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ABSTRACT
We demonstrate SHACTOR, a system for extracting and analyz-
ing validating shapes from very large Knowledge Graphs (KGs).
Shapes represent a specific form of data patterns, akin to schemas
for entities. Standard shape extraction approaches are likely to pro-
duce thousands of shapes, and some of those represent spurious
constraints extracted due to the presence of erroneous data in the
KG. Given a KG having tens of millions of triples and thousands of
classes, SHACTOR parses the KG using our efficient and scalable
shapes extraction algorithm and outputs SHACL shapes constraints.
The extracted shapes are further annotated with statistical informa-
tion regarding their support in the graph, which allows to identify
both erroneous and missing triples in the KG. Hence, SHACTOR
can be used to extract, analyze, and clean shape constraints from
very large KGs. Furthermore, it enables the user to also find and
correct errors by automatically generating SPARQL queries over
the graph to retrieve nodes and facts that are the source of the
spurious shapes and to intervene by amending the data.
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• Information systems→ Semanticweb description languages;
Data cleaning; • Computing methodologies→ Knowledge rep-
resentation and reasoning; Ontology engineering.

KEYWORDS
Knowledge Graphs, SHACL, Shapes Extraction, Quality Assessment
ACM Reference Format:
Kashif Rabbani, Matteo Lissandrini, and Katja Hose. 2023. SHACTOR: Im-
proving the Quality of Large-Scale Knowledge Graphs with Validating
Shapes. In Companion of the 2023 International Conference on Management
of Data (SIGMOD-Companion ’23), June 18–23, 2023, Seattle, WA, USA. ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/3555041.3589723

1 INTRODUCTION
Knowledge Graphs (KGs) are in widespread use both within compa-
nies and on theWeb [5, 9], thanks to their ability to represent a wide
range of information in different domains. DBpedia (dbpedia.org)
and WikiData (wikidata.org) are examples of large public KGs,
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(a) RDF Graph

(b) Validating Shapes
Figure 1: An example RDF Graph and Validating Shapes

where data is stored using the Resource Description Framework
(RDF) [1], which by design allows modeling data without a schema
definition (unlike, for instance, the relational model). In RDF, data is
modeled as nodes representing entities and data values, while edges
represent relationships and attributes (see the example in Figure 1a).

Nonetheless, as more and more data is accrued within KGs, prac-
tical applications impose further demands regarding quality assess-
ment and validation. To provide a way to validate the contents of a
KG, shape constraint languages, namely SHACL [4] and ShEx [6],
have been proposed as ways to define and enforce constraints using
so-called validating shapes. Validating shapes allow to define a par-
tial schema for the entities end relationships contained in a KG and
overcome some of the limitations of the RDF Schema specification
while being easier to use than OWL ontologies. Shapes can be used
to express that an entity of type Student needs to have a name,
an advisor, and should be enrolled in some courses; and that these
attributes should be instances of type string, FullProfessor, and
Course, respectively (see Figure 1b for a simplified depiction of
some validating shapes describing the relationships between some
entity types). Thanks to their simplicity and expressivity, shape
constraint languages have attracted increasing interest, and SHACL
became a W3C standard in 2017 [4].

Validating shapes have attracted substantial attention in the
past few years, and recently, we conducted a survey [7] to analyze
the extraction and adoption of validating shapes in industry and
academia. Data scientists are facedwith the challenge to craft a set of
validating shapes for already existing KGs that they are workingwith
and then use those to clean such datasets, i.e., a post-hoc validation.

https://doi.org/10.1145/3555041.3589723
dbpedia.org
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Hence, we face the need to develop semi-automatic methods to
help users generate shapes for large existing KGs. These are usually
the shape extraction approaches [2, 3]. Due to well-known issues
in data quality and the heterogeneity of existing KGs, spuriousness
poses important challenges to automatic shape extraction methods.
For example, in DBpedia, a few entities representing musical bands
are wrongly assigned to dbo:City class. As a consequence, when
shapes are extracted from its instance data using approaches that
do not analyze the support of the shapes, the resulting node shape
for dbo:City specifies that cities are allowed to have dbo:genre and
dbo:formerBandMember properties. We call these spurious shapes.

