and a target label ηT we can guess a tree and verify that it is indeed a 
witness tree for some ηT -labeled interval in exponential time. �
4. The full nfer language

This section introduces the second type of nfer rules, called exclusive rules, that test for the existence of one interval and 
the absence of another interval matching constraints. These rules were introduced in [3] and they, together with inclusive 
rules, complete the nfer language. We define the syntax of these rules, including mathematical functions to simplify the 
presentation, as follows:

η ← η1 unless � η2 where � map �

where η, η1, η2 ∈ I are identifiers, � ∈ {after, follow, contain} is a clock predicate on two intervals (one for each of 
η1 and η2), and � and � are the same as in inclusive rules. We say that an exclusive rule includes η1 and excludes η2.

4.1. Semantics

Exclusive rules share many features with inclusive rules but they require additions to the inc-nfer semantics that 
were omitted in Section 2 for brevity. Notably, these changes to the semantics produce equivalent results when evaluating 
inclusive rules. The following definition gives semantics to exclusive rules:

R � η ←η1 unless �η2 where� map� � π =
{ i ∈ I : i1∈ π . id( i ) = η ∧ id(i1) = η1∧

start(i) = start(i1) ∧ end(i) = end(i1) ∧
map(i) = �(map(i1),{ }) ∧
¬ ( ∃ i2∈ π . i2 �= i1 ∧ id(i2) = η2 ∧

�(i1,i2) ∧�(map(i1),map(i2)) ) }

Like with inclusive rules, exclusive rules match intervals in the input pool π to produce a pool of new intervals. The 
difference is that exclusive rules produce new intervals where one existing interval in π matches the identifier η1 and no 
intervals exist that match the identifier η2 such that the clock predicate � and the map predicate � hold for the η1-labeled 
and the η2-labeled interval.

Remark 2. This definition is more general than the exclusive rule semantics in [3] where intervals with excluded identifiers 
were limited to those with end timestamps strictly less than the extant interval (end(i2) < end(i1)). Here, we instead enforce 
only that an interval does not exclude itself (i2 �= i1). The restriction on end timestamps was originally introduced to 
facilitate completeness in an online monitoring algorithm but is more restrictive than necessary for the offline semantics 
we present here.

The three possibilities referenced by � are shown in Fig. 3 and formally defined in Table 3. These clock predicates 
relate two intervals using familiar ATL temporal operators while the timestamps of the produced interval are copied from 
the included interval rather than being defined by the clock predicate. In the figure, the excluded interval labeled C is 
shown as a rectangle with a dotted outline and the produced interval labeled A is always the same as the included interval 
labeled B . For example, given intervals i, i1, i2 where id(i) = A, id(i1) = B and id(i2) = C , A ← B unless follow C holds 
when end(i2) = start(i1), start(i) = start(i1), and end(i) = end(i1).

To ensure that evaluating an nfer specification yields a unique fixed point, exclusive rules may not appear in cycles 
because the intervals they produce depend on the persistent non-existence of other intervals. When cycles exist in an
inc-nfer specification, rules are evaluated multiple times and each evaluation may add intervals. Exclusive rules may 
have non-deterministic behavior in a cycle because the intervals they exclude may be produced either before or after 
the exclusive rule is evaluated. Note that it is possible to evaluate specifications with both cycles among inclusive rules
11
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Fig. 3. nfer clock predicates for exclusive rules.

Table 3
Formal definition of nfer clock predicates for exclusive rules.

Syntax Definition of �(i1, i2)

after start(i1) > end(i2)

follow start(i1) = end(i2)

contain start(i2) ≥ start(i1) ∧ end(i2) ≤ end(i1)

and exclusive rules (not appearing in the cycles) with deterministic behavior and in Section 6 we introduce an extended 
semantics that supports this case. Here, we first consider the case of cycle-free specifications with exclusive rules.

The order in which rules are evaluated may also affect the result of applying exclusive rules for this reason, which 
motivates a generalization of the Tinc�_� (resp. T k

inc�_�) function.

