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Abstract

We develop a quantitative analogue of equational reasoning which we
call quantitative algebra. We define an equality relation indexed by ratio-
nals: a =ε b which we think of as saying that “a is approximately equal
to b up to an error of ε”. We have 4 interesting examples where we have
a quantitative equational theory whose free algebras correspond to well
known structures. In each case we have finitary and continuous versions.
The four cases are: Hausdorff metrics from quantitive semilattices; p-
Wasserstein metrics (hence also the Kantorovich metric) from barycentric
algebras and also from pointed barycentric algebras and the total variation
metric from a variant of barycentric algebras.

1 Introduction

One of the exciting themes in research in programming language theory is the al-
gebraic study of computational phenomena initiated by Moggi [Mog88, Mog91]
where he showed how one can view notions of computation as monads. This
allowed the incorporation of computational effects into a functional core in a
compositional way. This became enormously influential and even led to monads
being directly incorporated into programming languages like Haskell. It was a
decade later that Plotkin and Power [PP01, PP02] began the study of com-
putational effects from the point of view of equations and operations. From a
categorical perspective one is moving from monads to Lawvere theories; see the
excellent historical survey by Hyland and Power for more details [HP07].

One aspect of computational effects that has attracted significant attention is
probabilistic computation [SD78, SD80, Koz81, Koz85, JP89]. This is, in fact,
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growing significantly with recent work spurred by interest from the machine
learning community; see for example [BGG+11, GGR+14] among many other
research efforts on the theory and practice of probabilistic programming as it
applies to machine learning applications and [FKM+15] for a recently developed
probabilistic programming language for network applications. Early work on
lambda-calculi for probabilistic programming is due to Saheb-Djahromi [SD80].
Claire Jones [Jon90] developed a probabilistic λ-calculus in her thesis, gave an
operational semantics and proved adequacy results. The fundamental work
on probability monads is due to Lawvere [Law64] (before monads were in-
vented!) and Gıry [Gir81]. One can develop a probabilistic λ-calculus using
this monad [RP02].

In the present paper we develop an equational approach to reasoning about
quantitative phenomena. The key new idea is to introduce equations annotated
with rational numbers written =ε to capture the notion of approximate equality.
One should think of s =ε t as saying that s and t are “within ε of each other.”
Essentially we are working with enriched Lawvere theories; see [Rob02] for
an expository account of this subject. We do not emphasize the category-
theoretic underpinnings here; instead we concentrate on presenting the notion
of quantitative equations as concretely as possible. The bulk of the paper is
spent on some very pleasing examples and on the general notions developed in
the spirit of traditional universal algebra. In later work we will carefully spell
out the categorical picture.

The examples are all of the following form: we give a simple set of equations
and define the algebras of the resulting theory. We then induce metrics on
the free algebra and identify them with commonly defined metrics. Thus, for
example, we show that the Hausdorff metric arises from a quantitative version
of semilattices. We show that the total variation metric arises from an axioma-
tization of convexity in terms of barycentric axioms. We show that the famous
Kantorovich1 metric [Vil08, vBW01, Pan09] arises from a variation of the same
axioms. In fact, already the p-Wasserstein metric, which is a generalization
of the Kantorovich metric arises from a variation of the same axioms. These
metrics (especially Kantorovich) play a fundamental role in the study of prob-
abilistic bisimulation [Pan09] and transport theory [Vil08]. We present both
finitary and infinitary versions of these constructions.

Metric ideas have been important in denotational semantics from the beginning
especially in Jaco de Bakker’s school; see [vB01] for a survey. It may seem that
for probabilistic reasoning one needs to work with measure theory. This is,
of course, true but measure theory works best when there is metric structure;
as witnessed, for example, by the ubiquity of Polish spaces in discussions of
measure theory. The algebraic approach to effects [PP01, PP02, PP03, PP04,
HPP06, HLPP07] has not, until now, been considered in a metric context.
Owing to the increasing importance of probability in computer science it seems
worthwhile to investigate this now. The first order of business then is to see

1This metric goes by many names: Hutchinson, Wasserstein (with numerous variations in
spelling) and Kantorovich-Rubinstein. Perhaps the most commonly used name is Wasserstein.
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how some familiar and important monads fit into this approach. In this paper,
we only consider monads related to probabilistic and nondeterministic systems.
However the well-known basic examples (exceptions, states, I/O) also fit into
the framework of this paper, albeit with some inessential limitations arising
from our working with operations with finite discrete arities.

2 Quantitative Equational Theories

An algebraic similarity type consists of a sort name2 and a finite set of function
symbols each with fixed finite arity. Consider an algebraic similarity type Ω
and algebras of this type. Given a set X of variables, let TX be the set of terms
constructed over Ω from X, this is the term algebra of Ω over X.

A substitution is a function σ : X −→ TX. It can be canonically extended to
σ : TX −→ TX by:

• for any f : n ∈ Ω, σ(f(t1, ..tn)) = f(σ(t1), ..σ(tn)).

In what follows Σ(X) denotes the set of substitutions on TX.

