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Abstract—Stone duality relates logic, in the form of Boolean
algebra, to spaces. Stone-type dualities abound in computer
science and have been of great use in understanding the rela-
tionship between computational models and the languages used
to reason about them. Recent work on probabilistic processes
has established a Stone-type duality for a restricted class of
Markov processes. The dual category was a new notion—Aumann
algebras—which are Boolean algebras equipped with countable
family of modalities indexed by rational probabilities. In this
article we consider an alternative definition of Aumann algebra
that leads to dual adjunction for Markov processes that is a
duality for many measurable spaces occurring in practice. This
extends a duality for measurable spaces due to Sikorski. In
particular, we do not require that the probabilistic modalities
preserve a distinguished base of clopen sets, nor that morphisms
of Markov processes do so. The extra generality allows us to
give a perspicuous definition of event bisimulation on Aumann
algebras.

I. INTRODUCTION

Dualities in computer science have enjoyed a recent spate
of popular interest. Since Plotkin and Smyth’s discovery of a
Stone-type duality between the predicate-transformer seman-
tics of Dijkstra and state-transformer semantics [1], [2], it has
become increasingly apparent that dualities are ubiquitous in
computer science, having appeared in automata and formal
language theory, automated deduction, programming language
semantics and verification, domain theory, and concurrency
theory [3]–[14].

Dualities are important because they establish canonical
connections between computational models and the languages
used to reason about them. A duality gives an exact character-
ization of the power of a state transition system by showing
how the system determines a corresponding logic or algebra
in a canonical way, and vice versa. Moreover, algebra homo-
morphisms correspond directly to structure-preserving maps or
bisimulations of the transition system, allowing mathematical
arguments to be transferred in both directions.

The original duality of Stone [15] asserts that the category
of Boolean algebras and Boolean algebra homomorphisms is
contravariantly equivalent to the category of Stone spaces and
continuous maps. Jonsson and Tarski [16] extended Stone’s
result to Boolean algebras with modal operators and Stone
spaces with transitions. A recent surge of interest in prob-
abilistic systems, due largely to impetus from the artificial
intelligence and machine learning communities, has led to the
study of various logics with constructs for reasoning about
probabilities of events or expected behaviour. Recent papers on

Markovian logic [11], [17], [18] have established completeness
and finite model properties for such systems.

In this paper we focus on the duality of a certain class
of models of probabilistic computation, namely Markov tran-
sition systems, with a certain class of Boolean algebras with
operators that behave like probabilistic modalities, the Aumann
algebras. Aumann algebra is the algebraic analogue of Marko-
vian logic; that is, it is to Markovian logic what Boolean
algebra is to propositional logic. They were first defined in
[19], where a restricted form of the duality was established.
The duality was shown to hold only under certain (somewhat
artificial) assumptions, to wit:
• The Aumann algebra must be countable.
• The Borel sets of the Markov transition system must be

generated by a distinguished countable family of clopen
sets, and morphisms must preserve the distinguished
clopens.

These assumptions were made in order to apply the Rasiowa–
Sikorski lemma [20], a lemma of logic that is dual to the Baire
category theorem of topology. The RSL/BCT implies that
certain “bad” ultrafilters (those not satisfying the countably
many infinitary defining conditions of countable Aumann al-
gebras) can be deleted from the Stone space without changing
the supported algebra of measurable sets, since the “good”
ultrafilters are topologically dense.

Although not a perfect duality due to these restrictions, the
groundwork laid in that paper nevertheless led to significant
advances in the completeness of Markovian logics [21], [22].
Previously, strong completeness theorems had used a powerful
infinitary axiom scheme called the countable additivity rule,
which has uncountably many instances. Moreover, one needs
to postulate Lindenbaum’s lemma (every consistent set of
formulas extends to a maximally consistent set), which for
these logics is conjectured but not proven. The duality result
of [19] gives rise to a complete axiomatization that does
not involve infinitary axiom schemes with uncountably many
instances and that satisfies Lindenbaum’s lemma.

In this paper we improve the duality of [19] to a full-
fledged Stone-like duality between Markov transition systems
and Aumann algebras based on Sikorski’s Stone duality for
σ-perfect σ-fields [23], [24] and σ-spatial Boolean algebras.
A σ-Boolean algebra is σ-spatial if every element is contained
in an ω-complete ultrafilter; this is the algebraic analogue
of Lindenbaum’s lemma. The construction does not use the
RSL/BCT, thus the restrictions mentioned above are no longer
necessary. However, we need to change the definition of an



Aumann algebra, so this duality is not strictly a generaliza-
tion of [19]. In particular, the axiom AA8 that we use has
uncountably many instances. We say that the duality is Stone-
like because the duality is no longer an algebraic/topological
duality in the strict sense of the word, as the “topological”
side is axiomatized in terms of measure-theoretic properties of
the state space, not topological properties as with traditional
Stone-type results. This is an easy price to pay, because it
brings the relevant properties of the state space needed for
duality into sharp relief.

Our key results are:
• a version of the duality of [19] for all σ-spatial Aumann

algebras, not just countable ones; and
• the removal of the assumptions that Markov processes

be countably generated and that maps preserve the dis-
tinguished clopens.

The paper is organized as follows. In §II, we briefly review
the necessary background material. In §III, we describe Siko-
rski’s Stone duality for measurable spaces. We do this so as to
fix notation and also because it will be used in two different
places later in the article. It takes the form of an adjunction
that becomes a categorical duality when restricted to objects
for which the unit and counit are isomorphisms. In §IV, we
recall Halmos’s description of free σ-Boolean algebras and
what a presentation of a σ-Boolean algebra is. We then give
a presentation of the Borel σ-field of [0, 1] as an abstract σ-
Boolean algebra. In §V, we describe an alternative definition of
Aumann algebras and prove a duality for Aumann algebras and
(discrete-time, continuous-space, time-homogeneous) Markov
processes extending the duality for σ-Boolean algebras and
measurable spaces in §III. Finally, in §VI we describe the
generalization of labelled Markov processes and how event
bisimulation is formulated in the setting of Aumann algebras.

II. BACKGROUND

See Johnstone [25] for a detailed introduction to Stone
duality and its ramifications, as well as an account of several
other related mathematical dualities such as Priestley duality
for distributed lattices and Gelfand duality for C∗-algebras.

We assume knowledge of basic notions from measure theory
and topology such as field of sets, σ-field, measurable set,
measurable space, measurable function, measure, topology,
open and closed sets, continuous functions, and the Borel
algebra of a topology (denoted by Bo(X) for X a topological
space in this article). See [26], [27] for a more thorough
introduction.

Throughout, we use σ-Boolean algebra to refer to a σ-
complete Boolean algebra, i.e. a Boolean algebra with count-
able joins and meets, and use σ-field to refer to a pair (X,F)
where X is a set, and F a family of subsets that is a σ-Boolean
algebra under set-theoretic operations. To avoid confusion we
do not use the term σ-algebra.

The natural notion of an ultrafilter on a σ-Boolean algebra
is a σ-ultrafilter, i.e. an ultrafilter that is additionally closed
under countable meets. We say that a σ-Boolean algebra is

σ-spatial if every element is contained in a σ-ultrafilter.1 If
we use σ-homomorphisms as morphisms, σ-Boolean algebras
form a category σ-BA, with σ-spatial algebras forming a full
subcategory σ-BAsp.

Define Q0 = Q ∩ [0, 1] and R+ = R ∩ [0,∞).

A. Measurable Spaces and Measures

If F ⊆ PM , the σ-field generated by F is the smallest
σ-field containing F .

In any measurable space (X,Σ), a point x ∈ X defines a
σ-ultrafilter on Σ by

〈x〉 = {S ∈ Σ | x ∈ S}.

Sikorski introduced the term σ-perfect for those measurable
spaces for which 〈x〉 is a bijection from X to the set of σ-
ultrafilters on Σ.

Measurable spaces form a category Més with measurable
maps as morphisms, and σ-perfect measurable spaces form a
full subcategory PMés.

A nonnegative real-valued set function µ is said to be finitely
additive if µ(A∪B) = µ(A)+µ(B) whenever A∩B = ∅, and
countably additive if µ(

⋃
iAi) =

∑
i µ(Ai) for a countable

pairwise-disjoint family of measurable sets. A measure on a
measurable space (X,Σ) is a countably additive set function
µ : Σ→ R+. A measure is a probability measure if in addition
µ(X) = 1, and a subprobability measure if µ(X) ≤ 1. We
use G(X,Σ) to denote the set of subprobability measures on
(X,Σ).

We can view G(X,Σ) as a measurable space by considering
the σ-field generated by the sets {µ ∈ G(X,Σ) | µ(S) ≥ r}
for S ∈ Σ and r ∈ [0, 1]. This is the least σ-field on G(X,Σ)
such that all maps µ 7→ µ(S) : G(X,Σ) → [0, 1] for S ∈ Σ
are measurable, where the real interval [0, 1] is endowed its
Borel σ-field. In the usual way, we extend G to a functor
Més→Més by defining

G(f)(µ)(T ) = µ(f−1(T )),

where f : (X,Σ)→ (Y,Θ) is a measurable map, µ ∈ G(X,Σ)
and T ∈ Θ. It is worth mentioning that G is the subprobabilis-
tic Giry monad [28].

B. Markov Processes

Markov processes (MPs) are models of probabilistic systems
with a continuous state space and discrete-time probabilistic
transitions [28]–[30].