Existing shape extraction approaches produce many spurious
shapes when dealing with erroneous triples or incomplete data [8].
Thus, extraction approaches will generate tens of thousands of
shape constraints due to the effect of spuriousness. In these situ-
ations, it becomes unmanageable for domain experts to manually
analyze and clean the resulting validating shapes. Finally, exist-
ing methods are not scalable, i.e., unable to extract shapes from
very large KGs (especially on commodity machines). Therefore, we
proposed a solution called Quality Shapes Extraction (QSE) [8] to
tackle both the limitations of scalability and spuriousness in exist-
ing shapes extraction approaches. QSE extracts validating shapes
from very large graphs on a commodity machine (it takes only
3 minutes on DBPedia with just 16 GB of RAM) and also provides
information about the reliability of the extracted shape constraints
by computing their confidence and support. Hence, QSE identifies
those shapes that are the most informative and distinguishes those
that are indeed affected by incomplete or incorrect data.

Contributions. In this work, we show how the shapes extracted
with QSE in combination with the information about their confi-
dence and support enable awide range of data profiling and cleaning
functionalities, beyond simple validation. We thus propose SHAC-
TOR (for SHapes extrACTOR), a tool that data scientists can use
to speed up the end-to-end KG cleaning process by (1) automatically
extracting shapes, (2) helping to evaluate their quality, (3) providing
important structural profiling information, and (4) allowing to find
errors and missing data in the given KG as well as correct such
issues by automatically generating and executing SPARQL queries.
SHACTOR uses QSE [8] to filter shapes by various confidence and
support thresholds to identify reliable shapes. These shapes provide
essential information on the structure and content of the KG as
well as on possible data quality issues. SHACTOR then highlights
the spurious shapes and automatically generates SPARQL queries
to extract the erroneous or incomplete data generating such shapes.
The system allows for removing the erroneous triples interactively
and then correcting the generated shapes. Thus, the tool will lead
to a valid set of shapes, which can be used to maintain the quality
of the given KG in the future.

Demo Video and Source Code. The demonstration video and
source code of SHACTOR is available on our website and GitHub1.

2 SHACTOR
SHACTOR provides a graphical user interface for interacting with
our QSE algorithm [8] and provides a wide range of new function-
alities. Given a KG in RDF, SHACTOR uses QSE to extract a full set

1https://relweb.cs.aau.dk/qse/shactor/, https://github.com/dkw-aau/demo-shactor

Figure 2: SHACTOR Architecture

of validating shapes and then allows the user to explore and ana-
lyze this output. Hence, SHACTOR consists of three main phases,
(1) shapes extraction with support and confidence, (2) shapes anal-
ysis, and (3) KG cleaning. Figure 2 shows SHACTOR’s architecture.

Background and Problem. An RDF knowledge graph models
entities and their relationships in the form of <subject, predicate,
object> triples. Given pairwise disjoint sets of IRIsI, blank nodesB,
and literals L, an RDF Graph G:⟨𝑁, 𝐸⟩ is a graph with a finite set of
nodes𝑁⊂(I∪B∪L) and a finite set of edges 𝐸⊂{⟨𝑠, 𝑝, 𝑜⟩∈(I∪B)×
I × (I∪B∪L)}. See a sample G in Figure 1a, where oval and
rectangular shapes represent IRIs and literal nodes, respectively.
The standard query language for RDF data is SPARQL. A SPARQL
query𝑄 consists of a set of triple patterns along the conditions that
have to be met in order for data in G to contribute to the result.

