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[. INTRODUCTION the hemimetric and the boolean algebra are satisfied in our

examples without any artificial fiddling.

Thel Stone representation [Sto3§] theorem is one of the €66 summarize the key results of the present work:
ognized landmarks of mathematics. The Stone represemtatio

theorem [Sto36] states that every (abstract) boolean alges a description of a new class of algebras that captures, in
bra is isomorphic to a boolean algebra of sets; in modern algebraic form, the probabilistic modal logics used for

terminology one has an equivalence of categories between continuous Markov processes,

the category of boolean algebras and the (opposite of) the a duality between these algebras and continuous Markov
category of compact Hausdbrzero-dimensional spaces, or  processes

Stone spaces. . a (hemi)metrized version of the algebras and of the
Markov processes and

In this paper we develop exactly such a duality for contiraiou . a metric analogue of the duality.

time continuous-space transitions systems where transiti

are governed by an exponentially-distributed waiting time
essentially a continuous-time Markov chain (CTMC) with a
continuous space. The logical characterization of bisatiomh Let M be a set andl: M x M — R.

for such systems was .proved a few years ago [DGJPO3] USBfinition 1. we say that d is éhemimetricon M if for
much the same techniques as were used for labelled Marléor(}?itrary Xy e M
processes [Pan09]. Recent work by the first two authors an ’ '

Cardelli [CLM11a], [CLM11b] have established completenes (1): d(x,x)=0

theorems and finite model theorems for similar logics. Thus i (2): d(xy) <d(x,2 +d(zy)
seemed ripe to capture these logics algebraically and expl

duality theory.

Il. DEFINITIONS

e say tha{M, d) is a hemimetric space

» ) ) ) Note that a hemimetric is not necessarily symmetric nor does
One of the critiques of logics and equivalences being used E(P(x, y) = 0 imply thatx = y. A symmetric hemimetric is called
the treatment of probabilistic systems is that booleanclogi pseudometric

not robust with respect to small perturbations of the redlt®d  atinition 2. For a hemimetric d on M we define théaus-
system parameters. Accordingly, a theory of metrics [D@&IPOyq s hemimetricd” on the class of subsets of X by

was developed and metric reasoning principles were advo-

cated. In conjunction with our exploration of duality thgor d" (X, Y) = supinf d(x, y).

therefore we investigated the role of metrics and discalere xex YeY

a striking metric analogue of the duality theory. This papdife also define the dual of the Hausgidiemimetric ¢ on
describes both these theories. One can view the latter the class of subsets of X by

the analogue of a completeness theorem for metric reasoning :

principles. di(X.Y) = 32Yp!2>f< d(xy).

One of the points of departure of the present work from earliBefinition 3 (Continuous Markov processespiven a mea-
work is the use of hemimetrics: analogues of pseudometrmgrable spac€M, %), a continuous Markov proceg€MK) is

that are not symmetric. This fits in well with the ordem tuple M = (M,ZX,0), whered € [M — A(M,X)]. M is the
structure of the boolean algebra. Nearly 25 years ago, Mikapport sebf M denoted by supgpM). If me M, (M, m) is

Smyth [Smy87] advocated the use of such structure to combimeontinuous Markov proceE€MP).

metric and domain theory ideas. The interplay between tBefinition 4 (Aumann algebra) An Aumann algebra(AA)

hemimetric and the boolean algebra is somewhat delicateer the set B# 0 is a structure A = (B, T,1,~

and had to be carefully examined for the duality to emerge., n, {Fy, G }req+,C) Where 8 = (B, T,L,~,L,M,C) is a

It is a pleasant feature that exactly these axioms relatingeet-continuous boolean Algebra, for eack Q*, F;,G; :



B — B are monadic operations and the elements of B satisfy

the axioms in Table I, for arbitrary,d e B and ,s€ Q™.

(AAL): TEFRoa

(AA2): Fisal~Gra, for s>0

(AA3): ~FacCGa

(AA4):  (~ Fr(anb)) m(~ Fs(an ~ b)) C~ Frysa
(AA5):  (~Gr(an b)) n(~ Gs(ar ~ b)) C~ Grisa
(AAB): If acbthenFaC Fb

(AA7): A{Fb|r<st=Fsb

(AA8):  A{G/b|r> s =Gsh

(AA9): Af(Fblr>s=1

TABLE |
AUMANN ALGEBRA

Definition 5 (Metrized Aumann algebra)A metrized Au-
mann algebrais a tuple (A,s), where A = (B, T,L,~
,U, 1, {Fr,Gr}reqr, ) is an Aumann algebra andl: Bx B —
[0,1] is a hemimetric on B satisfying, for arbitrary,loe B,
and arbitrary filtered set AC B for which there existg\ A'inB,
the axioms in Table II.

(HO): if 6(a b) =0, thenacb
(H1): é(ab)=d(amn(~ b),b)
(H2): 6(b,AA) = Lr;;é(b, a)
(H3):

3(\ Ab) = Sups(a.b)

TABLE Il
HEMIMETRIC AXIOMS FOR METRIZED AA

Ill. REesuLTs
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We have a duality theorem between CMPs and Aumann

Algebras.
Theorem 6 (Representation Theoremfi) Any CMP M =

(M, %, 0) is bisimilar to M(L(M)) and the bisimulation rela-

tion is given by the mapping defined, for arbitrary ne M,
by
m e a(m) = {¢ € LM) | M, m= ¢}

(if) Any Aumann algebraA = (B, T, L, ~, U, 1, {Fr, Gy }req+, E)

is isomorphic toL(M(A)) and the isomorphism is given by

the mapping3 defined, for arbitrary a B, by

ar B8 = /\ (19 € ALMAY) | Yu e UB) s. .1 (8) C u, M(A), uE ¢)).

This extends to a duality between the hemi-metric spaces in

the following sense.
Theorem 7 (The metric duality theorem)(i) Given a
metrized CMP(M,d) with M = (M,X,6), M is bisimilar

to M(A(L(M))) by the mapr defined in the Representation

Theorem and, in addition, for arbitrary m e M,
d(m, n) = (d")u(e(m), a(n)).

(i) Given a metrized AA(A,5) with A = (B, T,L,~
, L, M, {Fy, Grhregr, E), A is isomorphic taA(L(M(A))) by the

mapp defined in the Representation Theorem and, in addition,

for arbitrary a,b e B
5(a,b) = (6")n(B(a), B(b)).