Definition 1 (Markov process). A Markov process (MP)
is a measurable space (X,Σ) equipped with a measurable
map θ : (X,Σ) → G(X,Σ). A Markov process is said to
be σ-perfect iff (X,Σ) is. Maps of Markov processes are
“zig-zags”, i.e. if (X1,Σ1, θ1) and (X2,Σ2, θ2) are Markov

1This terminology is inspired by the theory of locales.



processes, a measurable map f : (X1,Σ1) → (X2,Σ2) is a
map of Markov processes if

X1
f //

θ1
��

X2

θ2
��

G(X1)
G(f)

// G(X2)

commutes. Then Markov processes and morphisms thereof
form a category Markov, with σ-perfect Markov processes
forming a full subcategory PMarkov.

In a Markov process (X,Σ, θ), and θ is called the transition
function. For x ∈ X , θ(x) : Σ → [0, 1] is a probability
measure on the state space (X,Σ). For S ∈ Σ, the value
θ(x)(S) ∈ [0, 1] represents the probability of a transition from
x to a state in S.

The condition that θ be a measurable function X →
G(X,Σ) is equivalent to the condition that for fixed S ∈ Σ,
the function x 7→ θ(x)(S) is a measurable function X → [0, 1]
(see e.g. [30, Proposition 2.9]).

C. Aumann Algebras
Aumann Algebra (AA) [19] is the an algebraic analogue of

Markovian logic [11], [17], [18]. It is so named in honor of
Robert Aumann, who has made fundamental contributions to
probabilistic logic [31].

Definition 2 (Aumann algebra). A σ-Aumann algebra is a
tuple (A, (Lr)r∈Q0

), where A is a σ-Boolean algebra, Q0 =
Q ∩ [0, 1] and each Lr : A → A, such that the following
axioms hold, where a, b are arbitrary elements of A and r, s
are elements of Q0:

(AA1) > ≤ L0(a)

(AA2) Lr(⊥) ≤ ⊥, where r > 0

(AA3) Lr(a) ≤ ¬Ls(¬a) if r + s > 1

(AA4) Lr(a ∧ b) ∧ Ls(a ∧ ¬b) ≤ Lr+s(a) if r + s ≤ 1

(AA5) ¬Lr(a ∧ b) ∧ ¬Ls(a ∧ ¬b) ≤ ¬Lr+s(a) if r + s ≤ 1

(AA6) a ≤ b implies Lr(a) ≤ Lr(b)

(AA7)
∧
r<s

Lr(a) = Ls(a)

(AA8) If r ∈ Q0 and r 6= 0, for all countable descending chains a1 ≥
a2 ≥ · · · such that

∞∧
i=1

ai = ⊥ we have
∞∧
i=1

Lr(ai) = ⊥.

TABLE I
AUMANN ALGEBRA

We define a morphism of σ-Aumann algebras f :
(A, (Lr)) → (B, (Mr)) to be a σ-Boolean homomorphism
such that f(Lr(a)) = Mr(f(a)) for all a ∈ A, i.e. such that
the following diagram commutes for all r ∈ Q0:

A
f //

Lr
��

B

Mr

��
A

f
// B.

We define the category Aumann to have σ-Aumann algebras
as objects and σ-Aumann algebra morphisms as its mor-
phisms, and AumannSp to be the full subcategory on σ-
spatial Aumann algebras.

The reader may verify that AA1 and AA3-AA6 are the same
as in [19, §4.1], and that AA7 and AA8 imply the AA7 of the
original definition. Note that AA2 originates in [22, Table 3],
and is the small change needed to account for subprobability
distributions. Note also that AA2 with r = 0 is inconsistent
with AA1. Additionally, AA1 is implied by AA7 with s = 0.
A σ-spatial Aumann algebra is defined to be a σ-Aumann
algebra whose underlying σ-Boolean algebra is σ-spatial.

III. DUALITY FOR MEASURABLE SPACES

In this section, we express Sikorski’s duality for measurable
spaces [24, §24, §32][23, 2.1-2] as an adjunction, and describe
how this adjunction can be restricted to an equivalence (see
[32, Part 0, Proposition 4.2] for a proof that this is possible
for any adjunction).

If (X,Σ) is a measurable space, then Σ is a σ-Boolean
algebra. We can use this to define a functor F : Més →
σ-BAop by defining F (X,Σ) = Σ, and for f : (X,Σ) →
(Y,Θ) a measurable map and T ∈ Θ

F (f)(T ) = f−1(T ).

This is easily verified to be a functor. The following is easy
to verify using the fact that sets can be distinguished by their
points.

Lemma 3. For any measurable space (X,Σ), Σ is a σ-spatial
σ-Boolean algebra.

So we can also regard F as having the type Més →
σ-BAop

sp . The analogous functor in Stone duality takes the
Boolean algebra of clopens of a Stone space.

The reader familiar with Stone duality will already be
expecting ultrafilters to be involved in the definition of a
functor the other way. For A a σ-Boolean algebra, we define
Uσ(A) to be the set of all σ-ultrafilters on A. Given an element
a ∈ A, we define

LaM = {u ∈ Uσ(A)|u 3 a} ⊆ Uσ(A).

We can define F(A) ⊆ P(Uσ(A)) by F(A) = LAM.

Lemma 4. L-M is a surjective morphism of σ-Boolean algebras
A→ F(A), and F(A) is a σ-field [24, §24.1]. We also have
that A is σ-spatial iff L-M is an isomorphism.

We give the proof of this, and the other results whose proof
is omitted in the main text, in the appendix.

We can now define G : σ-BAop → PMés on objects
as G(A) = (Uσ(A),F(A)), where F(A) = LAM. On σ-
homomorphisms f : A → B, G(f) is defined for each
u ∈ Uσ(B) as

G(f)(u) = f−1(u).



In order to prove that F a G, we define the unit and counit
of the adjunction. For a measurable space (X,Σ), for each
element x ∈ X , we can define an ultrafilter 〈x〉 ∈ Uσ(Σ) as

〈x〉 = {S ∈ Σ | x ∈ S}.

We define the unit ηX : (X,Σ) → G(F (X,Σ)) and counit
εA : F (G(A))→ A to be

ηX(x) = 〈x〉
εA(a) = LaM.

The direction of εA is reversed because we use σ-BAop.

Theorem 5. (F,G, η, ε) is an adjunction making G a right
adjoint to F . In fact, G maps into PMés and by restricting F
and G to the categories where the unit and counit are isomor-
phisms, they define an adjoint equivalence σ-BAop

sp ' PMés.

In passing, the above theorem shows that PMés and
σ-BAsp are reflective [33, §IV.3] subcategories of Més and
σ-BA, respectively.

The reader might object to the definition of a σ-perfect
measurable space as only attempting to “solve” a problem by
defining it out of existence. To address this potential criticism,
we show that there are many σ-perfect measurable spaces
occurring in practice using a theorem of Hewitt. First, we
recall that on a topological space X , the Baire σ-field Ba(X)
can be defined to be the σ-field generated by the zero sets, the
subsets of X of the form f−1(0) for some continuous map
X → R. If X is metrizable, Ba(X) is the same as the Borel
σ-field. We also need to refer to the concept of a realcompact
space. We omit the definition [34, §5.9], but we only need the
fact that every σ-compact Hausdorff space and every separably
metrizable space2 is realcompact, as is shown in [34, §8.2].

Theorem 6 (Hewitt). For a completely regular space X ,
(X,Ba(X)) is σ-perfect iff X is realcompact.

See [35, Theorem 16] for the proof3.
Therefore the Borel σ-field of any separable metric space

and the Baire σ-field of any compact Hausdorff space are σ-
perfect. We warn the reader that it is not the case that the Baire
σ-field of a locally compact space is σ-perfect, nor the Borel
σ-field of an unmetrizable compact Hausdorff space, and σ-
perfectness is not preserved under σ-subfields (even though
σ-spatiality is preserved under subalgebras).

IV. PRESENTATIONS OF σ-BOOLEAN ALGEBRAS

In this section we describe Halmos’s construction of the
free σ-Boolean algebra on a set, how to give presentations
of σ-fields in terms of generators and relations, how to
define measurable maps in terms of presentations, and give
a presentation of Bo([0, 1]).

In this section we use F to represent the free σ-Boolean
algebra, because the functor F from the previous section is not
used. We have the usual forgetful functor U : σ-BA→ Set.

2Not requiring completeness.
3Hewitt uses Q-space to mean realcompact space.

Proposition 7 (Halmos). The functor U has a left adjoint F ,
given on objects by

F (X) = Ba(2X),

where 2X is given the product topology. This is also a left
adjoint to the restriction of U to σ-BAsp.

We give the extra parts of the proof needed to get from [36,
§23, Theorem 14] to the above statement in the appendix.

We have already seen the definition of a σ-ultrafilter. A
σ-ideal in a σ-Boolean algebra A is a subset I ⊆ A that
is downward closed (i.e. if b ≤ a and a ∈ I , then b ∈ I)
and closed under countable joins. As any σ-ideal is an ideal,
we can define A/I to be equivalence classes of elements of
A modulo the relation a ∼ b ⇔ a4b ∈ I as usual, and
σ-Boolean operations are well-defined with respect to this
equivalence relation.

We say a σ-Boolean algebra A is generated by a subset
H ⊆ A if every element of A can be expressed as a σ-
Boolean combination of elements of H . As we can use the
infinitary de Morgan law, this is equivalent to the statement
that for each a ∈ A, there exists an N k-indexed family
(gi1,...,ik)(i1,...,ik)∈Nk where each gi1,...,ik is either an ele-
ment of H or a negation of an element of H , such that
a = · · ·

∨∞
ik=1 ai1,...,ik where we alternate

∨
and

∧
for each

index. Since the infinite distributivity law does not necessarily
hold, there is not necessarily any conjunctive or disjunctive
normal form. Note that H does not necessarily generate A
as a Boolean algebra, in general countable operations will be
necessary.