Tfull �_� : �∗ → P → P

Tfull � δ1 · · · δn � π =
{

S � topsort(δ1 · · · δn) � (π ) if ∃ topsort(δ1 · · · δn)

Tinc � δ1 · · · δn � (π ) otherwise

where topsort is a topological sort of the directed graph G(D) described in Section 3 and Tinc�_� is the interpretation 
function defined in Section 2.3. A topological sort, which can be computed in linear time [33], only exists in a cycle-free 
specification. In that case, topsort orders the rules such that the fixed-point computation of Tinc�_� can be short-circuited, 
since one application of S�_� is sufficient to produce the final pool. The results of Tfull�_� are independent of the topological 
sort, as any such ordering will guarantee that all intervals matched by a rule exist before it is applied using R�_�.

Example 4. From the trace (N, {v �→ 0}) · · · (N, {v �→ 100}), the rule

E ← N coincide N where m1,m2 �→ m1(v) mod 2 = 0 map m1,m2 �→ {v �→ m1(v)}
produces the set {(E, {v �→ n}) : n ≤ 100 is even}. Here, mi for i ∈ {1, 2} is the map of the interval matched with the i-th N
on the right-hand side of the rule. Then, the (exclusive) rule

O ← N unless contain E where m1,m2 �→ m1(v) = m2(v) map m1 �→ {v �→ m1(v)}
yields the set {(N, {v �→ n}) : n ≤ 100 is odd}. Here, m1 is the map of the interval matched with N while m2 is the interval 
matched with E . So, the exclusive rule intuitively describes the complement of the E-labeled intervals with respect to the 
N-labeled intervals (which are all identifiable by numbers 0 ≤ n ≤ 100).

5. Complexity results for full nfer

In the following, we study the complexity of the cycle-free nfer evaluation problem with finite and infinite data, starting 
with the former.

Theorem 5. The cycle-free nfer evaluation problem with finite data is PSpace-complete.

Proof. The lower bound already holds for the special case of inc-nfer (see Theorem 2), so we only need to prove the 
upper bound. To this end, we show how to witness in alternating polynomial time that a given interval is in the fixed 
point, which yields the desired bound due to APTime = PSpace. Note that we cannot just search for a witness tree as for
inc-nfer, as we also have to handle exclusive rules.

Intuitively, an exclusive rule requires the existence of one interval in the fixed point and the non-existence of other 
intervals in the fixed point. We have seen how to capture existence of an interval via the existence of a witness tree. Hence, 
we can capture the non-existence of an interval via the non-existence of a witness tree. As we construct an alternating 
algorithm, we use duality to capture the non-existence of a witness tree and switch between an existential and a universal 
mode every time the non-existence of an interval is to be checked.
12
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Algorithm 2 Solving the cycle-free nfer evaluation problem with finite data.
Input: Specification D , trace τ , target identifier ηT

1: n := 0, f := 0
2: nondeterministically guess interval i labeled by ηT

3: while n < |D| and i is not initial do
4: n := n + 1
5: if f = 0 then
6: nondeterministically guess rule δ ∈ D
7: if δ is inclusive then
8: nondeterministically guess intervals i1, i2 such that i is obtained by applying δ to i1 and i2
9: universally pick i := i j for j ∈ 1,2

10: else // δ is exclusive
11: nondeterministically guess interval i1 such that i is obtained by applying δ to i1
12: universally pick an interval i2 ∈ {i′ : δ includes i1 and excludes i′} ∪ {⊥}
13: if i2 = ⊥ then
14: i := i1
15: else
16: universally pick i := i j for j ∈ {1, 2}
17: if i = i2 then
18: f := 1 − f
19: else // f = 1
20: universally pick rule δ ∈ D
21: if δ is inclusive then
22: universally pick intervals i1, i2 such that i is obtained by applying δ to i1 and i2
23: nondeterministically guess i := i j for some j ∈ 1,2
24: else // δ is exclusive
25: universally pick interval i1 such that i is obtained by applying δ to i1
26: nondeterministically guess an interval i2 ∈ {i′ : δ includes i1 and excludes i′} ∪ {⊥}
27: if i2 = ⊥ then
28: i := i1
29: else
30: nondeterministically guess i := i j for j ∈ {1, 2}
31: if i = i2 then
32: f := 1 − f
33: if i is initial and f = 0 then
34: return accept
35: else
36: return reject