The SHACL shapes of G are defined as set of node shapes
S:{⟨𝑠, 𝜏𝑠 ,Φ𝑠 ⟩, ...}, where 𝑠 is the shape name, 𝜏𝑠∈C is the target
class, and Φ𝑠 is a set of property shapes of the form 𝜙𝑠 :⟨𝜏p, Tp,Cp⟩,
where 𝜏p∈P is called the target property, Tp⊂I contains either an
IRI defining a literal type, e.g., xsd:string, or a set of IRIs – called class
type constraint, andCp is a pair (𝑛,𝑚) ∈ N×(N∪{∞}).𝑛≤𝑚 – called
min and max cardinality constraints. For example, the node shape
for :Student in G (Figure 1a) is {𝑠:studentNodeShape, 𝜏𝑠 : Student,
Φ𝑠 :{𝜙:name, 𝜙:takesCourse, 𝜙:advisor}} where property shape 𝜙:name
has constraints ⟨:name, xsd:string, (1, ∞)⟩, i.e., every node of type
Student should have at least one name of type string (see Figure 1b).

In QSE, we introduced the notion of support and confidence for
shape constraints to study the reliability of extracted shapes and
tackle the issue of spuriousness. These concepts are inspired by
the well-known theory developed for the task of frequent pattern
mining. The support 𝜔 of a constraint measures how many entities
are conforming to a specific constraint 𝜙𝑠 :⟨𝜏p, Tp,Cp⟩ ∈ Φ𝑠 of a
shape ⟨𝑠, 𝜏𝑠 ,Φ𝑠 ⟩ ∈ S appearing in the data graph G. Similarly, the
confidence Y of a constraint 𝜙𝑠 measures the ratio between how
many entities conform to 𝜙𝑠 and the total number of entities that
are instances of the target class of the shape 𝑠 .

Given the need to improve the quality of the data within an
existing KG, SHACTOR addresses the problem of helping users to
produce high-quality validating shapes and use them to analyze and
correct the data quality issues present in the graph. Hence, to extract
shapes from a large existing graph G while tackling the effects of
spuriousness and helping the user to analyze S and clean G, the
SHACTOR system takes a knowledge graph G, a threshold 𝜔 for
support, and Y for confidence and produces all shapes after dis-
tinguishing for which subset of node shapes ⟨𝑠, 𝜏𝑠 ,Φ𝑠 ⟩∈S it holds
that supp(𝑠)>𝜔 and for which property shapes 𝜙𝑠 :⟨𝜏p, Tp,Cp⟩∈Φ𝑠 ,
supp(𝜙𝑠 )>𝜔 and conf (𝜙𝑠 )>Y. Moreover, for each Φ𝑠 ∈ S, SHAC-
TOR generates a SPARQL query 𝑄 to fetch either triples that con-
form to some 𝜙𝑠 ∈ Φ𝑠 or triples that fail to conform to it, allowing

https://relweb.cs.aau.dk/qse/shactor/
https://github.com/dkw-aau/demo-shactor
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to inspect specific data quality issues. Thus, SHACTOR is a system
that takes full advantage of existing standards in terms of data for-
mats, query languages, and validation constraints in the realm of
KGs, while also ensuring ease of use and scalability.

Shapes Extraction and Analysis. SHACTOR parses G (avail-
able as SPARQL endpoint or from file) to extract entities and their
constraints and computes support and confidence for each con-
straint. To focus on the specific subset of the graph, it also allows
selecting a custom subset of types in the KG, where the user can
select one or more classes to focus only on entities of the specific
class, e.g., :Student or :FullProfessor class in Figure 1a. In the sec-
ond step, it asks to input thresholds for support 𝜔 and confidence Y.
Given this information, it will use the QSE algorithm to parse G and
produce all shapes that satisfy the support and confidence thresh-
olds while also producing shape constraints that fail to meet these
conditions (See for instance 1○ in Figure 3). The data scientists can
further dynamically filter the produced shapes by providing more
restrictive values for 𝜔 and Y. They can further fine-tune the prun-
ing thresholds by using statistical information like the frequency
of each class. Note that while a spurious shape does not usually
represent a valid constraint to be enforced, it usually signals the
presence of erroneous data in the graph. Hence, on the one hand,
SHACTOR provides information w.r.t. the contents and structure
of the KG, helping in identifying a set of reliable validating shapes
to be enforced, while, on the other hand, by looking at the shapes
with low support and confidence, it also helps in understanding
which portions of the data may be particularly problematic. To the
best of our knowledge, SHACTOR is the first tool that considers both
support and confidence to identify errors in a KG.