Recall that F : Set → σ-BA is the free (σ-spatial) σ-
Boolean algebra on a set, from Proposition 7, in the following
lemma.

Lemma 8. A set H ⊆ A generates A iff the universal map
ĩ : F (H)→ A:

H
ηH //

i ##

U(F (H))

Uĩ

��

F (H)

ĩ

��
U(A) A

is surjective, where i is the inclusion morphism.

We say a σ-ideal I ⊆ A is generated by a subset R ⊆ I if
I is the smallest σ-ideal containing R, equivalently if

I =

{
a ∈ A | ∃(bi)i∈N .∀i ∈ I.bi ∈ R and a ≤

∞∨
i=1

bi

}
.

Note that R does not necessarily generate I as an ideal, as
countable joins may be necessary to produce every element of
I .

A σ-ideal is principal if it is generated by one element,
and if (bi)i∈I is a countable set of generators for a σ-ideal I ,
then I is generated by

∨
i∈I bi, i.e. every countably generated

σ-ideal is principal.



A presentation of a σ-Boolean algebra A is a pair (H,R)
where H ⊆ A generates A and R generates the σ-ideal ĩ−1(⊥)
in F (H), where i : H → A is the inclusion morphism. We call
the elements of R relations. This agrees with the usual notion
of a presentation of a group or ring in terms of generators and
relations. In view of Theorem 5, we can define a presentation
of a σ-perfect measurable space (X,Σ) to be a presentation
of Σ.

Once we have a presentation of a σ-Boolean algebra, we
can define homomormorphisms by giving their values on the
generators and checking that the relations are satisfied.

Proposition 9.
(i) Let A and B be σ-Boolean algebras, (H,R) a presen-

tation of A, and f : H → B a function. There exists
a σ-homomorphism g : A → B such that g|H = f iff
f̃(r) = ⊥ for all r ∈ R.

(ii) Let (X,Σ) and (Y,Θ) be measurable spaces, where
(X,Σ) is σ-perfect, and let (H,R) be a presentation
of (X,Σ). Let f : H → Θ be a function. There exists
a measurable map g : (Y,Θ) → (X,Σ) such that
g−1|H = f iff f̃(r) = ∅ for all r ∈ R.

In the special case that there are only countably many
relations, we can verify that a set of relations is sufficient
to define a presentation in another way.

Lemma 10. Let (X,Σ) be a σ-perfect measurable space,
H ⊆ Σ a set of generators with inclusion morphism i :
H → Σ, and (rj)j∈J a countable set of relations, i.e.
elements of F (H) such that ĩ(rj) = ∅. The following condition
implies that (H, (rj)j∈J) is a presentation of (X,Σ): For all
u ∈ Uσ(F (H)) such that ∀j ∈ J.rj 6∈ u, we have that there
exists x ∈ X such that ĩ−1(〈x〉) = u.

We can now give a presentation of Bo([0, 1]) for later use.
This presentation is related to a presentation of Bo([−∞,∞])
given by Sikorski [23, II.3 Lemma].

Define
H = {[r, 1] | r ∈ Q0} (1)

This is a countable family of closed subsets of [0, 1]. To define
the relations, we write

Br = ηH([r, 1])

Then we define the relations as

R = {(Br ∧Bs)4Bs}r<s ∪

{(∧
r<s

Br

)
4Bs

}
s∈Q0

, (2)

where r and s are understood to range over Q0.

Lemma 11. The above (H,R), as in (1) and (2), define a
presentation of ([0, 1],Bo([0, 1])).

V. DUALITY FOR MARKOV PROCESSES

In this section, we extend the adjunction and duality from
Section III to Markov processes. Recall that the category of
Markov processes is called Markov and the category of

Aumann algebras is Aumann. We define a σ-perfect Markov
process to be one whose underlying measurable space is σ-
perfect, forming the full subcategory PMarkov. Likewise,
an Aumann algebra is called σ-spatial if its underlying σ-
Boolean algebra is σ-spatial, and these form a full subcategory
AumannSp.

When defining the adjunction, it is useful to recall Giry’s
definition of pS , where (X,Σ) is a measurable space and S ∈
Σ

pS : G(X,Σ)→ [0, 1]

pS(ν) = ν(S).

The σ-field of G(X,Σ) is defined to be the coarsest such that
pS is measurable, equivalently that generated by p−1

S (B) as
S varies over all S ∈ Σ and B varies over the Borel sets of
[0, 1], or equivalently any family of sets generating Bo([0, 1]).

As in the case of Més and σ-BA, we define F :
Markov → AumannSpop based on F :Més→ σ-BAop

sp

and G : Aumannop → PMarkov based on G : σ-BAop →
PMés.

For a Markov process (X,Σ, θ), and a morphism of Markov
processes f : (X,Σ, θ)→ (Y,Θ, λ) we define F as

F (X,Σ, θ) = (Σ, (Lr)r∈Q0
)

F (f) = f−1,

where Lr is defined, for S ∈ Σ, as

Lr(S) = {x ∈ X | θ(x)(S) ≥ r} (3)

Proposition 12. F defines a a functor Markov →
AumannSpop.

We can now define the Markov process arising from a σ-
Aumann algebra, defining the functor G : Aumannop →
PMarkov on objects.

Given an Aumann algebra (A, (Lr)r∈Q0
) we define, using

Proposition 9, for each a ∈ A a measurable map θa :
Uσ(A)→ [0, 1] such that

θ−1
a ([r, 1]) = LLr(a)M, (4)

and then define θ : Uσ(A)→ G(Uσ(A)) as

θ(u)(LaM) = θa(u). (5)

Proposition 13. If (A, (Lr)r∈Q0
) is a σ-Aumann algebra,

(Uσ(A),F(A), θ) is a σ-perfect Markov process.

We can now show that this defines a functor G :
Aumannop → PMarkov. On objects, we should have

G(A, (Lr)r∈Q0
) = (Uσ(A),F(A), θ),

as described above. Given a map of σ-Aumann algebras g :
(A, (Lr)r∈Q0

) → (Mr)r∈Q0
we define G(g) exactly as for

σ-Boolean algebras, i.e. G(g)(u) = g−1(u).

Proposition 14. With the above definition, G is a functor
Aumannop → PMarkov.



Theorem 15. F is a left adjoint to G, and when restricted they
define adjoint equivalences AumannSpop ' PMarkov.

Note that by Theorem 6 this duality can be applied to any
of the Stone-Markov processes with countable base considered
in [19], although the dual Aumann algebra will be the Borel
sets, not the base of clopens.

VI. EVENT BISIMULATION AND DUALITY FOR LABELLED
MARKOV PROCESSES

Given a measurable space (X,Σ), a labelled Markov pro-
cess is a tuple (X,Σ, (θe)e∈E), where E is a set of labels
and for each e ∈ E, θe : X → G(X,Σ) is a measurable
function. If (X,Σ, (θe)e∈E) and (Y,Θ, (λe)e∈E) are labelled
Markov processes with the same label set E, we say that
a measurable function f : (X,Σ) → (Y,Θ) is a morphism
of labelled Markov processes if it is a morphism of Markov
processes f : (X,Σ, θe) → (Y,Θ, λe) for each e ∈ E. For
any set of labels, we have a category LabMarkovE of E-
labelled Markov processes and their morphisms. It should now
be obvious how to define the full subcategory of σ-perfect
labelled Markov processes, PLabMarkovE .

We can define a labelled σ-Aumann algebra to be
(A, (Ler)e∈E,r∈Q0), such that for each label e ∈ E,
(A, (Ler)r∈Q0

) is a σ-Aumann algebra. A morphism of E-
labelled σ-Aumann algebras (A, (Ler)) → (B, (Me

r )) is a σ-
Boolean homomorphism A→ B that is a σ-Aumann algebra
homomorphism for each e ∈ E. For each set of labels E,
we have categories LabAumannE and LabAumannSpE
defined in the familiar way. By working with each e ∈ E
independently, we can define F,G and a duality as in Theorem
15.

In the context of labelled Markov processes, an event
bisimulation on (X,Σ, (θe)e∈E) is defined to be a sub σ-
field Λ ⊆ Σ such that (X,Λ, (θe|Λ)e∈E) is a labelled Markov
process, where for each e ∈ E, θe|Λ : X → G(X,Λ) is the
function such that for each x ∈ X , θe|Λ(x) is the restriction
of θe(x) to Λ. This notion was originally defined in [37,
Definition 4.3], as a version of the notion of probabilistic
bisimulation [38] that is more adapted to probabilistic logics.

Theorem 16. Let (X,Σ, (θe)e∈E) be a labelled Markov
process. A σ-field Λ ⊆ Σ is an event bisimulation iff it is a σ-
Aumann subalgebra of F (X,Σ, (θe)e∈E), i.e. iff it is preserved
by the Aumann algebra operations.

Proof. We start with the only if direction, which is to say
we show that an event bisimulation Λ is also an Aumann
subalgebra of the Aumann algebra F (X,Σ, (θe)).

Since an event bisimulation is a σ-field supporting a labelled
Markov process, when F is applied to it becomes an Aumann
algebra. As θe|Λ is the restriction of θe to Λ at all points
x ∈ X , we get that Λ and Σ agree on the effect of the Ler
operators for all r ∈ Q0. This shows that Λ is an Aumann
subalgebra of Σ.