Algorithm 2 keeps track of a single interval and applies rules in a backwards fashion. Using alternation, it guesses and 
verifies a tree structure witnessing the (non-)existence of intervals in the fixed point. To simulate exclusive rules, it uses 
a Boolean flag f to keep track of the parity of the number of exclusive rules that have been simulated, initialized with 
zero. If f is zero, then a rule δ is guessed nondeterministically. If this rule is inclusive, two intervals i1 and i2 are guessed 
nondeterministically such that the current interval i is obtained from i1 and i2 by applying δ. Then, the current interval is 
updated by universally picking i := i1 or i := i2, so that both choices are checked. This case is similar to Algorithm 1.

On the other hand, if the rule is exclusive, then a single interval i1 is guessed nondeterministically and another interval i2
is picked universally so that δ includes i1, excludes i2, and i is the result of applying δ to i1. Now, the current interval is 
updated by universally picking i := i1 or i := i2, so that both choices are checked. In the second case, the flag is toggled to 
signify that another exclusive rule is simulated.

In the case where f is equal to one, the approach is just dual, i.e., we switch existential and universal choices. As the 
input specification is cycle-free, we need to simulate at most |D| applications of a rule. Finally, acceptance depends on the 
value of the flag, i.e., while the flag is zero the last interval has to be initial (i.e., in the input trace) while it has to be 
non-initial if the flag is one.

The algorithm runs in alternating polynomial time as each run simulates at most |D| rule applications and each applica-
tion can be implemented in deterministic polynomial time due to the encodings of the map values and time stamps being 
bounded by |D| + |τ | + log(k), where k is the bound on the map values. �
5.1. Infinite data full nfer

We now consider the case of infinite data. Here, the bound we obtain is AExpTime(poly), the class of problems decided by 
alternating exponential-time Turing machines with a polynomial number of alternations between existential and universal 
states.
13
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Theorem 6. The cycle-free nfer evaluation problem with infinite data is AExpTime(poly)-complete.

Proof. We begin with the lower bound, showing a reduction from the word problem for alternating exponential-time Turing 
machines with a polynomial number of alternations. To this end, fix such a machine M, i.e., there are two polynomials p, p′
such that M uses at most time 2p(|w|) and at most p′(|w|) alternations when started on input w . We fix an input w and 
define n = p(|w|) and m = p′(|w|). We construct a cycle-free nfer instance with infinite data that simulates a run of M
on w .

Recall that in the proof of Theorem 4, we have shown that a nondeterministic exponential-time Turing machine can be 
simulated by a cycle-free inc-nfer instance (assuming infinite data). Here, we show that exclusive rules can simulate 
alternation.

As before, we make some simplifying assumptions on M (all without loss of generality):

• The set Q of states of M is of the form {1, 2, . . . , |Q |} and 1 is the initial state.
• The tape alphabet � of M is equal to {0, 1, . . . , 9} and 0 is the blank symbol.
• All accepting states are existential and every branch of a run of M on w has exactly m alternations.

As in the proof of Theorem 4, we encode a configuration of M as 	qrR where q is the state and 	, rR ∈ �∗ are treated 
as natural numbers bounded by 22n+2

encoding the tape to the left of the reading head (	) and the reverse of the tape to 
the right of the reading head (rR ).

As shown in the proof of Theorem 4, we can construct a set D of cycle-free inclusive rules and a trace τ such that the 
fixed point Tinc�D� τ encodes all those pairs (c, c′) of configurations of a nondeterministic Turing machine such that c′ is 
reachable from c via a run of length at most 2n . As usual, here, all intervals have the same time stamps, which is the reason 
we drop them from the notation. In this proof, we work with tree-like runs, as M is an alternating Turing machine. In the 
following, we need to distinguish between branches of such runs using only existential and only universal states. To this 
end, we use the identifiers ∃ and ∀. We adapt the rules from the proof of Theorem 2 such that

• the interval (∃, 	0, q0, rR
0 , 	1, q1, rR

1 ) is in the fixed point iff the configuration 	1q1r1 is reachable from the configura-
tion 	0q0r0 via a branch of length at most 2n such that all states (including q0 and q1) are existential, and

• the interval (∀, 	0, q0, rR
0 , 	1, q1, rR

1 ) is in the fixed point iff the configuration 	1q1r1 is reachable from the configura-
tion 	0q0r0 via a branch of length at most 2n such that all states (including q0 and q1) are universal.

