
Stochastic Pi-Calculus Revisited

Luca Cardelli1, Radu Mardare2?

1 Microsoft Research, Cambridge, UK
2 Aalborg University, Denmark

Abstract. We develop a version of stochastic Pi-calculus with a seman-
tics based on measure theory. We define the behaviour of a process in a
rate environment using measures over the measurable space of processes
induced by structural congruence. We extend the stochastic bisimulation
to include the concept of rate environment and prove that this equiva-
lence is a congruence which extends the structural congruence.

1 Introduction

The problem of specifying and analyzing nondeterministic concurrent systems
has found a successful solution in the class of Process Algebras (PAs) [2]. The
compositionality of the processes is reflected by the construction principles of
PAs, while their behaviours are transition systems. As a result, one obtains a
class of processes with an elegant algebraic-coalgebraic structure, supported by
appealing theories and easy to adapt to various modelling requirements.

The same approach has been taken for probabilistic and stochastic concurrent
systems. Probabilistic process algebras [2], interactive Markov chain algebra [16,
4] and stochastic process algebras (SPA) such as TIPP [13], PEPA [14, 15], EMPA
[3] and stochastic Pi-calculus [22] are extensions of classic PAs. The nondeter-
minism is replaced by a race policy and this requires important modifications
in the semantic format. Stressed to mimic the pointwise structural operational
semantics (SOS) of nondeterministic PAs, SPAs find ad hoc solutions to the
problems introduced by stochasticity, such as the multi-transition system ap-
proach of PEPA or the proved SOS approach of stochastic Pi-calculus. These
result in complex constructs that are difficult to extend to a general format for
well-behaved stochastic specifications and problematic when recursion or fresh
name quantification are considered. As emphasized by Klin and sassone in [17],
for stochastic Pi-calculus of Priami [22] the parallel composition fails to be as-
sociative up to bisimulation, while for PEPA, if arbitrary relations between the
rates of processes and subprocesses are allowed, stochastic bisimulation ceases
to be a congruence. An explanation for these situations is given in [17]: the in-
formation carried by the aforementioned SOS frameworks is excessive, while a
well-behaved framework should only carry the exact amount of data required for
the derivation of the intended semantics.

? Research supported by the VKR Center of Excellence MT- LAB and by the Sino-
Danish Basic Research Center IDEA4CPS.

These problems motivate our research, initiated with [7], that aims to re-
consider the semantics of SPAs from a perspective faithful to the algebraic-
coalgebraic structure of stochastic processes. The key observation is that struc-
tural congruence induces a σ-algebra on processes and organizes a measurable
space of stochastic processes. We propose a semantics that assign to each process
a set of measures indexed by observable actions. Thus, difficult instance-counting
problems that otherwise require complicated versions of SOS can be solved by
exploiting the properties of measures (e.g. additivity). Our previous work showed
that along this line one obtains an elegant semantics that resembles the one of
nondeterministic PAs and provides a well-behaved notion of bisimulation. In
previous work [7] we proved this concept for a fragment of stochastic CCS. In
this paper we extend the work to stochastic Pi-calculus with channel-based com-
munication, mobility, fresh name quantification and replication. This calculus is
designed to satisfy the specific requirements of Systems Biology.

There are several novel ideas in our approach. The processes are interpreted
in stochastic environments that associate basic rates to channels. In a rate envi-
ronment E, a process P has associated a class of measures µ, written E ` P → µ.
For each action α, µ(α) is a measure over the space of processes; µ(α)(S) ∈ Q+ is
the rate of an exponentially distributed random variable that characterizes the
α-transitions from P to (elements of) a measurable set S. Only the structural
congruence-closed sets are measurable. This is essential for modelling in systems
biology, where such sets represent chemical soups1. This choice provides simple
solutions to the problems of replications and bound outputs which otherwise,
as with Milner’s Abstraction-Concretion method [20], require complicated high-
order reasoning. Also novel is our stochastic bisimulation that extends other
similar ones [19, 17, 7, 21, 8] by making explicit the role of the rate environments.
We show that bisimulation is a congruence that extends structural congruence.

Related works. The idea of transitions from states to measures has been
advocated in the context of probabilistic automata [18, 24] and Markov processes
[21]. The transition-systems-as-coalgebras paradigm [10, 23] exploits it providing
a uniform characterisation of transition systems that covers the sequence non-
deterministic, probabilistic and stochastic systems. A general SOS format for
SPAs without new name operators or recursion is proposed in [17]. In [8, 9] these
ideas are applied to particular SPAs with pointwise semantics. With respect to
these works, in our paper we consider a different measurable space that not only
answers to practical modelling requirements, but also simplifies the semantics
and gives us smooth solutions for the fresh name quantification and replication
without requiring additional constructs. Formally, while the other frameworks
focus on the monads freely generated by the algebraic signature of the calculus,
we have considered the equational monad defined by the structural congruence.
The use of name environments has been considered in [11, 12] where it involves
the machinery of nominal sets. We have tried to avoid this together with any
coalgebraic description of the lifting from processes to measures, as our intention

1 Structural congruence has been introduced in [1] as a chemical analogy.

2

is to make these ideas accessible also for the readers less familiar with the jargon
of Category Theory.

Relation to Nondeterministic Pi-Calculus. There is no trivial relation
between nondeterministic Pi-calculus and our stochastic Pi-calculus, in the sense
that one cannot simply recover the semantics of the other by simple mathemati-
cal transformations. This is because the measure-based semantics of stochastic-Pi
calculus require important modification of the SOS rules. One example regards
the replication: while in classic Pi-calculus !a(b) ≡ a(b)|!a(b), in stochastic Pi
this is illegal since the rate of the input on channel a in the process a(b)|!a(b) is
strictly bigger than the rate of the same input in the process !a(b). For this rea-
son in stochastic Pi there exist no structural congruence rules of type !P ≡ P |!P
or !!P ≡!P since such rules would generate processes with infinite rates; instead,
there are dedicated SOS rules that establish the correct behaviours.

2 Preliminaries

In this section we introduce the terminology and the notations used in the paper.

For the sets A and B, 2A denotes the powerset of A and BA the class of
functions from A to B. For an equivalence relation ∼ on A, A∼ is the set of
equivalence classes and a∼ the equivalence class of a ∈ A.

Given a set M , Σ ⊆ 2M that contains the element M and is closed under
complement and countable union is a σ-algebra over M ; (M,Σ) is a measurable
space and the elements of Σ are measurable sets.

A measure on (M,Σ) is a countably additive set function µ : Σ → R+ such
that µ(∅) = 0. The null measure 0 is such that 0(M) = 0. For N ∈ Σ, the
N -Dirac measure DN is defined by DN (N ′) = 1, if N ⊆ N ′ and DN (N ′) = 0
otherwise. ∆(M,Σ) denotes the set of measures on (M,Σ).

If R ⊆M ×M , N ⊆M is R-closed iff {m ∈M | ∃n ∈ N, (n,m) ∈ R} ⊆ N.
If (M,Σ) is a measurable space, Σ(R) is the set of measurable R-closed sets.

3 Stochastic Pi-Calculus

In this section we introduce a version of stochastic Pi-calculus equipped with
an early semantics [2] expressed in terms of measure theory. Being developed
mainly for applications in Systems Biology, this calculus is designed to respect
the chemical kinetics (the Chemical Master Equation) [5] which provides the
mathematical principles for calculating the rates of the channel-based commu-
nications. The class P of processes is endowed with structural congruence which
generates a σ-algebra Π on P. In addition, rate environments assign base rates
to channel names. The behaviour of a process P in a rate environment E is
defined by an indexed set of measures µ : A+ → ∆(P, Π), where A+ is the set of
actions.

3

3.1 Syntax

Definition 1 (Processes). Let N be a countable set. The stochastic processes
are defined, on top of 0, for arbitrary r ∈ Q+ and a, b, c ∈ N , as follows.

P := 0
... x.P

... (a@r)P
... P |P

... P + P
... !P, x := a(b)

... a[b].