For the other direction, suppose A0 is an Aumann subal-
gebra of F (X,Σ, (θe)e∈E). We prove that A0 is an event

bisimulation of (X,Σ, (θe)e∈E) as follows. We need to show
that for each e ∈ E,

θe|A0
: (X,A0)→ G(X,A0)

is measurable. This is equivalent to showing that for each a ∈
A0 and each B ∈ Bo([0, 1]),

(θe|A0)−1(p−1
a (B)) ∈ A0.

To do this, it is sufficient to prove that for any rational r ≤ 1,

(θe|A0)−1(p−1
a ([r, 1])) ∈ A0.

But since a ∈ A0, we get

(θe|A0)−1(p−1
a ([r, 1])) = Lera ∈ A0

and this concludes the proof.

Therefore we can, if we like, define event bisimulations
directly on σ-Aumann algebras, by taking them to be σ-
Aumann subalgebras.

VII. CONCLUSION

We have given a general Stone-like duality between spatial
Aumann algebras and certain Markov processes, improving a
similar duality of [19] of a more restricted form. We have also
shown how the improved version captures the notion of event
bisimulation for Markov processes.

Strictly speaking, the result of [19] is not a special case of
the result of this paper, because we have amended the defini-
tion of Aumann algebras to assume countable completeness:
all countable joins are assumed to exist, not just the definable
ones. This result is probably not the last word on the subject,
as it may be possible to derive an even more general version of
the duality parameterized by the class of joins that are assumed
to exist that would subsume both the results of [19] and those
of this paper. We leave such investigations to future work.
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APPENDIX

Lemma 4. L-M is a surjective morphism of σ-Boolean algebras
A→ F(A), and F(A) is a σ-field [24, §24.1]. We also have
that A is σ-spatial iff L-M is an isomorphism.

Proof. By definition, L-M is surjective from A to F(A). We
first show that L-M is a σ-Boolean homomorphism, with respect
to the set theoretic Boolean operations on F(A). This implies
that F(A) is a σ-field. We can see that L-M preserves countable
meets by using the fact that σ-filters are closed under countable
intersections. The map L-M preserves complements because if
a ∈ A and u ∈ Uσ(A), ¬a ∈ u iff a 6∈ u. So L-M is a σ-
homomorphism and F(A) is a σ-field.

We now show that L-M is injective iff F(A) is σ-spatial. If
a, b ∈ A such that LaM = LbM, then for all u ∈ Uσ(A) we have
a ∈ u iff b ∈ u, so by σ-spatiality of A, a = b and L-M is
injective. In the other direction, if L-M is injective, then for all
a ∈ A, LaM 6= L⊥M = ∅, so there exists some u ∈ Uσ(A) such
that a ∈ u. Therefore A is σ-spatial.

A map is a σ-Boolean isomorphism iff it is a bijective σ-
Boolean homomorphism, so L-M is an isomorphism iff A is
σ-spatial.

Theorem 5. (F,G, η, ε) is an adjunction making G a right
adjoint to F . In fact, G maps into PMés and by restricting F
and G to the categories where the unit and counit are isomor-
phisms, they define an adjoint equivalence σ-BAop

sp ' PMés.

Proof. By Lemma 4, G(A) = (Uσ(A),F(A)) is a measurable
space. To show that G(f) is well defined, first observe that the
preimage of an ultrafilter is an ultrafilter.4 To see that f−1(u)
is a σ-filter if u is, suppose (ai)i∈N is a countable family of
elements of A, such that ai ∈ f−1(u). This implies

∀i ∈ N .f(ai) ∈ u⇒
∞∧
i=1

f(ai) ∈ u

⇒ f

( ∞∧
i=1

ai

)
∈ u

⇒
∞∧
i=1

ai ∈ f−1(u).

4This fact is used in ordinary Stone duality, and is easier to prove using
the isomorphism between ultrafilters and 2-valued measures, or the fact that
every prime ideal is maximal in a Boolean ring.



The next thing we do proves that L-M is a natural transformation
and that G(f) is measurable at the same time. The naturality
diagram for L-M, given f : A→ B in σ-BAsp is

A
f //

L-MA
��

B

L-MB
��

F (G(A))
F (G(f))

// F (G(B)).

To show this diagram commutes, let a ∈ A:

F (G(f))(LaM) = G(f)−1(LaM)
= {u ∈ Uσ(B) | G(f)(u) ∈ LaM}
= {u ∈ Uσ(B) | f−1(u) ∈ LaM}
= {u ∈ Uσ(B) | a ∈ f−1(u)}
= {u ∈ Uσ(B) | f(a) ∈ u}
= Lf(a)M.

This also shows G(f) is measurable, because every element of
F(A) is of the form LaM, and so its preimage is the measurable
set Lf(a)M ∈ F(B). We also have that G is a contravariant
functor by the usual rules for composition of inverse images,
and L-M is a surjective natural transformation Id ⇒ FG by
Lemma 4.

In the rest of the proof, we will use two identities twice, so
we prove them now. The first is

〈-〉−1
(LSMΣ) = S, (6)

for all S ∈ Σ, where (X,Σ) is a measurable space, and L-MΣ :
Σ → F(Σ), treating Σ as a σ-Boolean algebra in its own
right. We prove it as follows. Let x ∈ X in the following

x ∈ 〈-〉−1
(LSMΣ)⇔ 〈x〉 ∈ LSMΣ

⇔ S ∈ 〈x〉
⇔ x ∈ S,

therefore 〈-〉−1
(LSMΣ) = S.

The second is

L-M−1(〈u〉Uσ(A)) = u, (7)

where u is a σ-ultrafilter on a σ-Boolean algebra A, and
〈-〉Uσ(A) is the map from Uσ(A) → Uσ(F(A)). To prove
it, let a ∈ A in the following

a ∈ L-M−1(〈u〉Uσ(A))⇔ LaM ∈ 〈u〉Uσ(A)

⇔ u ∈ LaM
⇔ a ∈ u,

and therefore L-M−1(〈u〉Uσ(A)) = u.
We can now observe that 〈-〉 : (X,Σ) → (Uσ(Σ),F(Σ))

is measurable, because every element of F(Σ) is of the form
LSM for some S ∈ Σ, and by (6) we have 〈-〉−1

(LSM) = S.

To show that 〈-〉 is a natural transformation, we only need to
prove that

(X,Σ)
f //

〈-〉X
��

(Y,Θ)

〈-〉Y
��

G(F (X,Σ))
G(F (f))

// G(F (Y,Θ))

commutes, if f is a measurable map.
Taking x ∈ X , we see

G(F (f))(〈x〉) = F (f)−1(〈x〉)
= {T ∈ Θ | F (f)(T ) ∈ 〈x〉}
= {T ∈ Θ | f−1(T ) ∈ 〈x〉}
= {T ∈ Θ | x ∈ f−1(T )}
= {T ∈ Θ | f(x) ∈ T} = 〈f(x)〉 .

We can now prove that F is a left adjoint to G, by proving
that the following diagrams commute, for all (X,Σ) ∈ Més
and A ∈ σ-BA

F (X,Σ) F (G(F (X,Σ)))
F (〈-〉)oo G(A)

〈-〉G(A)//

idG(A) $$

G(F (G(A)))

G(L-M)
��

F (X,Σ)

L-MΣ

OO

idΣ

ff

G(A).

By expanding the definitions of F and G, we see that
commutativity of the left diagram is equivalent to (6), and
commutativity of the right diagram is equivalent to (7). This
finishes the proof that F is a left adjoint to G.

We already have that for all (X,Σ) ∈ Més, F (X,Σ) is
σ-spatial, so we now prove that G(A) is always σ-perfect, for
any σ-Boolean algebra A. That is to say, we want to show that
〈-〉G(A) : Uσ(A)→ Uσ(F(A)) is a bijection. To show that it
is injective, let u, v ∈ Uσ(A) and suppose that 〈u〉 = 〈v〉. This
means that for all a ∈ A, we have LaM ∈ 〈u〉 ⇔ LaM ∈ 〈v〉.
Now, LaM ∈ 〈u〉 ⇔ a ∈ u, and LaM ∈ 〈v〉 ⇔ a ∈ v, so we have
shown that u = v.

To show that 〈-〉G(A) is surjective, let u ∈ Uσ(F(A)) =
G(F (G(A))). We can produce an element of Uσ(A) by taking
G(L-M)(u), so we will be able to show surjectivity if we show
that 〈G(L-M)(u)〉G(A) = u. Every element of F(A) is of the
form LaM for some a ∈ A, so let LaM ∈ F(A) in the following

LaM ∈ 〈G(L-M)(u)〉G(A) ⇔ G(L-M)(u) ∈ LaM

⇔ a ∈ G(L-M)(u)

⇔ a ∈ L-M−1(u)

⇔ LaM ∈ u.

We have therefore proven that 〈G(L-M(u))〉G(A) = u and so
G(A) is σ-perfect.

We only required 〈-〉 to be a bijection in the definition of
a σ-perfect space. We now show that if it is a bijection, it is
an isomorphism of measurable spaces. To show this, we only
need to show that the image of a measurable set is measurable.



If we apply 〈-〉 (taking the image rather than applying to an
element) to each side of (6) we get that for all S ∈ Σ, LSM =
〈-〉 (〈-〉−1

(LSM)) = 〈-〉 (S). As LSM ∈ F(Σ), we have shown
that the image of a measurable set is measurable.

Therefore we can characterize PMés as the full subcate-
gory ofMés on which 〈-〉 is an isomorphism, and σ-BAsp as
the full subcategory of σ-BA such that L-M is an isomorphism.
Therefore the restriction of F and G to these full subcategories
define an adjoint equivalence PMés ' σ-BAop

sp , i.e. this
duality arises from “unity of opposites” [32, Part 0, Proposition
4.2].