Therefore, to further inspect the shapes produced in this way,
SHACTOR implements several useful features. First, it displays
interactive charts that show which percentage of shapes are above
and below each threshold (see 2○ in Figure 3). Furthermore, in the
list of node shapes, i.e., for each node shape 𝑠 in S, it shows the
support 𝜔𝑠 of 𝑠 along with the quality of the data behind each of
them in terms of the number of property shapes specific for that
node shape (i.e., |Φ𝑠 | of 𝑠) that are above the two thresholds 𝜔
and Y (see 3○ in Figure 3). Node shapes with many property shapes
with low support and confidence signal the presence of noisy or
incomplete data for entities of that type.

Moreover, for each property shape 𝜙𝑠∈Φ𝑠 of a given node shape
𝑠∈S, it shows which predicate and type constraints it involves
(the values of ⟨𝜏p, Tp,Cp⟩) along with its specific support 𝜔𝜙𝑠

and
quality indicator of each property shape 𝜙𝑠 computed by visually
showing the confidence of the shape and highlighting those prop-
erty shapes whose confidence is below the user-provided threshold
(see 4○ in Figure 3). These quality indicators and highlights based
on support and confidence of each node shape and its property
shapes help the user find the spurious shape constraints in S.

Improving Data Quality. The result of validating a KG using
validating shapes is usually a validation report that lists all entities
and triples that violate the given set of constraints expressed by the
shapes. Nonetheless, as we have seen, when using an automatic
shape extraction tool, the data scientist needs to decidewhich subset
of shapes to enforce among those extracted by the tool. SHACTOR
helps data scientists by automatically generating queries to retrieve

the entities and triples that caused a given shape to be extracted
from the data. In a sense, it allows to inspect the provenance of
a shape. This helps the user both in deciding which shapes to be
used for validation as well as to identify either erroneous triples or
missing information when inspecting spurious shapes.

Specifically, for a given node shape 𝑠∈S, SHACTOR can build
SPARQL queries for each property shape 𝜙𝑠∈Φ𝑠 using the property
path 𝜏𝑝 , class type constraint Tp of 𝜙𝑠 , and target class 𝜏𝑠 . Hence,
given the node shape 𝑠 with property shapes Φ𝑠 , SHACTOR auto-
matically builds a SPARQL query to retrieve all the triples having
property path 𝜏𝑝 and class type 𝜏𝑠 for a given 𝜙𝑠∈Φ𝑠 , e.g., to inspect
which entities of type dbo:City in DBpedia have the genre attribute
(see 5○ in Figure 3). SHACTOR can then directly execute the query
and return the corresponding list of triples (see 6○ in Figure 3).
Further, SHACTOR provides the option to generate the queries to
delete selected triples, thus allowing to automatically delete erro-
neous triples on the spot, as well as to generate INSERT queries to
amend the missing information in the graph.

3 DEMONSTRATION SCENARIO
SHACTOR demonstrates the power and versatility of a tool that
effectively exploits the information carried by shapes extracted and
annotated with statistical data. We show how data scientists can use
SHACTOR to speed up the process of KG cleaning by automatically
extracting shapes and evaluating the quality of extracted shapes
along with their provenance. First, the demonstration guides the
participants through different extraction phases (not shown in the
figure).We use a full snapshot of DBpedia from 2021, which contains
52 M triples, 15 M literals, 5 M typed entities, 1.3 K properties, and
427 classes. Moreover, participants will also be able to analyze
shapes from a full snapshot of WikiData (having more than 1.9
billion triples) that we have extracted in advance. SHACTOR can
extract shapes on a commodity machine also for WikiData [8], but
while for DBpedia, it takes only a few minutes, for WikiData, it
takes too long for a live demonstration of the extraction.