Let P be the set of stochastic processes. 0 stands for the inactive process.
An input “a(b)” is the capability of the process a(b).P to receive a name on
channel a that replaces b in all its occurrences inside P . An output prefix “a[b]”
represents the action of sending a name b on channel a. “(a@r)” is the fresh
name operator that, unlike in nondeterministic PAs, also specifies the rate r of
the fresh name. As usual in Pi-calculus, we have the parallel composition “|”,
the choice operator “+” and the replication operator “!”.

For arbitrary P ∈ P, we define the set fn(P) of the free names of P induc-
tively by fn(0) = ∅, fn(a(b).P) = (fn(P)\{b})∪{a}, fn(a[b].P) = fn(P)∪{a, b},
fn(P |Q) = fn(P +Q) = fn(P)∪ fn(Q), fn((a@r)P) = fn(P) \ {a} and fn(!P) =
fn(P). As usual in process algebras, for arbitrary a, b ∈ N , we write P{a/b} for
the process term obtained from P by substituting all the free occurrences of b
with a, renaming as necessary to avoid capture.

Definition 2 (Structural congruence). Structural congruence is the smallest
equivalence relation ≡⊆ P× P satisfying the following conditions.
I.(P, |, 0) is a commutative monoid for ≡, i.e.,
1. P |Q ≡ Q|P ; 2. (P |Q)|R ≡ P |(Q|R); 3. P |0 ≡ P .

II. (P,+, 0) is a commutative monoid for ≡, i.e.,
1. P +Q ≡ Q+ P ; 2. (P +Q) +R ≡ P + (Q+R); 3. P + 0 ≡ P .

III. ≡ is a congruence for the algebraic structure of P, i.e., if P ≡ Q, then
1. P |R ≡ Q|R; 2. P +R ≡ Q+R; 3. !P ≡!Q;
4. a[b].P ≡ a[b].Q 5. (a@r)P ≡ (a@r)Q; 6. a(b).P ≡ a(b).Q.

IV. the fresh name quantifiers satisfy the following conditions
1. if a 6= b, then (a@r)(b@s)P ≡ (b@s)(a@r)P ; 2. (a@r)0 ≡ 0;
3. if a 6∈ fn(P), then (a@r)(P |Q) ≡ P |(a@r)Q and (a@r)(P+Q) ≡ P+(a@r)Q.

V. the replication satisfies the following conditions
1. !0 ≡ 0; 2. !(P |Q) ≡!P |!Q.

VI. ≡ satisfies the alpha-conversion rules
1. (a@r)P ≡ (b@r)P{b/a}; 2. a(b)P ≡ a(c)P{c/b}.

If Q is obtained from P by alpha-conversion (VI) 1-2, we write P ≡∗ Q. Let
Π be the set of the ≡-closed subsets of P. Note that P≡ is a countable partition
of P and Π is the σ-algebra generated by P≡.

Notice that, unlike in the nondeterministic case, we do not have !!P ≡!P nor
!P ≡ P |!P . These are not sound due to the rate competition which else will
generate processes with infinite rates.

Theorem 1 (Measurable space). (P, Π) is a measurable space of processes.

4

The measurable sets of P are the unions of≡-equivalence classes on P. In what
follows P,R,Q range over Π. We lift some functions and algebraic operations
from processes to measurable sets, for arbitrary a, b ∈ N and r ∈ Q+, as follows.

fn(P) =
⋃
P∈P

fn(P), P{a/b} =
⋃
P∈P

P{a/b}, P|Q =

Q∈Q⋃
P∈P

(P |Q)≡,

PQ =

Q∈Q⋃
R|Q∈P

R≡, (a@r)P =
⋃
P∈P

(a@r)P≡.

It is not difficult to see that these operations are internal operations on Π.

3.2 Rate environments

Now we introduce rate environments used to interpret stochastic processes. They
are partial functions on N assigning rates to channels. We chose to introduce
them in the “process algebra style” instead of defining a type systems for envi-
ronment correctness, which would complicate the semantics.

Definition 3 (Rate Environment). The rate environments associated to N
are defined, on top of a constant ε, for arbitrary a ∈ N and r ∈ Q+, by

E := ε
... E, a@r.

Let E be the set of rate environments. A suffix a@r is called rate declaration.
If a@r appears in E, we write a@r ∈ E. ε stands for the empty environment.
We treat “,” as concatenation symbol for rate environments and use “E,E′” to
denote the concatenation of E and E′; ε is the empty symbol for concatenation.

For E = E1, ..., En ∈ E and {1, .., n} = {i1, .., ik} ∪ {j1, .., jn−k} with i1 <
.. < ik, j1 < ... < jn−k, if E′ = Ei1 , .., Eik and E′′ = Ej1 , .., Ejn−k

, we write
E′ ⊂ E and E′′ = E \E′. Notice that ε ⊂ E, E ⊂ E, E = E \ ε and ε = E \E.
The domain of a rate environment is the partial function on E defined as follows.

1. dom(ε) = ∅;
2. if dom(E) is defined and a 6∈ dom(E), then dom(E, a@r) = dom(E)∪{a};
3. undefined otherwise.
In what follows, whenever we use dom(E) we implicitly assume that dom is

defined in E. Observe that, if a ∈ dom(E), then there exists a rate declaration
a@r ∈ E and for no s 6= r, a@s ∈ E; for this reason we also write r = E(a).
When dom(E) is defined, let dom(E)∗ = {a ∈ dom(E) s.t. E(a) 6= 0}.

3.3 The class of indexed measures

The semantics will involve terms of type E ` P → µ, where E is a rate environ-
ment, P is a process and µ : A+ → ∆(P, Π) is a mapping that defines a set of
labeled measures. The labels are the observable actions collected in the set A+

defined below.
A = {a[b], a[@r], ab, for a, b ∈ N , r ∈ Q+} and A+ = A ∪ {τ}.

We denote by M the set ∆(P, Π)A
+

of labeled measures.

5

The observable actions consist of four classes: (i) free outputs of type a[b]
denoting the action of sending a free name b over the channel a, (ii) bound
outputs of type a[@r] denoting the action of sending a fresh unspecified name,
with base-rate r, on channel a, (iii) input actions of type ab representing the
fact that channel a has received a name b (as the result of an output action
on a), (iv) internal action τ – communications. In what follows we use α, αi to
represent arbitrary elements of A+.

Notice the relation between the syntactic prefixes of the calculus and the
observable actions. The output prefixes, as in Pi-calculus, represent observable
output actions. The input prefix of the calculus, such as a(b) in the process
a(b).P , does not represent an authentic action, but the capability of P to receive
a name on channel a; consequently we adopt an early semantics [2]: if a name
c is sent on a, the input action is ac and it labels the transitions to P{c/b}. In
this way, to a single prefix a(b) correspond as many input actions ac as names
c can be sent on a in the given rate-environment. Unlike the nondeterministic
case, for stochastic Pi-calculus we cannot define a late semantics [2] because only
the input actions of type ac correspond to a measure on the space of processes,
while a(b) represents a set of measures, one for each name received. Because our
semantics aims to associate a measure to each process and action label, we need
to refuse the inputs of type a(b) in the set of labels and chose an early semantics.

The bound output a[@r] in the form that ignores the argument of communi-
cation is novel. It labels a bound output of type (b@r)a[b].P . The example below

explains its action; anticipating the semantics, E ` P α,r−→ Q≡ means that in the
environment E, P can do an α-transition with rate r to the elements of Q≡.

Example 1. The processes Q = (b@r)a[b].P and R = (c@r)a[c].P{c/b} are struc-
tural congruent and we want them bisimilar in our semantics. If we consider that
the (only) observable transition in which Q can be involved is a[b@r], as it is

done in other PAs, then the transition is E ` (b@r)a[b].P
a[b@r],E(a)−→ (b@r)P≡,

while for R the transition is E ` (c@r)a[c].P{c/b}
a[c@r],E(a)−→ (c@r)P≡{c/b}. Obvi-

ously, (b@r)P≡ = (c@r)P≡{c/b}, but if b 6= c, then a[b@r] 6= a[c@r] and in effect,
Q and R are not bisimilar in this interpretation.