We provide a proof of the following fact, well known, and
used implicitly by Halmos in [36].

Lemma 17. In a Stone space, zero-sets are the same as count-
able unions of clopen sets (called σ-closed sets). Therefore the
Baire σ-field can also be defined as the σ-field generated by
the clopens.

Proof. Let X be a Stone space, and C =
⋂∞
i=1Gi a σ-closed

set. As each Gi is clopen, χGi is a continuous function, as is
χX\Gi . We can then define

f =

∞∑
i=1

2−iχX\Gi .

This sum is absolutely convergent in norm, and therefore f
is a continuous function. We also have that f(x) = 0 iff x ∈⋂∞
i=1Gi = C, so C is a zero-set.
For the reverse implication, let Z be a zero-set in X , defined

by f : X → R. We know that {0} =
⋂∞
i=1(−2−i, 2−i) in R,

so Z = f−1(0) =
⋂∞
i=1 f

−1((−2−i, 2−i)), and so we can
define Ui = f−1((−2−i, 2−i)). We will define a family of
clopens (Gi)i∈N such that Z ⊆ Gi ⊆ Ui. If we succeed, then
we have Z ⊆

⋂∞
i=1Gi ⊆

⋂∞
i=1 Ui = Z and will have proven

that Z is σ-closed. We first observe that for each i, and each
x ∈ Z, we have by the continuity of f at x and the fact that
clopens are a base that there exists a clopen Gi,x such that
x ∈ Gi,x ⊆ f−1((−2−i, 2−i)) = Ui. Fixing i, we see that
Gi,x is a clopen cover of Z, and since Z is closed, hence
compact, there exists a finite subcover. If we take the union of
this subcover, as the finite union of clopen sets, it is clopen,
so we have a Gi such that Z ⊆ Gi and Gi ⊆ Ui. This was
all we needed to prove.

As in Section IV, we use F to mean the free σ-Boolean
algebra Set→ σ-BA and not the functor Més→ σ-BAop.

Proposition 7 (Halmos). The functor U has a left adjoint F ,
given on objects by

F (X) = Ba(2X),

where 2X is given the product topology. This is also a left
adjoint to the restriction of U to σ-BAsp.

Proof. In [36, §23, Theorem 14] Halmos defines a map ηX
(as h∗ ◦ h in his notation) from X → U(Ba(2X)), and, for
each map f : X → U(A), where A is a σ-Boolean algebra,

a σ-Boolean homomorphism f̃ : Ba(2X) → A such that the
following diagram commutes.

X
ηX //

f $$

UBa(2X)

Uf̃

��

Ba(2X)

f̃

��
UA A

If g : Ba(2X)→ A is a σ-homomorphism such that the above
diagram commutes with g in place of f̃ , we know that f̃ and
g agree on the image of ηX . As the elements {ηX(x)}x∈X
generate the clopen sets of 2X , we have that f̃ and g agree
on the clopens, because they are Boolean homomorphisms.
As 2X is a Stone space, the clopens generate the Baire σ-field
(Lemma 17), so f̃ and g agree on Ba(2X) because they are σ-
homomorphisms. This proves the uniqueness of f̃ , as required
for the universal property. Therefore, by [33, IV.1 Theorem 2
(ii)] there exists a functor F such that F (X) = Ba(2X) and
ηX is a natural transformation making F a left adjoint to U .

By Proposition 6, as 2X is a compact Hausdorff space
Ba(2X) is a σ-perfect Boolean algebra, so F , as defined
above, is also a left adjoint to the restriction of U to
σ-BAsp.

Lemma 8. A set H ⊆ A generates A iff the universal map
ĩ : F (H)→ A:

H
ηH //

i ##

U(F (H))

Uĩ

��

F (H)

ĩ

��
U(A) A

is surjective, where i is the inclusion morphism.

Proof. If H generates A, then for each a ∈ A we have an
expression in the language of σ-Boolean algebras expressing
a in terms of elements of H . This can be reinterpreted as
an element b ∈ F (H), with the σ-Boolean operations being
those in F (H) instead. Then as ĩ preserves the σ-Boolean
operations, ĩ(b) = a, so ĩ is surjective.

If, on the other hand, ĩ is assumed to be surjective, then
given a ∈ A, we have some element b ∈ F (H) such
that ĩ(b) = a. As F (H) is generated by H (H generates
the clopens of F (H), and the clopens of a Stone space
generate the Baire σ-field by Lemma 17), there is a σ-Boolean
expression for b in terms of elements of H . Since ĩ preserves
the σ-Boolean operations, this shows that a can be expressed
in terms of elements of H , and therefore H generates A.

Proposition 9.
(i) Let A and B be σ-Boolean algebras, (H,R) a presen-

tation of A, and f : H → B a function. There exists
a σ-homomorphism g : A → B such that g|H = f iff
f̃(r) = ⊥ for all r ∈ R.

(ii) Let (X,Σ) and (Y,Θ) be measurable spaces, where
(X,Σ) is σ-perfect, and let (H,R) be a presentation
of (X,Σ). Let f : H → Θ be a function. There exists



a measurable map g : (Y,Θ) → (X,Σ) such that
g−1|H = f iff f̃(r) = ∅ for all r ∈ R.

Proof. Part (ii) is a direct consequence of part (i) and Theorem
5, so we only give the proof of part (i).
• Only if: If there exists a σ-homomorphism g : A → B

extending f , then the following diagram commutes:

H
ηH //

i
""

f

��

F (H)

ĩ
��
A

g

��
B,

and so by the uniqueness part of the adjunction, g ◦ ĩ =
f̃ . By the definition of a presentation, ĩ(r) = ⊥ for all
r ∈ R, so f̃(r) = ⊥ holds also.

• If: Suppose f̃(r) = ⊥ for all r ∈ R. Given a ∈ A, as
ĩ is surjective (Lemma 8), there exists b ∈ F (H) such
that ĩ(b) = a. Define g(a) = f̃(b). We prove this is well-
defined as follows. If ĩ(b′) = a as well, then ĩ(b4b′) =
⊥, so there exists a countable set of (ri)i∈I , such that
each ri ∈ R, such that b4b′ ⊆

∧
i∈I ri (by the definition

of a presentation). We then have that f̃(
∧
i∈I ri) = ⊥

by the assumption that f̃ maps elements of R to ⊥, so
f̃(b) = f̃(b′), proving well-definedness of g. It is easy to
show that g preserves negation and countable joins using
the corresponding properties of f̃ and ĩ. We also have
that for a generator a ∈ H , h(a) = f̃(ηH(a)) = f(a), as
required.

Lemma 10. Let (X,Σ) be a σ-perfect measurable space,
H ⊆ Σ a set of generators with inclusion morphism i :
H → Σ, and (rj)j∈J a countable set of relations, i.e.
elements of F (H) such that ĩ(rj) = ∅. The following condition
implies that (H, (rj)j∈J) is a presentation of (X,Σ): For all
u ∈ Uσ(F (H)) such that ∀j ∈ J.rj 6∈ u, we have that there
exists x ∈ X such that ĩ−1(〈x〉) = u.

Proof. Let (H, (rj)j∈J) satsify the hypotheses of the lemma.
In order to show that (H, (rj)j∈J) is a presentation, we
only need to show that (rj)j∈J generates the σ-ideal ĩ−1(∅).
Defining r =

∧
j∈J rj , this is equivalent to showing that if

a ∈ F (H) is such that ĩ(a) = ∅, then a ≤ r. So suppose that
ĩ(a) = ∅, and suppose for a contradiction that a 6≤ r. As F (H)
is σ-spatial (Proposition 7), there is a σ-ultrafilter u containing
a\r, and therefore such that a ∈ u and r 6∈ u. Therefore there
exists an x ∈ X such that ĩ−1(〈x〉) = u, and so a ∈ ĩ−1(〈x〉).
This is equivalent to x ∈ ĩ(a), which contradicts ĩ(a) being
empty. As we have reached a contradiction, it must be the case
that a ≤ r after all.

In the following, we use a well-known lemma that we did
not state in the main text. It is a basic fact about symmetric
differences and ultrafilters.

Lemma 18. Let A be a Boolean algebra, and u an ultrafilter
on it. If a, b ∈ A, a ∈ u and a4b 6∈ u, we have b ∈ u.

Proof. Let u, a, b be as described above. As u is an ultrafilter,
¬(a4b) ∈ u. We have

¬(a4b) = ¬((a ∧ ¬b) ∨ (b ∧ ¬a)) = (¬a ∨ b) ∧ (¬b ∨ a)

As u is up-closed, we have ¬a ∨ b ∈ u, and as it is closed
under finite meets this implies that (¬a ∨ b) ∧ a ∈ u. Now,
(¬a∨b)∧a = b∧a, so up-closedness of u gives us b ∈ u.

Lemma 11. The above (H,R), as in (1) and (2), define a
presentation of ([0, 1],Bo([0, 1])).

Proof. The proof has three steps, as we use Lemma 10.
• H generates Bo([0, 1]):

We have H ⊆ Bo([0, 1]) because each [r, 1] ∈ H is
a closed, and therefore Borel, set. We can define [r, 1]
for any r ∈ [0, 1] as

⋂
s∈[0,r)∩Q[s, 1], so it is in the

σ-field generated by H . We can then define [0, r) for
r ∈ [0, 1] as ¬[r, 1], and we can define (r, 1] for r ∈ [0, 1]
as
⋃
s∈(r,1]∩Q[r, 1]. Then every open interval (r, s) for

r, s ∈ [0, 1] as [0, s) ∩ (r, 1]. Since every open set is a
countable union of open intervals (including [0, r) and
(r, 1] as open intervals), we have that every open set
is in the σ-field generated by H , and therefore all the
Borel sets are in the σ-field generated by H . Therefore
H generates Bo([0, 1]).