If Γ ⊆ TX is a set of terms and σ ∈ Σ(X), let σ(Γ) = {σ(t) | t ∈ Γ}.

Let V(X) denote the set of indexed equalities of the form x =ε y for x, y ∈ X
and ε ∈ Q+; similarly, let V(TX) denote the set of indexed equalities of the
form t =ε s for t, s ∈ TX, ε ∈ Q+. We call them quantitative equations.

Definition 2.1 (Deducibility Relation) Given an algebraic similarity type
Ω and a set X of variables, a deducibility relation of type Ω over X is a
relation `⊆ 2V(TX)×V(TX) closed under the following rules stated for arbitrary
t, s, u, t1, · · · tn ∈ TX, ε, ε′ ∈ Q+, Γ,Γ′ ⊆ V(TX) and φ, ψ ∈ V(TX); where
(Γ, φ) ∈` is denoted by Γ ` φ:

(Refl) ∅ ` t =0 t

(Symm) {t =ε s} ` s =ε t.

(Triang) {t =ε s, s =ε′ u} ` t =ε+ε′ u.

(Max) For ε′ > 0, {t =ε s} ` t =ε+ε′ s.

(Arch) For ε ≥ 0, {t =ε′ s | ε′ > ε} ` t =ε s.

(NExp) For f : n ∈ Ω, {t1 =ε s1, . . . , tn =ε sn} ` f(t1, ..ti, ..tn) =ε f(s1, ..si, ..sn)

(Subst) If σ ∈ Σ(X), Γ ` t =ε s implies σ(Γ) ` σ(t) =ε σ(s).

(Cut) If Γ ` φ for all φ ∈ Γ′ and Γ′ ` ψ, then Γ ` ψ.

(Assumpt) If φ ∈ Γ, then Γ ` φ.

2In later work we will develop and use many-sorted algebras.
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Let E(TX) = Pf (V(TX)) × V(TX), where Pf (A) is the finite powerset of A;
we call its elements quantitative inferences on TX. If (V, φ) ∈ E(TX), we re-
fer to the elements of V as the hypotheses of the inference. An unconditional
quantitative inference is a quantitative inference with an empty set of hypothe-
ses.

Of particular interest for us is the subclass E(X) = Pf (V(X)) × V(TX) of
quantitative inferences, hereafter called basic quantitative inferences, where the
hypotheses are finite sets of quantitative equations between variables. The basic
quantitative inferences are the ones that we will use as axioms for theories.

Definition 2.2 (Quantitative Equational Theory) Given a set S ⊆ E(TX)
of quantitative inferences on TX, denote by `S the smallest deducibility relation
that contains S. The quantitative equational theory induced by S is the set

U def
= (`S) ∩ E(TX).

Note that a quantitative equational theory does not contain any conditional
inference with infinitely many hypotheses, nor indeed does the set S. How-
ever, in constructing U from S, we can use the infinitary archimedean rule
in derivations. This restriction can be relaxed to allow conditional inferences
with countable sets of hypothesis without really changing much from the theory
developed hereafter.

If U is a quantitative equational theory and ∅ ` s =e t ∈ U , we will abuse the
notation and also write U ` s =e t.

Definition 2.3 (Consistent theories) A quantitative equational theory U over
TX is inconsistent if U ` x =0 y, where x, y ∈ X are two distinct variables. U
is consistent if it is not inconsistent.

3 Quantitative Algebras

Definition 3.1 (Quantitative Algebra) A quantitative algebra is a tuple
A = (A,ΩA, dA), where (A,ΩA) is an algebra of type Ω and

dA : A×A −→ R+ ∪ {∞}

is a metric on A (possibly taking infinite values) such that all the operators
in the signature are non-expansive. i.e., for any f : n ∈ ΩA, any ai, bi ∈ A,
i = 1, ..n and any ε ≥ 0,

dA(ai, bi) ≤ ε for all i = 1, ..n implies dA(f(a1, .., an), f(b1, .., bn)) ≤ ε.

A quantitative algebra is degenerate if its support is empty or a singleton.
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Definition 3.2 (Homomorphism of Quantitative Algebras) Given two quan-
titative algebras Ai = (Ai,Ω, d

Ai), i = 1, 2, of type Ω, a homomorphism of quan-
titative algebras is a non-expansive Ω-homomorphism (of Ω-algebras); i.e., it
is a map h : A1 −→ A2 that, for arbitrary a, b ∈ A1,

dA1(a, b) ≥ dA2(h(a), h(b)) .

Notice that identity maps are homomorphisms and that homomorphisms are
closed under composition, hence quantitative algebras of type Ω and their ho-
momorphisms form a category, denoted Ω-QA.

Definition 3.3 (Subalgebras) The quantitative algebra B = (B,Ω, dB) is a
subalgebra of the quantitative algebra A = (A,Ω, dA), denoted by B ≤ A, if B
is a subalgebra of A as Ω-algebra and, in addition, for any a, b ∈ B, dB(a, b) =
dA(a, b).

Definition 3.4 (Initiality) Let K be a subcategory of Ω-QA, hence its objects
are quantitative algebras of type Ω. A quantitative algebra A is initial in K if
A ∈ K and, for all B ∈ K, there exists a unique homomorphism of quantitative
algebras α : A −→ B.