For obtaining the expected bisimulations, for any b, c ∈ N , a[b@r] = a[c@r];
and this is equivalent with accepting that an external observer can only see that
a private name with the base rate r has been sent on channel a without seeing
the name. Hence, the real observable action has to be a[@r].

Our solution is similar to the Abstraction-Concretion method proposed in
[20] for nondeterministic Pi-calculus. a[@r] does the job of Abstraction, as our
measurable sets of processes are Milner’s abstracted processes. Only that in our
case, because the transitions are not between processes but from processes to
structural-congruence classes, we need no Concretions. So, the main advantage
of our approach is that it solves the problem of bound outputs without using
higher order syntax as in the classic Pi-calculus.

Before proceeding with the operational semantics, we need to define a set of
operations on M that lift the process constructors of stochastic Pi-calculus to the

6

level of the labeled distributions over the space of processes. These operations
reflect the complexity of the normal forms of the τ -reductions for stochastic Pi
and for this reason the reader is invited to study Definition 4 in the context of
the operational semantics presented in the next section. The SOS rules clarify
and prove the correctness of these operations.

Let A@ denote the set {a[@r], for a ∈ N , r ∈ Q+} of bound output actions
and Aa denotes the set {a[b], ab, a[@r], for b ∈ N , r ∈ Q+} of actions on channel
a. A labeled measure µ ∈M has finite support if the set of output actions α ∈ A+

with µ(α) 6= 0 is finite or empty. Recall that 0 denotes the null measure and
DP≡ the P≡-Dirac measure.

Definition 4. Consider the following operations on M defined for arbitrary
µ, η ∈M, E ∈ E, α ∈ A+, a, b, c ∈ N , P ∈ P and P,Q,R ∈ Π.
1. Operations of arity 0.
(i) Let 0 ∈M defined by 0(α) = 0 for any α ∈ A+;

(ii) Let E
a[b]
P≡ , E

a(b)
P≡ ∈M defined whenever fn(P) ⊆ dom(E), by

E
a[b]
P≡ (a[b]) = E(a)DP≡ and E

a[b]
P≡ (α) = 0, for α 6= a[b];

E
a(b)
P≡ (ac) = E(a)DP≡{c/b}

and E
a(b)
P≡ (α) = 0, for α 6= ac.

2. Operations of arity 1.
(i) Let µP ∈M defined by µP(α)(R) = µ(α)(RP).
(ii) Let (a@r)µ ∈M defined by

(a@r)µ(α)(R) =

µ(α)(P), if α 6∈ Aa ∪ A@,R = (a@r)P
µ(b[a])(P) + µ(b[@r])(P), if α = b[@r],R = (a@r)P
0, otherwise.

3. Operations of arity 2.
(i) Let µ⊕ η ∈M, defined by (µ⊕ η)(α) = µ(α) + η(α).
(ii) For µ, η ∈M with finite support, let µ P⊗EQ η ∈M defined by

– for α ∈ A, (µ P⊗EQ η)(α)(R) = µQ(α)(R) + ηP(α)(R);

– for τ , (µ P⊗EQ η)(τ)(R) = µQ(τ)(R) + ηP(τ)(R)+

a∈dom(E)∗
b∈N∑

P1|P2⊆R

µ(a[b])(P1) · η(ab)(P2) + η(a[b])(P1) · µ(ab)(P2)

E(a)
+

((x@r)y[x].P ′|P ′′)+P ′′′≡⊆P
(y(z).Q′|Q′′)+Q′′′≡⊆Q∑

(x@r)(P ′|Q′{x/z})|P ′′|Q′′≡⊆R

µ(y[@r])((x@r)P ′|P ′′≡) · η(yx)(Q′{x/z}|Q
′′≡)

E(a)
+

(y(z).P ′|P ′′)+P ′′′≡⊆P
((x@r)y[x].Q′|Q′′)+Q′′′≡⊆Q∑

(x@r)(P ′{x/z}|Q′)|P ′′|Q′′≡⊆R

µ(yx)(P ′{x/z}|P
′′≡) · η(y[@r])((x@r)Q′|Q′′≡)

E(a)

7

Observe that because we work with functions with finite support and because
dom(E) is defined and finite, the sums involved in the definition of µ P⊗EQ η have
finite numbers of non-zero summands. These operations are the building blocks
for the lifting of the algebraic structure of processes to the level of functions:
operations of arity 0 encode process 0 and prefixing, operations of arity 1 encode
the quotient and fresh name quantification and operations of arity 2 correspond
to choice and parallel composition. For understanding their role, the reader is
referred to the semantic rules introduce in the next section.

Lemma 1. 1. For µ, η, ρ ∈M it holds that µ⊕ η ∈M and
(a). µ⊕ η = η ⊕ µ, (b). (µ⊕ η)⊕ ρ = µ⊕ (η ⊕ ρ), (c). µ = µ⊕ 0.
2. For µ, η, ρ ∈M with finite support, µ P⊗EQ η ∈M and
(a). µ P⊗EQ η = η Q⊗EP µ, (b). (µ P⊗EQ η) P|Q⊗ER ρ = µ P⊗EQ|R (η Q⊗ER ρ),

(c). µ P⊗E0≡ 0 = µ.

3.4 Semantics

The stochastic transition relation is the smallest relation T ⊆ E×P×M satisfying
the semantics rules listed below, where E ` P → µ denotes (E,P, µ) ∈ T; it
states that the behaviour of P in the environment E is defined by the mapping
µ ∈M. For each ≡-closed set of processes P ∈ Π and each α ∈ A+, µ(α)(P) ∈
Q+ represents the total rate of the α-reductions of P to the elements of P. The
rules involve also predicates of type E ` ok that encode the correctness of E,
i.e. that the environment associates base rates to a finite number of channels
only, and that no channel appears in more than one rate declaration in that
environment. Recall that ≡∗ denotes alpha-conversion.

(Envε). ε ` ok (Env@).
E ` ok a 6∈ dom(E)

E, a@r ` ok

(Null).
E ` ok

E ` 0→ 0
(Out).

E ` ok fn(a[b].P) ⊆ dom(E)

E ` a[b].P → E
a[b]
P≡

(Sum).
E ` P → µ E ` Q→ η

E ` P +Q→ µ⊕ η
(Imp).

E ` ok fn(a(b).P) ⊆ dom(E)

E ` a(b).P → E
a(b)
P≡

(New).
E, a@r ` P → µ

E ` (a@r)P → (a@r)µ
(Par).

E ` P → µ E ` Q→ η

E ` P |Q→ µ P≡⊗E
Q≡ η

(Alpha).
E ` P → µ P ≡∗ Q

E ` Q→ µ
(Rep).

E ` P → µ

E `!P → µ!P≡

(Null) guarantees that in any correct environment the behaviour of process
0 is described by 0, which associates the rate 0 to any transition.

8

(Out) and (Imp) have similar actions. They associates to any prefixed process
x.P , where x ∈ {a(b), a[b] | a, b ∈ N}, the mapping ExP≡ which, as described
in Definition 4, associates the base-rate of the channel of x to the x-transitions
from x.P to P≡ and rate 0 to the other transitions.

(Sum) computes the rate of the α-transitions from P +Q to R ∈ Π, as the
sum of the rates of the α-transitions from P and Q to R respectively.

(Par) describes the possible interactions between the processes. If ρ = µ P≡⊗EQ≡
η, the rate ρ(α)(R) of the α-transitions from P |Q to R for α 6= τ , is the sum
of the rates µ(α)(RQ≡) and η(α)(RP≡) of the α-transitions from P to RQ and
from Q to RP respectively; the rate of the τ -transitions from P |Q to R is the
sum of the rates of the τ -transitions that P or Q can do independently plus the
rate of all communications between P and Q (bound represented by the first sum
in Definition 4 3.(ii) and unbound represented by the last two sums). Because
we use the base rate of the channel a when we calculate the rates of both inputs
and outputs on a, the sums in Definition 4 3.(ii) are normalised by E(a).