• For all r ∈ R, ĩ(r) = ∅:
For the first kind of relation, let r < s ∈ Q0. We want to
show that ĩ((Br ∩Bs)4Bs) = 0. We have

ĩ((Br ∩Bs)4Bs) = ([r, 1] ∩ [s, 1])4[s, 1] = ∅

because [r, 1] ∩ [s, 1] = [s, 1].
For the second kind of relation, let s ∈ Q0, and observe

ĩ

((∧
r<s

Br

)
4Bs

)
=

(⋂
r<s

[r, 1]

)
4[s, 1] = ∅.

Therefore all relations hold.
• For each σ-ultrafilter u ∈ Uσ(F (H)) such that ∀r ∈
R.r 6∈ u, there exists x ∈ [0, 1] such that ĩ−1(〈x〉) = u:
Let u ∈ Uσ(F (H)) be such a σ-ultrafilter respecting the
relations in R. Define

x = sup{r ∈ Q0 | Br ∈ u},

and we see that x ∈ [0, 1]. We want to show that
ĩ−1(〈x〉) = u, i.e. for all T ∈ F (H), x ∈ ĩ(T ) iff T ∈ u.
To do this, we use “structural induction” on T , as an
element of F (H).

– T is a generator Br of F (H):
We want to show Br ∈ u ⇔ x ∈ ĩ(Br). We can
start by observing that ĩ(Br) = [r, 1] and so

x ∈ ĩ(Br)⇔ x ∈ [r, 1]

⇔ x ≥ r
⇔ sup{s ∈ Q0 | Bs ∈ u} ≥ r.



If Br ∈ u, we have that r ∈ {s ∈ Q0 | Bs ∈ u}, so

x = sup{s ∈ Q0 | Bs ∈ u} ≥ r,

so we have shown one direction, that Br ∈ u ⇒
x ∈ ĩ(Br). For the other direction, we distinguish
two cases:
∗ For all r ∈ Q0, x = sup{s ∈ Q0 | Bs ∈ u} > r

implies Br ∈ u:
We know that if the supremum of some set strictly
exceeds a number, then there must be an element
of that set strictly exceeding that number. So
there exists s ∈ Q0 such that Bs ∈ u and
s > r. Therefore s ≥ r and so the relation
(Bs ∧ Br)4Bs 6∈ u. Taken together, Bs ∈ u and
(Bs ∧Br)4Bs 6∈ u imply Br ∈ u by Lemma 18.

∗ For all r ∈ Q0, x = sup{s ∈ Q0 | Bs ∈ u} = r
implies Br ∈ u:
By the previous item, we have that for all s ∈ Q0

such that s < r, Bs ∈ u, and therefore
∧
s<r Bs ∈

u as u is a σ-filter. As
(∧

s<r Bs
)
4Br 6∈ u, we

can apply Lemma 18 to deduce Br ∈ u.
– Inductive step for ¬:

Suppose we have T ∈ F (H) such that x ∈ ĩ(T )⇔
T ∈ u. Then

¬T ∈ u⇔ T 6∈ u⇔ x 6∈ ĩ(T )⇔ x ∈ ¬ĩ(T )

⇔ x ∈ ĩ(¬T ).

– Inductive step for
∧

:
Suppose (Ti)i∈N such that Ti ∈ F (H) and x ∈
ĩ(Ti)⇔ Ti ∈ u for all i ∈ N . Then

x ∈ ĩ

( ∞∧
i=1

Ti

)
⇔ x ∈

∞∧
i=1

ĩ(Ti)

⇔ ∀i ∈ N .x ∈ ĩ(Ti)

⇔ ∀i ∈ N .Ti ∈ u⇔
∞∧
i=1

Ti ∈ u,

because u is a σ-ultrafilter. �

From now on, F will be used to mean the operation
of taking a measurable space (X,Σ) to its σ-field Σ, the
definition used outside of Section IV.

Proposition 12. F defines a a functor Markov →
AumannSpop.

Proof. We first show that each Lr defines a map Σ→ Σ. For
any S ∈ Σ, we have

Lr(S) = {x ∈ X | θ(x)(S) ≥ r}
= {x ∈ X | (pS ◦ θ)(x) ≥ r}
= {x ∈ X | (pS ◦ θ)(x) ∈ [r, 1]}
= (pS ◦ θ)−1([r, 1])

As this is the preimage of a measurable set under a mea-
surable map, it gives an element of Σ. We now verify that
(Σ, (Lr)r∈Q0) satisfies all eight σ-Aumann algebra axioms.

• AA1 – X ⊆ L0(S) for all S ∈ Σ:
We have L0(S) = (pS ◦ θ)−1([0, 1]) = θ−1(p−1

S ([0, 1])).
Now p−1

S ([0, 1]) = G(X), so L0(S) = θ−1(G(X)) = X .
• AA2 – Lr(∅) ⊆ ∅ for r > 0:

We have Lr(∅) = θ−1(p−1
∅ ([r, 1])). We also have ν(∅) =

0 for all ν ∈ G(X), so p−1
∅ ([r, 1]) = ∅. Therefore

Lr(∅) = θ−1(∅) = ∅.
• AA3 – Lr(S) ⊆ ¬Ls(¬S) for S ∈ Σ, r, s ∈ Q0 such

that r + s > 1:
We have that Lr(S) ⊆ ¬Ls(¬S) iff Lr(S) ∩ Ls(¬S).
We can then observe that

p−1
¬S([s, 1]) = {ν ∈ G(X) | ν(¬S) ≥ s}

= {ν ∈ G(X) | ν(S) ≤ 1− s}

As r + s > 1, we have r > 1 − s, so p−1
S ([r, 1]) ∩

p−1
¬S([s, 1]) = ∅, and so Lr(S) ∩ Ls(¬S) = ∅.

• AA4 – Lr(S∩T )∩Ls(S \T ) ⊆ Lr+s(S), where S ∈ Σ,
r, s ∈ Q0 and r + s ≤ 1:
Consider

p−1
S∩T ([r, 1]) = {ν ∈ G(X) | ν(S ∩ T ) ≥ r}
p−1
S\T ([s, 1]) = {ν ∈ G(X) | ν(S \ T ) ≥ s}

p−1
S ([r + s, 1]) = {ν ∈ G(X) | ν(S) ≥ r + s}

The additivity of measures implies that if ν(S ∩ T ) ≥ r
and ν(S \ T ) ≥ s, then

ν(S) = ν(S ∩ T ) + ν(S \ T ) ≥ r + s,

so we have shown p−1
S∩T ([r, 1])∩p−1

S\T ([s, 1]) ⊆ p−1
S ([r+

s, 1]), which implies AA4.
• AA5 – ¬Lr(S ∩ T ) ∩ ¬Ls(S \ T ) ⊆ ¬Lr+s(S), where
S ∈ Σ, r, s ∈ Q0 and r + s ≤ 1:
We see

¬p−1
S∩T ([r, 1]) = ¬{ν ∈ G(X) | ν(S ∩ T ) ≥ r}

= {ν ∈ G(X) | ν(S ∩ T ) < r}
¬p−1

S\T ([s, 1]) = {ν ∈ G(X) | ν(S \ T ) < s}
¬p−1

S ([r + s, 1]) = {ν ∈ G(X) | ν(S) < r + s}.

Using the additivity of the measures, ν(S ∩ T ) < r and
ν(S \T ) < s imply ν(S) = ν(S∩T )+ν(S \T ) < r+s,
so AA5 follows in a similar manner to the end of AA4.

• AA6 – S ⊆ T ⇒ Lr(S) ⊆ Lr(T ) where S, T ∈ Σ and
r ∈ Q0:
Let S, T ∈ Σ with S ⊆ T . We see that

p−1
S ([r, 1]) = {ν ∈ G(X) | ν(S) ≥ r}
p−1
T ([r, 1]) = {ν ∈ G(X) | ν(T ) ≥ r}.

If ν(S) ≥ r, we have ν(T ) ≥ ν(S) ≥ r, so p−1
S ([r, 1]) ⊆

p−1
T ([r, 1]), and therefore Lr(S) ⊆ Lr(T ).

• AA7 –
⋂
r<s

Lr(S) = Ls, where S ∈ Σ and s ∈ Q0:



We reason as follows:⋂
r<s

Lr(S) =
⋂
r<s

(pS ◦ θ)−1([r, 1])

= (pS ◦ θ)−1

(⋂
r<s

[r, 1]

)
= (pS ◦ θ)−1([s, 1])

= Ls(S).

• AA8 –
∞⋂
i=1

Lr(Si) = ∅ for Si ∈ Σ where S1 ≥ S2 ≥ · · ·

and
∞⋂
i=1

Si = ∅ and r ∈ Q0, r 6= 0:

We have
∞⋂
i=1

Lr(Si) =

∞⋂
i=1

θ−1(p−1
Si

([r, 1]))

= θ−1

( ∞⋂
i=1

p−1
Si

([r, 1])

)
For each ν ∈ G(X), by [39, §Theorem E] countable
additivity implies that limi→∞ ν(Si) = 0. As r > 0,
there exists a j ∈ N such that for all i ≥ j ν(Si) < r,
and so

ν 6∈
∞⋂
i=1

p−1
Si

([r, 1]).