Recall that m is the number of alternations during every branch of a run on our fixed input w and that all accept-
ing states are existential. In the following, we show how to inductively compute the set of configurations from which an 
accepting subrun of length at most 2n and with m′ ≤ m alternations starts, using cycle-free rules only.

For m′ = 0, this is the set of existential configurations that can reach an accepting one via existential configurations only. 
Hence, we have a rule that turns an interval of the form

(∃, 	0,q0, rR
0 , 	1,q1, rR

1 )

with accepting q1 into the interval (L0, 	0, q0, rR
0 ).

Now, using an exclusive rule we can obtain the intervals of the form (L0, 	0, q0, rR
0 ) such that (L0, 	0, q0, rR

0 ) has not 
been generated so far, i.e., we generate the complement (cf. Example 4). This is the set of existential configurations that 
cannot reach an accepting one via existential configurations only. Here, we first need to generate intervals encoding all 
(exponentially-sized) configurations of M, which can easily be achieved with cycle-free rules as described in the proof of 
Theorem 4.

Next, we have a rule that turns an interval

(∀, 	0,q0, rR
0 , 	1,q1, rR

1 )

and an interval (L0, 	2, q2, rR
2 ) such that 	2q2r2 is a successor of 	1q1r1 into the interval (L1, 	0, q0, rR

0 ). Thus, the intervals 
with the label L1 encode those universal configurations that have a branch that ends in an existential configuration from 
which no accepting configuration is reachable. These are exactly the configurations where no accepting subrun with one 
alternation starts.

Hence, another exclusive rule yields the intervals (L1, 	0, q0, rR
0 ) such that (L1, 	0, q0, rR

0 ) has not been not generated so 
far, i.e., exactly the configurations where an accepting subrun with one alternation starts.

Now, we are in a dual situation: We have a rule that turns an interval

(∃, 	0,q0, rR
0 , 	1,q1, rR

1 )

and an interval (L1, 	2, q2, rR
2 ) such that 	2, q2, r2 is a successor of 	1q1, r1 into the interval (L2, 	0, q0, rR

0 ). Thus, the intervals 
with the label L2 encode those existential configurations that have a branch that ends in an universal configuration from 
14
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which an accepting subrun with one alternation starts. These are exactly the configurations where an accepting subrun with 
two alternation starts.

We repeat this construction with labels Lm′ for every m′ ≤ m. Finally, there is a rule producing the target interval ηT

from the interval (Lm, 	, q, rR) if 	qr is the initial configuration.
Thus, the fixed point contains the interval (ηT ) iff M accepts w . Note that all the rules we have constructed are indeed 

cycle-free (just consider the order of appearance in the description above). To conclude the proof, it remains to note that 
there are only polynomially many rules, which are all of polynomial size.

For the upper bound, we again use the algorithm described in the proof of Theorem 5, with the exponential upper 
bound on the runtime relying on the upper bound on the map values as in Theorem 4, which holds here as well. Hence, 
we obtain an alternating algorithm with exponential running time (due to the fact that we need to perform calculations on 
exponentially-sized binary numbers), but with only linearly many (at most |D|) alternations. �
6. The extended nfer language

There is a further generalization of the semantics of nfer that permits cycles in the same specification as exclusive 
rules so long as the exclusive rules are not part of a cycle. We differentiate this extension of the semantics by the name
extended-nfer, and abbreviate it as ext-nfer. This relaxation of the restrictions on the use of exclusive rules is desir-
able to support more use-cases for the language. Since it is possible to obtain deterministic semantics for such specifications, 
an extended version of nfer could support this. This change to the semantics is also interesting for our purposes, since the 
evaluation complexity of inc-nfer with cycles is higher than the cycle-free evaluation complexity of nfer with exclusive 
rules.