(New) establishes that the rate of the transitions from (a@r)P to (a@r)R ∈
Π in the environment E is the rate of the corresponding transitions from P to
R in the environment E, a@r. The only thing one needs to take care of (see
Definition 4) is when an output becomes bound while (New) is used. Consider,
for instance, the process Q = b[a].P + (c@r)b[c].P{c/a}.

E, a@r ` Q b[a],E(b)−→ P≡ and E, a@r ` Q b[@r],E(b)−→ (c@r)P≡{c/a}.

Now, if we consider (a@r)Q ≡ (a@r)b[a].P+(c@r)b[c].P{c/a}, because (a@r)P ≡
(c@r)P{c/a}, the rates of the transitions in the environment E should be

E ` (a@r)Q
b[a],0−→ (a@r)P≡ and E ` (a@r)Q

b[@r],2E(b)−→ (a@r)P≡.
Notice that the rate of b[a]-transition of Q contributes to the rate of b[@r]-
transition of (a@r)Q and this is how Definition 4 introduces (a@r)µ.

(Rep) encodes the intuition that in the case of stochastic systems, if

E ` P α,r−→ Q≡, then E ` !P
α,r−→ !P |Q≡.

(Alpha) proves properties by alpha-conversion: it guarantees that the be-
haviour of a process does not change if the bound variables are renamed. The
standard presentations of PAs with unlabeled reduction mix structural congru-
ence with reductions by rules of type (Struct). Because our reductions are labeled
(the labels are hidden into the mappings), alpha conversion needs to be sepa-
rately incorporated both in the algebra and coalgebra.

The next example illustrates some transitions in our framework.

Example 2. E ` (b@r)(a[b].P)|a(c).Q
τ,E(a)−→ (b@r)(P |Q{b/c})≡.

From (Out) or (Imp) we derive E, b@r ` a[b].P
a[b],E(a)−→ P≡. (New) gives us

further that E ` (b@r)a[b].P
a[@r],E(a)−→ (b@r)P≡ and this is the only transition

with non-zero rate. Observe that the definition of E
a(c)
Q≡ implies E ` a(c).Q

ab,E(a)−→
Q≡{b/c}.

9

Applying the definition of (b@r)(a[b].P)≡⊗Ea(c).Q≡ , we obtain

E ` (b@r)(a[b].P)|a(c).Q
τ,s−→ (b@r)(P |Q{b/c})≡ for s = E(a) if E(a) 6= 0 and

s = 0 if E(a) = 0.

A consequence of this result is the well known case of communication of a
private name used for a private communication

E ` (b@r)(a[b].b(e).P)|a(c).c[d].0
τ,E(a)−→ (b@r)(b(e).P |b[d].0)≡

τ,r−→ (b@r)P≡{d/e}.
The first transition is a particular case of the example. For the second transition
we apply the case 3 (ii) of Definition 4.

Remark 1. In stochastic Pi calculus it is not possible to define a binary opera-
tor on M that reflects, for a fixed environment E, the parallel composition of
processes. Assume that there exists an operator ⊗E such that if E ` P → µ
and E ` Q → η, then E ` P |Q → µ ⊗E η. The processes P = a[b].0|c[d].0 and
Q = a[b].c[d].0 + c[d].a[b].0 have associated, in any correct environment E, the
same mapping µ ∈ M. Suppose that E ` R → η, where R = e[f].0. If, indeed,
the operator ⊗E is well defined, then E ` P |R→ µ⊗E η and E ` Q|R→ µ⊗E η,
i.e. P |R and Q|R have associated the same mapping. But this is not the case,
because P≡ 6= Q≡ and

E ` P |R e[f],E(e)−→ P≡ and E ` P |R e[f],0−→ Q≡, while

E ` Q|R e[f],0−→ P≡ and E ` Q|R e[f],E(e)−→ Q≡.
This explains why we need to index ⊗E with P≡ and Q≡ and why the algebraic
signature is changed when the structure of processes is lifted to indexed measures.

The next theorem states that T is well defined and characterizes the correct-
ness of an environment.

Theorem 2. (i) If E ` ok and fn(P) ⊆ dom(E), then there exists a unique
µ ∈M such that E ` P → µ.
(ii) If E ` P → µ, then E ` ok. Moreover, E ` ok iff E ` 0→ 0.

Unlike in other process algebras, our semantics does not contain a (Struct)
rule stating that structural congruent processes behave identicaly. However, such
a result can be proved.

Theorem 3. If E ` P ′ → µ and P ′ ≡ P ′′, then E ` P ′′ → µ.

The next lemma describes how the environments can vary without influencing
the mapping associated to a process.

Lemma 2. 1. If for any a ∈ N and r ∈ Q, [a@r ∈ E iff a@r ∈ E′], then
E ` P → µ iff E′ ` P → µ.
2. If E′ ` ok, E ⊂ E′ and E ` P → µ, then E′ ` P → µ.
3. If E ⊂ E′, E ` P → µ and dom(E′ \ E) ∩ fn(P) = ∅, then E′ ` P → µ.

10

4 Stochastic bisimulation

In this section we focus on stochastic bisimulation that reproduces, at the stochas-
tic level, Larsen-Skou probabilistic bisimulation [19]. We have introduced a sim-
ilar concept in [7] for the case of stochastic CCS. The novelty with the present
definition consists in the role of the rate environments: two processes are stochas-
tic bisimilar if they have similar stochastic behaviours in any rate environment.

Definition 5 (Stochastic Bisimulation). A rate-bisimulation on P is an
equivalence relation R ⊆ P× P such that (P,Q) ∈ R iff for any E ∈ E,
– if E ` P → µ, then there exists η ∈ M such that E ` Q → η and for any
C ∈ Π(R) and α ∈ A+, µ(α)(C) = η(α)(C).
– if E ` Q → η, then there exists µ ∈ M such that E ` P → µ and for any
C ∈ Π(R) and α ∈ A+, η(α)(C) = µ(α)(C).

Two processes P,Q ∈ P are stochastic bisimilar, denoted P ∼ Q, if there
exists a rate-bisimulation connecting them.

Observe that stochastic bisimulation is the largest rate-bisimulation on P.

Example 3. If a, b, x, y ∈ N , a 6= b and x 6∈ fn(b[y].Q), then
a(x).P |b[y].Q ∼ a(x).(P |b[y].Q) + b[y].(a(x).P |Q).

Indeed, for any compatible rate environment E,

E ` a(x).P |b[y].Q→ E
a(x)
P

E
a(x).P⊗b[y].Q E

b[y]
Q ,

E ` a(x).(P |b[y].Q) + b[y].(a(x).P |Q)→ E
a(x)
P |b[y].Q ⊕ E

b[y]
a(x).P |Q

and for arbitrary C ∈ Π(∼),

E
a(x)
P

E
a(x).P⊗b[y].Q E

b[y]
Q (α)(C) = E

a(x)
P |b.Q ⊕ E

b[y]
a(x).P |Q(α)(C) =

The previous example shows bisimilar processes which are not structurally
congruent. The reverse affirmation is not true.

Theorem 4. If P ≡ Q, then P ∼ Q.

The next theorem, stating that stochastic bisimulation is a congruence, proves
that we have identified a well-behaved semantics.

Theorem 5 (Congruence). If P ∼ Q, then
1. for any a, b ∈ N , a(b).P ∼ a(b).Q and a[b].P ∼ a[b].Q;
2. for any R ∈ P, P +R ∼ Q+R,
3. for any a ∈ N and r ∈ Q+, (a@r)P ∼ (a@r)Q;
4. for any R ∈ P, P |R ∼ Q|R.
5. !P ∼!Q.