Configuration. At first, we present various options to provide a
KG as input, e.g., the user can upload a KG file or point to a SPARQL
endpoint. The audience is also welcome to bring their own KG to be
analyzed. Then, the user selects the target sub-graph (from the list of
extracted classes); after that, SHACTOR starts the shapes extraction
step and the user is directed to the main analysis interface (Figure 3).
SHACTOR also supports uploading already extracted shapes.

Shapes Analysis. The user provides support and confidence as
pruning thresholds to analyze the extracted shapes. Hence, SHAC-
TOR applies the input pruning thresholds and display an overview
in the form of pie charts (see 1○ and 2○ in Figure 3). These charts
show the portions of node and property shapes that are below or
above the provided pruning thresholds. Furthermore, they help the
user decide the optimal values for the pruning thresholds. In our
DBpedia example, we see the quality indicators for two node shapes
(shown in 3○ of Figure 3). Then, we show an example node shape
called :CityShape having target class dbo:City and explore its prop-
erty shapes (shown in 4○ of Figure 3). The list of shape constraints
can be sorted by increasing or decreasing support so that the user
can select the desired set of node or property shapes. The selected
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Figure 3: Portions of SHACTOR GUI showing a sample of the analysis of the shapes for DBpedia

shapes can also be downloaded before or after applying pruning
thresholds to be used with a shape validation tool.

Finding Errors in the KG. SHACTOR helps users find spurious
shape constraints by highlighting constraints having support or con-
fidence less than the provided input pruning thresholds. Consider a
user exploring the property shapes of :CityShape having the lowest
support and confidence, the user will find out the :genre property
shape in the set of property shapes for :CityShapewith support of 3.
SHACTOR, by default, highlights the property constraints below
the pruning thresholds in red color. Hence, this will help the user
easily find such spurious property shapes. This shape signals the
presence of some erroneous triple. To improve the quality of data in
the KG, the user may wish to locate and remove the triples involved
in such a shape. Thus, with the click of a button, SHACTOR can
generate the SPARQL query from the interface for retrieving the
triples involved in the :genreCityShapeProperty (shown in 5○), and
upon execution, the retrieved triples will be fetched from the KG
and displayed on the interface (shown in 6○). The list of retrieved
triples will show the entities which are wrongly classified, e.g.,
dbo:Heris is classified as dbo:City and dbo:Song. Now the user can
go through the list of triples and take appropriate action to improve
the quality of data in the KG. In particular, the user can select a
subset of triples they wish to delete, and SHACTOR will generate a
corresponding DELETE query. For instance, the triples assigning
the wrong type to the entities dbr:Dn, dbr:Heris, and dbr:agar.

Finding Missing information in the KG. SHACTOR allows
the user to explore the property shapes in a separate dashboard (not
shown in Figure 3). Here, for each property shape, it identifies also
object IRIs that are missing types as well as entities that are missing
properties. Based on these, SHACTOR suggests INSERT queries to
add the missing information. For example, it suggests to add a value
for the dbo:capital property for those entities of type dbo:country
that are missing a capital.

4 CONCLUSION
In this demo paper, we present SHACTOR, a system to support
end-to-end profiling and cleaning of large-scale KGs using validat-
ing shapes automatically extracted from the graph and annotated
with statistical information thanks to our scalable QSE algorithm.
Further, this demo shows the versatility and effectiveness of utiliz-
ing shapes as easy-to-extract and easy-to-use tools to identify and
correct data quality issues in existing KGs. While our tool allows to
analyze shapes in isolation, in the future, we plan to add a feature to
visualize the shapes-based schema graph to analyze the taxonomy
of the shapes.
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