6.1. Semantics

To support cycles and exclusive rules in the same specification, we modify Tfull�_� to compute the strongly-connected 
components of the directed graph G(D) described in Section 3. Recall that this graph has a vertex for each rule and 
edges from rules with an identifier on their left-hand side to rules with the same identifier on their right-hand side. 
The strongly connected components of the graph represent rules included in cycles (non-trivial components) or individual 
rules outside of cycles (trivial components). We interpret the rules from each component as a specification with cycles and 
ensure deterministic behavior from exclusive rules by evaluating the components in topological sort order.

Text�_� : �∗→P →P
Text�δ1· · · δn�π = π	+1 . π1 = π ∧ D = SCC(δ1 · · · δn) ∧

(D1, . . . ,D	) = topsort(D) .πi+1= Tfull�Di�(πi )

where SCC(δ1 · · · δn) is the set D of strongly connected components of the directed graph G(δ1 · · · δn) described in Section 3
and topsort(D) is a topological sort of these components. Here, Tfull�_� is the interpretation function for full nfer defined 
in Section 4. The results of Text�_� are independent of the topological sort, as any such ordering will guarantee that all 
intervals matched by a sub-specification exist before it is evaluated using Tfull�_�. Both the strongly-connected components 
and their topological sort can be computed in linear time [34].

Example 5. We can now extend Example 3 with inclusive and exclusive rules to compute the composite and prime numbers. 
Recall the five inc-nfer rules from that example to compute the natural (labeled with the identifier N), even (E), and 
odd (O ) numbers from the input trace τ = (I, {v �→ 0}). We introduce two new rules that first compute the composite (C ) 
numbers and then use them to find the primes (P ):

δ6 = C ← N coincide N where m1,m2 �→ m1(v) > 1 ∧ m2(v) > 1 map m1,m2 �→ {v �→ m1(v) · m2(v)}
δ7 = P ← N unless contain C where m1,m2 �→ m1(v) = m2(v) map m1 �→ {v �→ m1(v)}.

Rule δ6 matches two N-labeled intervals with map values greater than one and creates a C-labeled interval with its map 
value set to the product of the values from the two matched intervals. Rule δ7 then finds the complement of the composite 
numbers defined in δ6 in a similar way to how an exclusive rule was used in Example 4 to define odd numbers as the 
complement of even numbers.

Fig. 4 shows the directed graph formed by nfer rules δ1 · · · δ5 from Example 3 with δ6 and δ7 added. In the graph, there 
are two non-trivial strongly-connected components: the cycles formed by δ4 and δ5 and the cycle formed by δ3 with itself. 
The exclusive rule δ7 (shown as a square shape in the figure) is not included in these components and must only fall after 
δ1, δ3, and δ6 in any topological sort.
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Fig. 4. The directed graph formed by the rules to compute composite and prime numbers.

Fig. 5. Minimality discards the shaded interval produced by A ← B before C .

7. Complexity results for extended nfer

The ext-nfer evaluation problem with infinite data is trivially undecidable, as already the inc-nfer evaluation 
problem with infinite data is undecidable (see Theorem 1). So, we only consider the case of finite data.

Theorem 7. The ext-nfer evaluation problem with finite data is ExpTime-complete.

Proof. The lower bound already holds for the inc-nfer evaluation problem with finite data (see Theorem 3), so we only 
need to prove the upper bound.

To this end, we again use Algorithm 2, but replace the bound |D| in Line 3 by (|D| + 1) · b(D, τ , k), where b(D, τ , k)

is the upper bound on the number of intervals defined in the proof of Theorem 3. Recall that this bound is also an upper 
bound on the height of a witness tree for an interval.

The correctness of the algorithm follows by combining the proofs of Theorem 3 and Theorem 5: As exclusive rules do 
not appear on cycles, each one of them can be applied at most once when producing a fixed interval. Furthermore, between 
each such application no interval needs to be repeated in a witness tree. Altogether, the bound (|D| + 1) · b(D, τ , k) is 
sufficient to determine whether a given interval is in the fixed point or not.

Finally, it is clear that the algorithm uses only polynomial space, as it only needs to store at most two intervals (and the 
resulting map values) and a counter bounded by (|D| + 1) · b(D, τ , k)). All these objects can be encoded using polynomially 
many bits. Thus, the upper bound on the complexity follows due to APSpace = ExpTime. �

Finally, let us consider ext-nfer combined with minimality. With finite data, the resulting evaluation problem is in 
PTime while it is in ExpTime with infinite data. Both results can be proven using the same arguments as for nfer (i.e., 
Theorem 8 and Theorem 9), as these rely on the number of possible intervals in the fixed point and the time required to 
compute their maps, but not the types of rules considered.