5 Conclusions and future work

In this paper we have proposed a way of introducing stochastic process algebras
that is faithful to the algebraic-coalgebraic structures of the concurrent Marko-
vian processes. The semantics is given in terms of measure theory and describes

11

the lifting of the algebraic structure of processes to the level of measures on
the measurable space of processes. The paper treats the case of the complete
stochastic Pi-calculus. Instead of the discrete measurable space of processes, we
consider the measurable space induced by structural congruence and this idea
has important advantages. Firstly, it matches practical modelling requirements:
the identity of a system is not given by the stochastic process used to model
it, but by its structural-congruence class (for systems biology this represents a
chemical soup). Secondly, by working with measures on this space, we get im-
portant advantages on the level of the underlying theory such as a simple and
elegant semantics, simple solutions for the problems related to bound output and
replication (that otherwise require complicate transition labeling and higher or-
der reasoning) and a well-behaved notion of stochastic bisimulation including
associativity. Other advantages derive from the use of the rate environments
that guarantees a certain robustness in modelling: a model cab be easily refined
by modifying its rate environment.

Our approach opens some future research directions. One is the study of
the GSOS format where the main challenges are to understand the underlying
category and the equational monad induced by structural congruence. Another
is the definition of a pseudometric, similar with the one we introduce in [7],
to measure the distance between processes in terms of similar behaviours. Our
semantics is particularly appropriate for introducing such metrics via the metrics
on measures such as the Kantorovich metrics on distributions used, for instance,
in [21]. This SPA is also particularly appropriate for logical analysis using an
equational-coequational logic as the one we propose in [6], which will allow a
canonic characterization of the measurable space of processes.

References

1. G. Berry, G. Boudol, The Chemical Abstract Machine, In Proc. POPL 1990:81-94.
2. J.A. Bergstra, et.al (Eds.), Handbook of Process Algebra. Elsevier, 2001.
3. M. Bernardo, R. Gorrieri. A tutorial on EMPA: A theory of concurrent processes

with nondeterminism, priorities, probabilities and time. TCS 202(1-2), 1998.
4. M. Bravetti, H. Hermanns, J-P. Katoen, YMCA: Why Markov Chain Algebra?,

ENTCS 162, 2006.
5. L. Cardelli, A Process Algebra Master Equation. In Proc. QEST’07, 2007.
6. L. Cardelli, K. G. Larsen, R. Mardare. Modular Markovian Logic. to appear in Proc.

ICALP 2011.
7. L. Cardelli, R. Mardare. The Measurable Space of Stochastic Processes. QEST 2010,

IEEE Press, 2010.
8. R. De Nicola, et.al, Rate-Based Transition Systems for Stochastic Process Calculi.

ICALP’09, LNCS 5556, 2009
9. R. De Nicola, et.al, On a uniform framework for the definition of stochastic process

languages. FMICS’09, LNCS 5825, 2009
10. E.P. de Vink, J. Rutten, Bisimulation for probabilistic transition systems: A coal-

gebaic approach, TCS 221(1-2), 1999.
11. M.P.Fiore, D.Turi. Semantics of name and value passing. LICS’01, IEEE Press,

2001.

12

12. M.P.Fiore, S.Staton. A congruence rule format for name-passing process calculi.
Inf. and Comp., 207(2), 2009.

13. N. Gotz, U. Herzog, M. Rettelbach, TIPP - A language for timed processes and per-
formance evaluation. Tech.Rep. 4/92 IMMD VII, University of Erlangen-Nurnberg.

14. J. Hillston, A compositional approach to performance modelling. Distinguished dis-
sertation in Computer Science. Cambridge University Press, 1996.

15. J. Hillston, Process algebras for quantitative analysis. LICS’05, IEEE Press, 2005.
16. H. Hermanns, Interactive Markov Chains. LNCS 2428, 2008.
17. B. Klin, V. Sassone, Structural Operational Semantics for Stochastic Process Cal-

culi, FOSSACS’08, LNCS 4968, 2008.
18. M. Kwiatkowska, et.al, Automatic Verification of Real-Time Systems With Discrete

Probability Distributions., LNCS 1601, 1999.
19. K.G. Larsen and A. Skou, Bisimulation through probabilistic testing. Inf. and

Comp., 94, 1991.
20. R. Milner, Communicating and Mobile Systems: the Pi-Calculus, Cambridge Univ.

Press, 1999.
21. P. Panangaden, Labelled Markov Processes. Imperial College Press, 2009.
22. C. Priami, Stochastic π-Calculus. Computer Journal, 38(7), 1995.
23. J. Rutten, Universal coalgebra: a theory of systems, TCS, 249, 2000.
24. R. Segala, N. Lynch, Probabilistic Simulations for Probabilistic Processes, Nordic

J. of Comp., 2(2), 1995.
25. D. Turi, G.D. Plotkin, Towards a mathematical operational semantics, LICS’97,

IEEE Press, 1997.

Appendix

In this appendix we have collected some of the proofs of the main results pre-
sented in the paper.

Proof (Theorem 2). (i) Firstly, we prove the existential part by induction on the
structure of P .

For P = 0, P = a[b].Q and P = a(b).Q, (Null), (Out) and (Imp) respectively
guarantee the existence of µ.

For P = Q+R: the inductive hypothesis proves that there exist two functions
η, ρ such that E ` Q → η and E ` R → ρ. From (Sum) we obtain that there
exists µ = η ⊕ ρ such that E ` P → µ.

For P = Q|R: the inductive hypothesis guarantees that there exist two func-
tions η, ρ such that E ` Q → η and E ` R → ρ. From (Par) we obtain that
exists µ = η〈Q≡ER≡〉ρ such that E ` P → µ.

For P = (a@r)Q: if a 6∈ dom(E), then E, a@r ` ok and the inductive hypoth-
esis guarantees the existence of η such that E, a@r ` Q→ η. Further, applying
(New), we get E ` P → (a@r)η. If a ∈ dom(E), let b ∈ N \ dom(E). Then
E, b@r ` ok and the inductive hypothesis guarantees the existence of η such
that E, b@r ` Q{b/a} → η. Further, applying (New), we get E ` (b@r)Q{b/a} →
(b@r)η and (Alpha) gives E ` (a@r)Q→ (b@r)η.

For P =!Q: the inductive hypothesis guarantees the existence of a unique η
such that E ` Q→ η, and using (Rep), E ` P → η!Q.

13

The uniqueness part is done by induction on derivations.

The rules (Envε) and (Env@) are only proving the correctness of environ-
ments and consequently will not interfere with our proof.

Observe that all the derivations involving only the rules (Sum), (Par), (New)
and (Rep), called in what follows basic proofs, demonstrate properties about
processes with a more complex syntax than the processes involved in the hy-
potheses. Consequently, taking (Null), (Out) and (Imp) as basic cases, an in-
duction on the structures of the processes involved in the derivations shows the
uniqueness of µ for the situation of the basic proofs. Notice, however, that due
to (New) a basic proof proves properties of type E ` P → µ only for cases when
new(P) ∩ dom(E) = ∅, where new(P) is the set of names of P bound by fresh
name quantifiers. To conclude the proof we need to show that if Q = P{a/b} with
a, b 6∈ fn(P) and if E ` P → µ and E ` Q→ η can be proved with basic proofs,
then µ = η.We do this by induction on P .
If P = 0, then Q = 0 and η = µ = 0.

If P = c[d].R, then Q = c[d].R{a/b} and a, b 6∈ fn(R). Moreover, µ = E
c[d]
R≡ and

η = E
c[d]
R≡{a/b}

. But because a, b 6∈ fn(R), R ≡ R{a/b} implying further µ = η.

If P = c(d).R, then if d 6= b the proof goes as in the previous case. If P = c(b).R,

then Q = c(a).R{a/b}, µ = E
c(b)
R and η = E

c(a)
R{a/b}

and µ = η.