As this applies for an arbitrary element of G(X), we have
shown that ∞⋂

i=1

p−1
Si

([r, 1]) = ∅.

Therefore, as θ−1(∅) = ∅ we have shown AA8.
As F (X,Σ) is always a σ-spatial Boolean algebra, we have
that F (X,Σ, θ) is a σ-spatial Aumann algebra.

Now that we have shown that this works on objects, we
turn our attention to maps. Let f : (X,Σ, θ) → (Y,Θ, λ)
be a morphism of Markov processes. We want to show F (f)
is a morphism of σ-Aumann algebras. We have already that
F (f) is a σ-Boolean homomorphism, so we only need to show
that F (f)(Mr(T )) = Lr(F (f)(T )) for each T ∈ Θ, where
F (X,Σ, θ) = (Σ, Lr) and F (Y,Θ, λ) = (Θ,Mr). That is to
say, we want to show

f−1(λ−1(p−1
T ([r, 1]))) = θ−1(pf−1(T )([r, 1])). (8)

We prove it as follows:

x ∈ f−1(λ−1(p−1
T ([r, 1])))⇔ pT (λ(f(x))) ∈ [r, 1]

⇔ λ(f(x))(T ) ≥ r
⇔ θ(x)(f−1(T )) ≥ r
⇔ pf−1(T )(θ(x)) ∈ [r, 1]

⇔ x ∈ θ−1(p−1
f−1(T )([r, 1])).

The fact that F preserves identity morphisms and compo-
sition follows from the fact that F does so as a functor from
Més→ σ-BAop

sp .

To prove that each σ-Aumann algebra gives rise to a Markov
process, we will use some lemmas not appearing in the main
article.

Lemma 19. Let (A, (Lr)r∈Q0
) be a σ-Aumann algebra. If

a ∈ A, r, s ∈ Q0 with r < s, then Ls(a) ≤ Lr(a).

Proof. Let a ∈ A, r, s ∈ Q0 with r < s. Then s − r ∈ Q0

and s− r > 0, and r + (s− r) = s ≤ 1. So

¬Lr(a) = ¬Lr(a) ∧ ¬⊥
= ¬Lr(a) ∧ ¬Ls−r(⊥) AA2
= ¬Lr(a ∧ >) ∧ ¬Ls−r(a ∧ ¬>)

≤ ¬Lr+(s−r)(a) AA5, b = >
= ¬Ls(a).

Therefore Ls(a) ≤ Lr(a).

Lemma 20. Let a, b, c ∈ [0, 1].

(i) Suppose that ∀r, s ∈ Q0, a < r and b < s implies
c < r + s. Then c ≤ a+ b.

(ii) Suppose that ∀r, s ∈ Q0, a ≥ r and b ≥ s implies
c ≥ r + s. Then c ≥ a+ b.

Proof.

(i) If a = 1 or b = 1, then c ≤ 1 ≤ a+b so we reduce to the
case that a < 1 and b < 1. Assume for a contradiction
that c > a+ b, and let ε = c− (a+ b) > 0. There exist
rationals r, s ∈ Q0 such that r > a and r − a < ε

2 , and
s > b and s − b < ε

2 . By the hypothesis of the lemma,
c < r + s. However,

r + s− (a+ b) < ε = c− (a+ b),

so r + s < c, a contradiction.
(ii) Suppose for a contradiction that c < a + b, and let ε =

a + b − c > 0. Then there exist r, s ∈ Q0 such that
a ≥ r and a− r < ε

2 , and b ≥ s and b− s < ε
2 . By the

hypothesis of the lemma, c ≥ r + s, but

a+ b− (r + s) < ε = a+ b− c,

so c < r + s, a contradiction. �

Proposition 13. If (A, (Lr)r∈Q0
) is a σ-Aumann algebra,

(Uσ(A),F(A), θ) is a σ-perfect Markov process.

Proof. There are three steps – showing that θa is defined
correctly, that θ(u) is a σ-additive measure for all u ∈ Uσ(A),
and that θ : Uσ(A)→ G(Uσ(A)) is measurable.

• We use Proposition 9, taking (X,Σ) = ([0, 1],Bo([0, 1]),
(Y,Θ) = (Uσ(A),F(A)) and (H,R) is the presentation
of [0, 1] from Lemma 11. We define fa : H → F(A) as

fa([r, 1]) = LLr(a)M.

To use Proposition 9, we need to show that f̃(r) = 0 for
all r ∈ R (see (2)).



– f̃((Br ∧Bs)4Bs) = ∅ for r < s in Q0:

f̃((Br ∧Bs)4Bs) = (f([r, 1]) ∧ f([s, 1]))4f([s, 1])

= (LLr(a)M ∧ LLs(a)M)4LLs(a)M
= L(Lr(a) ∧ Ls(a))4Ls(a)M,

which is equal to ∅ because Lr(a)∧Ls(a) = Ls(a)
(Lemma 19).

– f̃
((∧

r<sBr
)
4Bs

)
= ∅ for all s ∈ Q0:

f̃

((∧
r<s

Br

)
4Bs

)
=

(∧
r<s

fa([r, 1])

)
4fa([s, 1])

=

(∧
r<s

LLr(a)M

)
4LLs(a)M

= L

(∧
r<s

Lr(a)

)
4Ls(a)M

and by AA7 this is L⊥M = ∅.
Therefore we have shown that for each a ∈ A there
exists a measurable map θa : Uσ(A) → [0, 1] such that
θ−1
a ([r, 1]) = LLr(a)M, by applying Proposition 9 to fa.

• θ(u) is σ-additive for all u ∈ Uσ(A):
Recall that θ(u) is defined as θ(u)(LaM) = θa(u). We
do the proof in two steps — We first show that θ(u) is
finitely additive, prove countable additivity as a separate
step.

– θ(u) finitely additive:
Let a, b ∈ A such that a ∧ b = ⊥. We want to show
that θ(u)(a ∨ b) = θ(u)(a) + θ(u)(b). We do this in
two steps.
∗ θ(u)(a ∨ b) ≤ θ(u)(a) + θ(u)(b):

First, observe that, for r ∈ Q0

θ(u)(a) < r ⇔ θa(u) < r

⇔ θa(u) ∈ [0, r)

⇔ θa(u) 6∈ [r, 1]

⇔ u 6∈ θ−1
a ([r, 1])

⇔ u 6∈ LLr(a)M
⇔ Lr(a) 6∈ u
⇔ ¬Lr(a) ∈ u.

Similarly θ(u)(b) < s ⇔ ¬Ls(b) ∈ u and
θ(u)(a ∨ b) < t⇔ ¬Lt(a ∨ b) ∈ u.
We now show that if r, s ∈ Q0 and θ(u)(a) < r
and θ(u)(b) < s, then θ(u)(a ∨ b) < r + s.
If r + s > 1, then θ(u)(a ∨ b) ≤ 1 < r + s, so
we can reduce to the case that r + s ≤ 1. By
the previous discussion, we have ¬Lr(a) ∈ u and
¬Ls(b) ∈ u, so as u is an ultrafilter, ¬Lr(a) ∧
¬Ls(b) ∈ u. We can apply AA5 with a = a ∨ b
and b = a to deduce that

¬Lr((a∨b)∧a)∧Lr((a∨b)∧¬a) ≤ Lr+s(a∨b)

As a∧b = ⊥, the previous statement is equivalent
to

¬Lr(a) ∧ ¬Ls(b) ≤ ¬Lr+s(a ∨ b),

so by the up-closedness of ultrafilters, ¬Lr+s(a∨
b) ∈ u, and so θ(u)(a ∨ b) > r + s.
We can therefore apply Lemma 20 (i) to conclude
that θ(u)(a ∨ b) ≤ θ(u)(a) + θ(u)(b).

∗ θ(u)(a ∨ b) ≥ θ(u)(a) + θ(u)(b):
Observe that this time

θ(u)(a) ≥ r ⇔ θa(u) ≥ r ⇔ Lr(a) ∈ u

and likewise for b and a ∨ b.
We will show that if r, s ∈ Q0 such that θ(u)(a) ≥
r and θ(u)(b) ≥ s then θ(u)(a ∨ b) ≥ r + s.
If θ(u)(a) ≥ r and θ(u)(b) ≥ s, then Lr(a) ∈ u
and Ls(b) ∈ u. So Lr(a) ∧ Ls(b) ∈ u. We
first show that r + s ≤ 1. Suppose for a con-
tradiction that r + s > 1. Then AA3 shows that
Lr(a) ≤ ¬Ls(¬a), and as b ≤ ¬a (disjointness),
AA6 shows that Ls(b) ≤ Ls(¬a) ∈ u. So
Lr(a) ≤ ¬Ls(¬a) ≤ ¬Ls(b), and therefore
Lr(a)∧Ls(b) = ⊥, contradicting Lr(a)∧Ls(b) ∈
u. So we must have r + s ≤ 1.
We can therefore apply AA4 with a = a ∨ b and
b = a to get

Lr((a∨ b)∧ a)∧Ls((a∨ b)∧¬a) ≤ Lr+s(a∨ b)

By disjointness of a and b, this is equivalent to

Lr(a) ∧ Ls(b) ≤ Lr+s(a ∨ b)

so by up-closedness of ultrafilters, we have
Lr+s(a ∨ b) ∈ u, and therefore θ(u)(a ∨ b) ≥
r + s. We then apply Lemma 20 (ii) to conclude
θ(u)(a ∨ b) ≥ θ(u)(a) + θ(u)(b).