8. Minimality

This section discusses the minimality restriction and its implications on the complexity of the nfer evaluation problem. 
Traditionally, nfer supports the concept of a selection function that may modify the results of R�_� [3]. The reason is to 
support minimality, which filters any intervals that are not minimal in their timestamps. Although minimality was originally 
introduced for its utility [2], it has positive implications for evaluation complexity as well. All results in this section hold for 
our extended semantics, i.e., with cycles and exclusive rules.

Fig. 5 shows the effect of minimality on the evaluation of a single rule. In the figure, time moves from left to right and 
events B and C on the timeline are the inputs to R�A ← B before C where true map { }�. This evaluation produces the three 
intervals labeled A but minimality discards the longer, shaded interval because there are shorter A intervals in the same 
period.

Given a pool π of existing intervals and a pool π ′ of intervals to add, the minimality function returns only the minimal 
intervals in π ′ that do not subsume any interval in π . That is, the intervals where there is not another interval with the 
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same identifier with a shorter duration during the same time. No new intervals will be produced with the same identifier 
and timestamps when one already exists in π . If there are multiple intervals with the same identifier and the same times-
tamps in π ′ , the one with the least map is retained (with respect to some fixed ordering of maps). We define minimality 
as the following:

minimality :P ×P →P
minimality (π ′, π) =
{i ∈ π ′ : �i1 ∈ π . id(i) = id(i1) ∧ start(i) ≤ start(i1) ∧ end(i1) ≤ end(i)} ∩
{i ∈ π ′ : �i2 ∈ π ′ . id(i) = id(i2) ∧ (start(i) ≤ start(i2) ∧ end(i2) < end(i)) ∨ (start(i) < start(i2) ∧ end(i2) ≤ end(i))} ∩
{i ∈ π ′ : �i3 ∈ π ′ . id(i) = id(i3) ∧ start(i) = start(i3) ∧ end(i) = end(i3) ∧ map(i3) ≺ map(i)}

where ≺ is a total order over M used as a tiebreaker when more than one new intervals exist in π ′ with equal identifiers 
and timestamps.

For the nfer evaluation problem under minimality we replace R�_� in the semantics with an interpretation function 
that applies minimality to the result of R�_�.

Rmin�_� : � →P →P
Rmin�δ �π = minimality (R�δ�π ,π )

Example 6. Assume an input trace of alternating B-labeled and C-labeled intervals with empty maps, say τ = (B, 0, { }),
(C, 1, { }), (B, 3, { }), (C, 4, { }) and the nfer rule δ = A ← B before C where true map { }. These are the same conditions 
as shown in Fig. 5, where the four input events are shown on the top line. Note that this example differs from those shown 
throughout the rest of the paper because we need to include timestamps to show the effect of minimality. We project τ to 
an initial pool (we omit writing the maps as they are not used) π1 = {(B, 0, 0), (C, 1, 1), (B, 3, 3), (C, 4, 4)}.

Without minimality, R�δ� (π1) = π2 = {(A, 0, 1), (A, 0, 4), (A, 3, 4)}, since there are three pairings of (the interval projec-
tion of) the events in τ that satisfy the clock predicate before, and the map predicate is always true. Note that the start 
and end timestamps of the intervals in π are taken from the input events that satisfy δ.

We now examine the component parts of minimality (π2, π1). There are three sets constructed in minimality, and an 
interval must be in all three sets to be in the output.

1. {i ∈ π2 : �i1 ∈ π1 . id(i) = id(i1) ∧ start(i) ≤ start(i1) ∧ end(i1) ≤ end(i)}
This set includes all of π2 since no A-labeled intervals appear in π1.