If P = S + T , then Q = S{a/b} + T{a/b}. Let E ` S → ρ and E ` T → ν, then
E ` S{a/b} → ρ and E ` T{a/b} → ν. Hence, µ = η = ρ⊕ ν.
If P = S|T the proof goes as in the previous case.
If P =!R, Q =!R{a/b}. Suppose that E ` R→ ρ. From the inductive hypothesis
we also obtain that E ` R{a/b} → ρ. Because a, b 6∈ fn(R), !R ≡!R{a/b}.
If P = (c@r)R with c 6= b, then Q = (c@r)R{a/b}. Because we are in the case
of a basic proof, c 6∈ dom(E). Suppose that E, c@r ` R→ ρ. This is the unique
hypothesis that proves E ` P → µ. Then, µ = (c@r)ρ and the inductive hy-
pothesis implies that E, c@r ` R{a/b} → ρ is the unique hypothesis that proves
E ` Q→ η. Further, E ` (c@r)R{a/b} → (c@r)ρ and µ = η.
If P = (b@r)R, then Q = (a@r)R{a/b}. Because we work with basic proofs,
we have a, b 6∈ dom(E). A simple induction proves that if E, b@r ` R →
ρ, then E, a@r ` R{a/b} → ρ′, where for any α ∈ A+ and any R ∈ Π,
ρ(α)(R) = ρ′(α{a/b})(R{a/b}). From here we get (b@r)ρ = (a@r)ρ′. Observe
that E, b@r ` R→ ρ is the unique hypothesis that can be used in a basic proof
to derive E ` (b@r)R → µ and µ = (b@r)ρ. Similarly, E, a@r ` R{a/b} → ρ′ is
the unique hypothesis to prove E ` (a@r)R{a/b} → η and η = (a@r)ρ′. Hence,
also in this case, µ = η.

In this way we have proved that any couple of alpha-converted processes have
associated the same mapping by basic proofs. In addition, (Alpha) guarantees
that any kind of proof associates to alpha-converted processes the same mapping
and this concludes our proof.

(ii) We prove the first part by induction on derivations. The second part is a
consequence of the first part and (Null).
If E ` P → µ is proved by (Null), (Out) or (Imp), E ` ok is required.

14

If E ` P → µ is proved by (Sum), P = Q + R, µ = η ⊕ ρ and E ` Q → η and
E ` R→ ρ are the hypothesis and we can use the inductive hypothesis.
If E ` P → µ is proved by (Par), the argument goes as in the previous case.
If E ` P → µ is proved by (New), then P = (a@r)Q and the hypothesis is of
type E, a@r ` Q→ η. The inductive hypothesis gives E, a@r ` ok and this can
only be proved by (Env@) from E ` ok.
If E ` P → µ is proved by (Rep), then P =!Q and E ` Q is the hypothesis and
we can apply the inductive step.
If E ` P → µ is proved by (Alpha), we can use the inductive hypothesis again.

Proof (Lemma 2). 1. A simple induction on derivations that involve only (Envε)
and (Env@) proves that E ` ok iff E′ ` ok. For proving our lemma we will
proceed with an induction on the derivation of E ` P → µ.

If E ` P → µ is proved by (Null), we have that P = 0 and due to Theorem
2, µ = 0. Applying (Null) we obtain E′ ` P → µ.

If E ` P → µ is proved by (Out) or (Imp), we have that P = x.Q and
µ = ExQ. Because ExQ = E′xQ and dom(E) = dom(E′), we obtain E′ ` P → µ.

If E ` P → µ is proved by (Sum), we have that P = Q+ R, µ = η ⊕ ρ and
the hypothesis are E ` Q → η and E ` R → ρ. From the inductive hypothesis
we obtain E′ ` Q→ η and E′ ` R→ ρ. Applying (Sum), E′ ` P → µ.

If E ` P → µ is proved by (Par) we have that P = Q|R, µ = η E
Q⊗ER ρ and

the hypothesis are E ` Q → η and E ` R → ρ. From the inductive hypothesis
we obtain E′ ` Q → η and E′ ` R → ρ. Further, applying (Par) we get
E′ ` P → η E

Q⊗E
′

R ρ. But η E
Q⊗ER ρ = η E

Q⊗E
′

R ρ.
If E ` P → µ is proved by (Rep), we have that P =!Q, µ = η!Q and the

hypothesis is E ` Q → η. Applying the inductive step we get E′ ` Q → η and
(Rep) guarantees that E′ ` P → µ.

If E ` P → µ is proved by (New), we have that P = (a@r)Q, µ = (a@r)η
and the hypothesis is E, a@r ` Q → η. Hence, a 6∈ dom(E) = dom(E′) and we
can apply the inductive hypothesis because b@s ∈ E, a@r iff b@s ∈ E′, a@r and
obtain E′, a@r ` Q→ η where from we get E′ ` P → µ.

If E ` P → µ is proved by (Alpha), we have that P = Q{a/b} with a, b 6∈
fn(P) = fn(Q) and the hypothesis is E ` Q→ µ. The inductive hypothesis gives
E′ ` Q→ µ and because a, b 6∈ fn(Q), (Alpha) proves E′ ` P → µ.

2. Induction on the derivation of E ` P → µ.
If E ` P → µ is proved by (Null), we have that P = 0 and due to Theorem

2, µ = 0. Applying (Null) we obtain E′ ` P → µ.
If E ` P → µ is proved by (Out) or (Imp), we have that P = x.Q and due

to Theorem 2, µ = ExQ. Because fn(P) ⊆ dom(E) ⊆ dom(E′) and ExQ = E′xQ ,
we obtain E′ ` P → µ.

If E ` P → µ is proved by (Sum), we have that P = Q+ R, µ = η ⊕ ρ and
the hypothesis are E ` Q → η and E ` R → ρ. From the inductive hypothesis
we obtain E′ ` Q → η and E′ ` R → ρ. Further, applying (Sum) we get
E′ ` P → µ.

If E ` P → µ is proved by (Par) we have that P = Q|R, µ = η E
Q⊗ER ρ and

the hypothesis are E ` Q → η and E ` R → ρ. From the inductive hypothesis

15

we obtain E′ ` Q → η and E′ ` R → ρ. Further, applying (Par) we get
E′ ` P → η E

Q⊗E
′

R ρ. But η E
Q⊗ER ρ = η E

Q⊗E
′

R ρ.

If E ` P → µ is proved by (Rep), we have that P =!Q, µ = η!Q and the
hypothesis is E ` Q → η. Applying the inductive step we get E′ ` Q → η and
(Rep) guarantees that E′ ` P → µ.

If E ` P → µ is proved by (Alpha), we have that P = Q{a/b} with a, b 6∈
fn(P) = fn(Q) and the hypothesis is E ` Q → µ. As before, the inductive
hypothesis guarantees that E′ ` Q → µ and because a, b 6∈ fn(Q), (Alpha)
proves that E′ ` P → µ.

If E ` P → µ is proved by (New), we have that P = (a@r)Q, µ = (a@r)η
and the hypothesis is E, a@r ` Q → η. Hence, a 6∈ dom(E). If a 6∈ dom(E′),
the inductive hypothesis guarantees that E′, a@r ` Q → η where from we get
E′ ` P → µ. If a ∈ dom(E′), let b 6∈ dom(E′)∪ fn(P). Because E, a@r ` Q→ η
is provable, also E, b@r ` Q{b/a} → η{b/a} is provable, where η{b/a} is the
mapping obtained from η replacing all the occurrences of a in the definition of
η (in processes and labels) with b. Moreover, to each proof of E, a@r ` Q → η
corresponds a proof of E, b@r ` Q{b/a} → η{b/a} that is, from the point of view of
our induction, at the same level with the proof of E, a@r ` Q→ η. Consequently,
we can apply the inductive hypothesis to E, b@r ` Q{b/a} → η{b/a} and obtain
E′, b@r ` Q{b/a} → η{b/a}. (New) implies E′ ` (b@r)Q{b/a} → (b@r)η{b/a} and
(Alpha) E′ ` (a@r)Q → (b@r)η{b/a}. To conclude, it is sufficient to verify that
(a@r)η = (b@r)η{b/a}.

3. The proof goes similarly with the proof of the previous case. We use an
induction on the derivation of E ` P → µ.

If E ` P → µ is proved by (Null), we have that P = 0 and µ = 0. Applying
(Null) we obtain E′ ` P → µ.