– θ(u) countably additive:
We will use a theorem from [39, §9 Theorem F],
that a finitely additive finite measure µ is countably
additive iff for all (non-strictly) decreasing sequences
of measurable sets (Si)i∈N with empty intersection,
limi→∞ µ(Si) = 0.
Therefore, we want to show that if (ai)i∈N is a
sequence in A such that aj ≤ ai if j ≥ i and
∞∧
i=1

ai = ⊥ then limi→∞ θ(u)(LaiM) = 0. That is to

say, we want to show that for all ε > 0, there exists
an N ∈ N such that for all i ≥ N , θ(u)(LaiM) < ε. It
suffices to prove that for all ε ∈ Q0, with ε > 0, there
exists N ∈ N such that for all i ≥ N θ(u)(LaiM) < ε.
Observe

θ(u)(LaiM) < ε⇔ θai(u) < ε

⇔ ¬(θai(u) ≥ ε)
⇔ u 6∈ θ−1

ai ([ε, 1])

⇔ Lε(ai) 6∈ u.



As the sequence (ai) is descending, it suffices to
show that there exists an N ∈ N such that Lε(aN ) 6∈
u and it will hold for all j ≥ N by AA6 and up-
closedness of ultrafilters.
So we have reduced showing countable additivity
to showing that for all ε ∈ Q0, ε > 0, there
exists an N ∈ N such that Lε(aN ) 6∈ u. By
AA8,

∧∞
i=1 ai = ⊥ implies

∧∞
i=1 Lε(ai) = ⊥, so∧∞

i=1 Lε(ai) 6∈ u. If it were the case that Lε(ai) ∈ u
for all i ∈ N , the fact that u is a σ-ultrafilter would
show that

∧∞
i=1 Lε(ai) ∈ u, which would contradict

its being an ultrafilter, so there must exist an N ∈ N
such that Lε(aN ) 6∈ u.

• We want to show that for each S in the Giry σ-field
on G(Uσ(A)), θ−1(S) ∈ F(A). As preimages preserve
σ-Boolean operations, it suffices to show this for a set
generating the Giry σ-field. As {[r, 1]}r∈Q0 generates
Bo([0, 1]), we have that

{p−1
LaM([r, 1])}a∈A,r∈Q0

generates the Giry σ-field (again, using preservation of
σ-Boolean operations under preimage).
We only need, therefore to show that θ−1(p−1

LaM([r, 1])) ∈
F(A). We reason as follows:

θ−1(p−1
LaM([r, 1])) = {u ∈ Uσ(A) | u ∈ θ−1(p−1

LaM([r, 1]))}
= {u ∈ Uσ(A) | pLaM(θ(u)) ∈ [r, 1]}
= {u ∈ Uσ(A) | θ(u)(LaM) ∈ [r, 1]}
= {u ∈ Uσ(A) | θa(u) ∈ [r, 1]}
= θ−1

a ([r, 1])

= LLr(a)M ∈ F(A).

The space (A,F(A)) is σ-perfect by Theorem 5, so this is a
σ-perfect Markov process.

Proposition 14. With the above definition, G is a functor
Aumannop → PMarkov.

Proof. By Proposition 13, it is defined correctly on objects. If
we have a morphism of σ-Aumann algebras (A, (Lr)r∈Q0

)→
(B, (Mr)r∈Q0

), by Theorem 5, this defines a measurable
map G(f) : Uσ(B) → Uσ(A), and the identity map and
composition are preserved. Therefore we only need to show
that G(f) is a map of Markov processes, i.e. that the diagram:

Uσ(B)
G(g) //

λ

��

Uσ(A)

θ

��
G(Uσ(B))

G(G(g))
// G(Uσ(A))

commutes, where θ and λ are the morphisms defining the
Markov processes on Uσ(A) and Uσ(B) respectively.

The bottom left path is

G(G(g))(λ(u))(LaM) = λ(u)(G(g)−1(LaM))

Now,

G(g)−1(LaM) = {u ∈ Uσ(B) | u ∈ G(g)−1(LaM)}
= {u ∈ Uσ(B) | G(g)(u) ∈ LaM}
= {u ∈ Uσ(B) | a ∈ G(g)(u)}
= {u ∈ Uσ(B) | a ∈ g−1(u)}
= {u ∈ Uσ(B) | g(a) ∈ u}
= {u ∈ Uσ(B) | u ∈ Lg(a)M}
= Lg(a)M,

so the bottom left path is equal to

λ(u)(Lg(a)M) = λg(a)(u). (9)

The top right path is equal to:

θ(G(g)(u))(LaM) = θa(G(g)(u)) (10)

To show that the right hand sides of (9) and (10) are equal,
we will show that λg(a) = θa ◦ G(g) using Theorem 5. Let
r ∈ Q0. Then

λ−1
g(a)([r, 1]) = LMr(g(a))M definition of λg(a)

= Lg(Lr(a))M g a σ-AA morphism

= G(g)−1(LLr(a)M) naturality (Theorem 5)

= G(g)−1(θ−1
a ([r, 1])) definition of θa

= (θa ◦G(g))−1([r, 1]).

As intervals of the form {[r, 1]}r∈Q0
generate Bo([0, 1])

(Lemma 11), we have

λ−1
g(a)(S) = (θa ◦G(g))−1(S)

for all Borel subsets S of [0, 1]. As λg(a) and θa ◦ G(g)
are both maps (Uσ(B),F(B)) → ([0, 1],Bo([0, 1])), i.e.
measurable maps between σ-perfect measurable spaces, we
can apply the categorical duality from Theorem 5 to deduce
λg(a) = θa ◦G(g) from the equation above, and therefore the
diagram commutes.

Theorem 15. F is a left adjoint to G, and when restricted they
define adjoint equivalences AumannSpop ' PMarkov.

Proof. Recall the natural transformations L-M : A→ F (G(A))
and 〈-〉 : (X,Σ)→ G(F (X,Σ)) from Theorem 5. If we show
that L-M is a morphism of Aumann algebras and 〈-〉 a morphism
of Markov processes, then the commutativity of the naturality
diagrams and the triangle diagrams defining an adjunction
follows from the proofs in Theorem 5, and we have shown
F is a left adjoint to G.

We first show that L-M is a σ-Aumann algebra morphism.
That is to say, we want to show that for all a ∈ A and r ∈ Q0

that LLr(a)M = Mr(LaM), where (Mr)r∈Q0
is the Aumann

algebra structure on F (G(A)). Well,

Lr(LaM) = {u ∈ Uσ(A) | θ(u)(LaM) ≥ r} see (3)
= {u ∈ Uσ(A) | θa(u) ≥ r} see (5)

= θ−1
a ([r, 1])

= LLr(a)M see (4).



We now show that 〈-〉 is a morphism of Markov processes,
i.e. the following diagram commutes

(X,Σ)
〈-〉 //

θ

��

G(F (X,Σ))

λ

��
G(X,Σ)

G(〈-〉)
// G(G(F (X,Σ))),

where λ is map making G(F (X,Σ)) a Markov process. In
equations, what we want to show is that G(〈-〉) ◦ θ = λ ◦ 〈-〉.
Recall that the σ-field on G(F (X,Σ)) consists of elements
of the form LSM for S ∈ Σ, so we want to show that, for all
x ∈ X and S ∈ Σ,

G(〈-〉)(θ(x))(LSM) = λ(〈x〉)(LSM). (11)

If we expand the definition of G on the left hand side, we get

G(〈-〉)(θ(x))(LSM) = θ(x)(〈-〉−1
(LSM)).

Now, we can simplify the argument of θ(x) as follows

〈-〉−1
(LSM) = {x ∈ X | 〈x〉 ∈ LSM}

= {x ∈ X | S ∈ 〈x〉}
= {x ∈ X | x ∈ S} = S,

so, all together, the left hand side of (11) is θ(x)(S). For the
right hand side, we can expand the definition

λ(〈x〉)(LSM) = λS(〈x〉)

according to (5). We now prove that λS(〈x〉) = θ(x)(S) by
showing that, for all r ∈ Q0, λS(〈x〉) ≥ r iff θ(x)(S) ≥ r.

λS(〈x〉) ≥ r ⇔ 〈x〉 ∈ λ−1
S ([r, 1])

⇔ 〈x〉 ∈ LLr(S)M (4)
⇔ Lr(S) ∈ 〈x〉
⇔ x ∈ Lr(S)

⇔ θ(x)(S) ≥ r (3).

Because every real is the supremum of the rationals below it,
this implies that θ(x)(S) = λS(〈x〉), and therefore that (11)
holds.

As we explained at the start of the proof, this suffices to
show that F is a left adjoint to G. We can show that F and G
define an adjoint equivalence PMarkov ' AumannSp by
showing that when L-M and 〈-〉 are, respectively, σ-Boolean
algebra isomorphisms and measurable isomorphisms, they
are σ-Aumann algebra isomorphisms and Markov process
isomorphisms.

We do so as follows. We first need to show that L-M−1 is a
σ-Aumann algebra homomorphism. First, we observe that the
equality Mr(LaM) = LLr(a)M implies

L-M−1(Mr(LaM)) = Lr(a)

= Lr(L-M−1(LaM)).
As every element of the algebra F (G(A)) is of the form LaM
for some a ∈ A, we have shown that L-M−1 is an Aumann
algebra isomorphism.

It is a generally true fact that a measurable isomorphism
that is a map of Markov processes is an isomorphism of
Markov processes, but we give the special case that 〈-〉−1 is
a morphism of Markov processes here:

G(〈-〉) ◦ θ = λ ◦ 〈-〉 ⇔ G(〈-〉) ◦ θ ◦ 〈-〉−1
= λ

⇔ θ ◦ 〈-〉−1
= G(〈-〉−1

) ◦ λ.