2. {i ∈ π2 : �i2 ∈ π2 . id(i) = id(i2) ∧ (start(i) ≤ start(i2) ∧ end(i2) < end(i)) ∨ (start(i) < start(i2) ∧ end(i2) ≤ end(i))}
This set includes only {(A, 0, 1), (A, 3, 4)} because for (A, 0, 4) the interval (A, 0, 1) has the same identifier, the same 
start timestamp, and a strictly lower end timestamp. It would also be excluded by (A, 3, 4).

3. {i ∈ π2 : �i3 ∈ π2 . id(i) = id(i3) ∧ start(i) = start(i3) ∧ end(i) = end(i3) ∧ map(i3) ≺ map(i)}
This set includes all of π2 since there are no intervals in π2 that vary only by their maps.

As such, Rmin�δ� (π1) = {(A, 0, 1), (A, 3, 4)}. Thus, the minimality restriction filters out the non-minimal interval (A, 0, 4).

8.1. Complexity results for nfer with minimality

Theorem 8. The nfer evaluation problem with finite data and minimality is in PTime.

Proof. Consider an instance with specification D , trace τ , and bound k on the map values. Due to minimality, the size of 
T k

full�D� τ is bounded by (ι · t2) + |τ |, where ι is the number of identifiers in D and τ and t is the number of timestamps 
in τ . Note that this bound is independent of k.

Also, map values and timestamps can be represented with polynomially many bits in the size of D and τ . Hence, we can 
compute T k

full�D� τ and check whether it contains an interval labeled by the target identifier in polynomial time. �
A similar approach works for infinite data.

Theorem 9. The nfer evaluation problem with infinite data and minimality is in ExpTime.

Proof. Again, we can compute Tfull�D� τ to determine whether it contains an interval labeled by the target identifier. Due 
to minimality, the size of Tfull�D� τ is still bounded by (ι · t2) + |τ |. However, map values can only be bounded doubly-
exponentially (cf. Theorem 4), as one can apply a polynomial ι · t2 times to the map values of the initial intervals. Hence, 
intervals in Tfull�D� τ can be represented with exponentially many bits in the size of the specification and the trace, which 
yields an exponential running time of computing Tfull�D� τ . �
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9. Discussion and conclusion

We have studied the complexity of the nfer evaluation problem. It is undecidable in the presence of recursion and 
infinite data, even without exclusive rules. In contrast, regardless of the presence of exclusive rules, the evaluation problem 
is decidable for cycle-free specifications or with respect to finite data. Most importantly for applications, the problem is in
PTime if we impose the minimality constraint and restrict to finite data. While we only allow natural numbers and Booleans 
as map values, our upper bounds also hold for more complex data types, i.e., signed numbers, (fixed-precision) floating 
point numbers, and strings, which were included in the original definitions [2,3].

Most of our complexity bounds are tight, but we leave one gap. The nfer evaluation problem with infinite data and 
minimality is in ExpTime while no nontrivial lower bounds are known. The upper bound follows from the fact that the map 
values may be of doubly-exponential size, i.e., they require exponential time to be computed. However, minimality is a very 
restrictive constraint that in particular severely limits the ability to simulate nondeterministic computations. Coupled with 
the fact that minimality implies a polynomial upper bound on the number of intervals in the fixed point, this explains the 
lack of a nontrivial lower bound.

All our lower bound proofs only use intervals with the same timestamps, i.e., the complexity stems from the manipula-
tion of data instead of temporal reasoning. Similarly, the upper bound proofs are mostly concerned with encoding of data 
and the temporal reasoning is trivial. One of the reasons is that nfer rules do not create new timestamps for intervals; 
newly created intervals can only use timestamps that already appear in the input trace. This leaves only a polynomial num-
ber of combinations of start points and end points, which is (at least) exponentially smaller than the number of data values. 
For this reason, we propose to investigate data-free nfer to analyze the complexity of the evaluation problem with respect 
to the choice of temporal operators. In this case, there are only polynomially many possible intervals in the fixed point. So, 
a trivial upper bound on the complexity is PTime, but we expect better results for fragments.

Finally, we are currently studying the nfer satisfiability problem, i.e., given a specification D and a target identifier η, is 
there a trace τ such that Text�D� τ contains an η-labeled interval? This has a practical application in supporting nfer users 
in checking the specifications for sanity: if no η-labeled interval can be produced from any input, then the specification 
probably does not capture the user’s intent.
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