If E ` P → µ is proved by (Out) or (Imp), we have that P = x.Q and
µ = G′xQ . Because fn(P) ⊆ dom(E), fn(P)∩ dom(E \E′) = ∅ and ExQ = E′xQ , we
obtain E′ ` P → µ.

If E ` P → µ is proved by (Sum), we have that P = Q+ R, µ = η ⊕ ρ and
the hypothesis are E ` Q → η and E ` R → ρ. From the inductive hypothesis
we obtain E′ ` Q → η and E′ ` R → ρ. Further, applying (Sum) we get
E′ ` P → µ.

If E ` P → µ is proved by (Par) we have that P = Q|R, µ = η E
Q⊗ER ρ and

the hypothesis are E ` Q → η and E ` R → ρ. From the inductive hypothesis
we obtain E′ ` Q → η and E′ ` R → ρ. Further, applying (Par) we get
E′ ` P → η E

Q⊗E
′

R ρ. But η E
Q⊗ER ρ = η E

Q⊗E
′

R ρ.

If E ` P → µ is proved by (Rep), we have that P =!Q, µ = η!Q and the
hypothesis is E ` Q → η. Applying the inductive step we get E′ ` Q → η and
(Rep) guarantees that E′ ` P → µ.

If E ` P → µ is proved by (Alpha), we have that P = Q{a/b} with a, b 6∈
fn(P) = fn(Q) and the hypothesis is E ` Q → µ. As before, the inductive
hypothesis guarantees that E′ ` Q → µ and because a, b 6∈ fn(Q), (Alpha)
proves that E′ ` P → µ.

16

If E ` P → µ is proved by (New), we have that P = (a@r)Q, µ = (a@r)η
and the hypothesis is E, a@r ` Q → η. Hence, a 6∈ dom(E) and because
dom(E′) ⊆ dom(E), we obtain that a 6∈ dom(E′). Because E, a@r ⊂ E′, a@r
and dom((E′, a@r) \ (E, a@r)) = dom(E′ \ E), we can apply the inductive hy-
pothesis and from E, a@r ` Q → η we obtain E′, a@r ` Q → η where from we
get E′ ` P → µ.

Proof (Theorem 5). From P ′ ≡ P ′′ we obtain that fn(P ′) = fn(P ′′) and Theorem
2 ensures that E ` P ′ → µ implies that there exists a unique µ′ such that
E ` P ′′ → µ′.

We prove now that E ` P ′ → µ implies E ` P ′′ → µ. The proof is an
induction following the rules of structural congruence presented in Definition 2.
Rule I.1: if P ′ = P |Q and P ′′ = Q|P . Suppose that E ` P → η and E ` Q→ ρ.
Then µ = η E

P⊗EQ ρ and Lemma 1 guarantees that E ` P ′′ → µ.
Similarly we can treat all the rules of group I.

Rules of group II: As previously, the results derive from the properties of ⊕
stated in Lemma 1.
Rules of group III: If (P ′ = P |R and P ′′ = Q|R), or (P ′ = P + R and
P ′′ = Q + R), or (P ′ = x.P and P ′′ = x.Q), or (P ′ =!P and P ′′ =!Q) for
P ≡ Q, we can apply the inductive hypothesis that guarantees that E ` P → η
iff E ` Q → η. Further, if E ` R → ρ, we obtain the desired results because
η E
P⊗ER ρ = η E

Q⊗ER ρ, η ⊕ ρ = η ⊕ ρ, ExP = ExQ and µ!P = µ!Q.
If P ′ = (a@r)P and P ′′ = (a@r)Q, we have two subcases.

Subcase 1: a 6∈ dom(E). Suppose that E, a@r ` P → η. From the inductive
hypothesis we obtain that E, a@r ` Q → η. Further, rule (New) proves that
µ = (a@r)η and E ` (a@r)Q→ µ.

Subcase 2: a ∈ dom(E). Let b ∈ N \ dom(E). Suppose that E, b@r `
P{b/a} → η. Then, (New) implies E ` (b@r)P{b/a} → (b@r)η and (Alpha) proves
E ` (a@r)P → (b@r)η. Hence, µ = (b@r)η. On the other hand, the inductive
hypothesis implies E, b@r ` Q{b/a} → η, (New) proves E ` (b@r)Q{b/a} →
(b@r)η and (Alpha) implies E ` (a@r)Q→ (b@r)η.
Rule IV.1: If P ′ = (a@r)(b@s)P and P ′′ = (b@s)(a@r)P . Let c, d ∈ N \
dom(E). Suppose that E; c@r; d@s ` P{c/a,d/b} → η. Applying twice (New)
we obtain E ` (c@r)(d@s)P{c/a,d/b} → (c@r)(d@s)η and applying twice (Al-
pha) we get E ` (a@r)(b@s)P → (c@r)(d@s)η. Hence, µ = (c@r)(d@s)η. On
the other hand, Lemma 2.1 guarantees that E; c@r; d@s ` P{c/a,d/b} → η im-
plies E; d@s; c@r ` P{c/a,d/b} → η and, as before, we eventually obtain E `
(b@s)(a@r)P → (d@s)(c@r)η. Now it is suficient to verify that (d@s)(c@r)η =
(c@r)(d@s)η.
Rule IV.2: If P ′ = (a@r)0 and P ′′ = 0. In this case it is sufficient to notice
that (a@r)0 = 0.
Rule IV.3: If P ′ = (a@r)(P |Q) and P ′′ = P |(a@r)Q, where a 6∈ fn(P). Let b ∈
N \ (dom(E)∪ fn(P)). Suppose that E, b@r ` P → η and E, b@r ` Q{b/a} → ρ.
Observe that because a 6∈ fn(P), we also have E, b@r ` P{b/a} → η. Further we
obtain

E, b@r ` (P |Q){b/a} → η E
P{b/a}

⊗E,b@rQ{b/a}
ρ and

17

E ` (b@r)((P |Q){b/a})→ (b@r)(η E
P{b/a}

⊗E,b@rQ{b/a}
ρ).

Now we apply (Alpha) and obtain

E ` (a@r)(P |Q)→ (b@r)(η E
P⊗

E,b@r
Q{b/a}

ρ).

On the other hand, because b 6∈ fn(P), from E, b@r ` P → η Lemma 2.2
proves E ` P → η and from E, b@r ` Q{b/a} → ρ we obtain, applying (New),
E ` (b@r)Q{b/a} → (b@r)ρ. And further,

E ` P |(b@r)Q{b/a} → η E
P⊗E(b@r)Q{b/a} (b@r)ρ.

Applying (alpha) we obtain

E ` P |(a@r)Q→ η E
P⊗E(b@r)Q{b/a} (b@r)ρ.

A simple verification based on the observation that (if for all R ∈ R, b 6∈ fn(R),
then (b@r)R = R) proves that

(b@r)(η E
P⊗

E,b@r
Q{b/a}

ρ) = η E
P⊗E(b@r)Q{b/a} (b@r)ρ.

Similarly can be proved that case P ′ = (a@r)(P +Q) and P ′′ = P +(a@r)Q,
where a 6∈ fn(P).
Rules of group V: By a simple verification one can prove that 0!0 = 0. For
the second rule, observe that if E ` P → η and E ` Q→ ρ, then E `!(P |Q)→
(η EP⊗EQ ρ)!(P |Q) and E `!P |!Q→ η E!Q|P⊗

E
!P |Q ρ. And a simple verification proves

that
(η E

P⊗EQ ρ)!(P |Q) = η E
!Q|P⊗

E
!P |Q ρ.

Rules of group VI: These rules are a direct consequence of (Alpha).

Proof (Theorem 5). 1. Prefix: For any C ∈ Π(∼), P ∈ C iff Q ∈ C. This
entails that for any E ∈ E with fn(x.P) ∪ fn(x.Q) ⊆ dom(E) and any α ∈ A+,
ExP (α)(C) = ExQ(α)(C).

2. Choice: We can suppose, without loosing generality, that E ` P → µ,
E ` Q → η and E ` R → ρ (the other cases are trivially true). Then, E `
P + R → µ ⊕ ρ and E ` Q + R → η ⊕ ρ. Let C ∈ Π(∼) and α ∈ A+. Because
P ∼ Q, µ(α)(C) = η(α)(C) implying µ(α)(C) + ρ(α)(C) = η(α)(C) + ρ(α)(C).
This means that (µ⊕ ρ)(α)(C) = (η ⊕ ρ)(α)(C).

3. Fresh name quantification: Let E ∈ E and b 6∈ dom(E)∪fn(P)∪fn(Q).
Observe that from P ∼ Q, following an observation that we used also in the proof
of Lemma 2 concerning the relation between a mapping η its correspondent
η{b/a}, we derive P{b/a} ∼ Q{b/a}. Suppose that E, b@r ` P{b/a} → µ and
E, b@r ` Q{b/a} → η. Applying (New) we obtain E ` (b@r)P{b/a} → (b@r)µ
and E ` (b@r)Q{b/a} → (b@r)η. (Alpha) implies E ` (a@r)P → (b@r)µ and
E ` (a@r)Q → (b@r)η. From P{b/a} ∼ Q{b/a} we obtain that for any α ∈ A+

and any C ∈ Π(∼), µ(α)(C) = η(α)(C). to conclude the proof it is sufficient to
verify that (b@r)µ(α)(C) = (b@r)η(α)(C).

18

4. Parallel composition: For the beginning we consider the processes that,
to all syntactic levels, contain no subprocess form the class 0≡ in a parallel
composition. Let’s call them processes with non-trivial forms. We will first prove
the lemma for processes with non-trivial forms.

For arbitrary n ∈ N, let Sn be the set of process terms with non-trivial forms
and no more than n occurrences of the operator “|”. Let ∼n⊆ Sn × Sn be the
largest rate-bisimulation defined on Sn. We define ≈n∈ Sn × Sn by

≈n=∼n−1 ∪

{(P1|...|Pk, Q1|...|Qk), (P1 + ...Pk, Q1 + ...Qk) for Pi ∼n−1 Qi, i = 1..k, k ≤ n}.

We show, by induction on n, that ≈n is a rate-bisimulation, i.e. that ≈n⊆∼n.
Suppose that P ≈n Q. We need to prove that if E ` P → µ and E ` Q→ η,

then for any α ∈ A+ and any C ∈ Π(≈n), µ(α)(C) = η(α)(C).
Observe that, from the way we construct ≈n, there are three possibilities:

either P ∼n−1 Q, or P = P1 + ...Pk and Q = Q1 + ...Qk, or P = P1|...|Pk and
Q = Q1|...|Qk, for k ≤ n, with Pi ∼n−1 Qi for each i = 1..k. In the first two
cases, using also the case of choice operator that we have already proved, it is
trivial to verify that µ(α)(C) = η(α)(C).

To prove the last case observe for the beginning that because ∼n−1⊆∼n, the
inductive hypothesis guarantees that for each i = 1..k,
P1|...|Pi−1|Pi+1|...|Pk ≈n−1 Q1|...|Qi−1|Qi+1|...|Qk and consequently that
P1|...|Pi−1|Pi+1|...|Pk ∼n−1 Q1|...|Qi−1|Qi+1|...|Qk.

Suppose that E ` Pi → µi and E ` Qi → ηi for all i = 1..k. Then,

µ = µ1
E
P1
⊗EP2|...|Pk

(µ2
E
P2
⊗EP3|...|Pk

(...(µk−1
E
Pk−1
⊗EPk

µk)...),

η = η1
E
Q1
⊗EQ2|...|Qk

(η2
E
Q2
⊗EQ3|...|Qk

(...(ηk−1
E
Qk−1

⊗EQk
ηk)...),

Consider an arbitrary α ∈ A. Then,

µ(α)(C) =
∑
i=1..k

µi(α)(CP1|...|Pi−1|Pi+1|...|Pk
),

η(α)(C) =
∑
i=1..k

ηi(α)(CQ1|...|Qi−1|Qi+1|...|Qk
).

Because C ∈ Π(≈n), CP1|...|Pi−1|Pi+1|...|Pk
and CQ1|...|Qi−1|Qi+1|...|Qk

contain
only processes with at most n− 1 occurrences of |, for any i. And because
P1|...|Pi−1|Pi+1|...|Pk ∼n−1 Q1|...|Qi−1|Qi+1|...|Qk, we obtain

CP1|...|Pi−1|Pi+1|...|Pk
= CQ1|...|Qi−1|Qi+1|...|Qk

∈ Π(∼n−1).

Further, using the fact that ∼n−1 is a rate bisimulation, we obtain

µ(α)(CP1|...|Pi−1|Pi+1|...|Pk
) = η(α)(CQ1|...|Qi−1|Qi+1|...|Qk

)

that implies µ(α)(C) = η(α)(C).

19

A similar argument proves the case α = τ . Consequently, ≈n is a rate-
bisimulation.

Returning to our lemma, suppose that P and Q are two processes with non-
trivial forms such that P ∼ Q. Then, there exists n ∈ N such that P ∼n Q.
Suppose that R ∈ Sm for some m ∈ N. Then P ∼m+n−1 Q and R ∼m+n−1 R
implying P |R ≈m+n Q|R. Because ≈m+n is a rate-bisimulation, we obtain that
P |R ∼ Q|R.

If P , Q or R (or some of them) have “trivial forms”, then there exist P ′ ≡ P ,
Q′ ≡ Q and R′ ≡ R with non-trivial forms. And because the bisimulation is an
equivalence that extends the structural congruence, we obtain the desired result
also for the general case.

5. Replication: We use the same proof strategy as for the parallel com-
position. We say that a process is in canonic form if it contains no parallel
composition of replicated subprocesses and no replicated process from the class
0≡. In other words, !(P |Q) is in canonic form while !P |!Q and !(P |Q)|!!0 are
not; using the structural congruence rules, we can associate to each process P a
structural congruent process with a canonic form called a canonic representative
for P . Notice also that all the canonic representatives of a given process have
the same number of occurrences of the operator “!”. Let S∗ be the set of process
terms with canonic form. Observe that because structural congruence is a subset
of bisimulation, it is sufficient to prove our lemma only for processes in S∗.

As before, let Sn∗ be the set of processes (in canonic form) with no more than
n occurrences of the operator “!”. Let ∼n be the stochastic bisimulation on Sn∗
and ≈n⊆ Sn∗ × Sn∗ defined by

≈n=∼n−1 ∪{(!P, !Q) | P ∼n−1 Q}.

We firstly show, inductively on n, that ≈n is a rate-bisimulation. Consider
two arbitrary processes P and Q such that P ≈n Q. We prove that if E ` P → µ
and E ` Q→ η, then for arbitrary α ∈ A+ and C ∈ Π(≈n), µ(α)(C) = η(α)(C).

Observe that if P ≈n Q, then either P ∼n−1 Q, or P ≡!R and Q ≡!S with
R ∼n−1 S. In the first case the equality is trivially true. In the other case,
suppose that E ` R→ µ′ and E ` S → η′. Then, µ = µ′!R and η = η′!S . We have

µ(α)(C) = µ′(α)(C!R), η(α)(C) = η′(α)(C!S).

We prove that C!R = C!S . Let U ∈ C!R. Then, U |!R ∈ C and from the
construction of C ∈ Π(≈n), we obtain that there exists T ∈ Sn−1∗ such that
U =!T . Because !R|!T ∈ C, !(R|T) ∈ C. Now, from R ∼n−1 S we obtain
R ∼ S and because T ∼ T , the case of parallel operator that we have proved
guarantees that R|T ∼ S|T . But the canonic representatives V,W of R|T and
S|T respectively are in Sn−1∗ meaning that V ∼n−1 W . The construction of ≈n
guarantees further that !V ≈n!W and because W ≡ S|T we obtain !(S|T) ∈ C
and U ≡!T ∈ C!S .

Because C!R = C!S and µ′(α)(C!R) = η′(α)(C!S) (this is implied by R ∼n−1
S), then µ(α)(C) = η(α)(C).

20