Note that if two quantitative algebras are both initial in some subcategory K,
then they are isomorphic.

Definition 3.5 (Universal mapping property) Let K be a subcategory of
quantitative algebras of type Ω, C an arbitrary category, G : K −→ C a functor
and C an object in C. A universal morphism from C to G is a pair (A, α)
consisting of a quantitative algebra A ∈ K and a morphism α : C −→ GA in C,
such that for every pair (B, β) with B ∈ K and β : C −→ GB a morphism in C,
there exists a unique homomorphism of quantitative algebras h : A −→ B such
that Gh ◦ α = β. Diagrammatically

in C in K
C GA A

GB B

β

α

Gh h

A quantitative algebra A has the universal mapping property for C to G if there
exists a universal morphism (A, α) from C to G.

4 Algebraic Semantics for Quantitative Equations

Definition 4.1 (Assignment) Given a quantitative algebra A = (A,ΩA, dA)
of type Ω and a set X of variables, an assignment on A is a function
ι : X −→ A that is canonically extended to ι : TX −→ A over Ω-terms as follows
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• for any f : n ∈ Ω, ι(f(t1, . . . , tn)) = fA(ι(t1), . . . ι(tn)).

Note that the requirements above guarantee that ι is a homomorphism of Ω-
algebras, where the operations in Ω have the canonical interpretation in TX.
We denote by T(X|A) the set of assignments on A.

Definition 4.2 (Satisfiability) Consider a quantitative algebra A = (A,ΩA, dA)
and a set X of variables. A satisfies a quantitative inference Γ ` s =ε t ∈ E(TX)
over TX, written

Γ |=A s =ε t,

if for all assignments ι ∈ T(X|A),

[ dA(ι(t′), ι(s′)) ≤ ε′ for all s′ =ε′ t
′ ∈ Γ ] implies dA(ι(s), ι(t)) ≤ ε.

In these cases we say that A is a model of the inference. Similarly, for a
quantitative equational theory (or set of quantitative inferences) Γ, we say that
A is a model of Γ if A satisfies each element of Γ. A quantitative inference (a
quantitative equational theory) is satisfiable if it has a model.

For the case of unconditioned quantitative inferences of type ∅ ` s =ε t, observe
that the left-hand side of the implication in the previous definition is vacuously
satisfied. For these inferences, to further simplify the notation, instead of ∅ |=A
s =ε t we also write A |= s =ε t.

Definition 4.3 (Equational Class of Quantitative Algebras) For a sig-
nature Ω and a quantitative equational theory U over the Ω-terms TX, the
equational class induced by U is the class of quantitative algebras of signature
Ω satisfying U .

We denote this class as well as the full subcategory of Ω-quantitative algebras
satisfying U by K(Ω,U). We say that a class of algebras that is an equational
class is equationally definable.

K(Ω,U) is obviously closed under taking isomorphic images. We prove below
that it is also closed under subalgebras.

Lemma 4.4 If A ∈ K(Ω,U) and B ≤ A, then B ∈ K(Ω,U).

Proof. Since B ≤ A, idB : B −→ A defined by idB(b) = b is a morphism of
quantitative algebras.

Suppose that {si =εi ti | i ∈ I} ` s =e t ∈ U . Hence,

{si =εi ti | i ∈ I} |=A s =e t ∈ U ,

meaning that for any ι ∈ T(X|A),

[dA(ι(si), ι(ti)) ≤ εi for all i ∈ I] implies dA(ι(s), ι(t) ≤ e.

Consider an arbitrary ι ∈ T(X|B) and observe that ι ∈ T(X|A) as well.

Suppose that [dB(ι(si), ι(ti)) ≤ εi for all i ∈ I]. This is equivalent to

[dA(ι(si), ι(ti)) ≤ εi for all i ∈ I].

But then, we also have dA(ι(s), ι(t)) ≤ e. Hence, dB(ι(s), ι(t)) ≤ e.
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5 The Induced Pseudometric

Given a quantitative equational theory U over the set TX for a given signature
Ω, we intend to define a pseudometric over the set TX of terms somehow
induced by U .

There are three possible candidates for this definition:

dU (s, t) = inf{ε | ∅ ` s =ε t ∈ U} ,

γU (s, t) = inf{ε | ∀V ∈ Pf (V(X)), V ` s =ε t ∈ U} ,

and
δU (s, t) = inf{ε | ∃V ∈ Pf (V(X)), V ` s =ε t ∈ U} ,

In what follows we prove that δU = 0 and hence provides no useful information;
and that dU = γU , which essentially guarantees that it is sufficient to use
the unconditioned quantitative inferences of a theory to derive a pseudometric
between the terms.

Proposition 5.1 For arbitrary s, t ∈ T(X), δU (s, t) = 0.

Proof. Consider two variables x, y ∈ X and let ε ≥ 0 be arbitrarily chosen.

Since x =ε y ` x =ε y, we obtain that

δU (x, y) ≤ ε for all ε ≥ 0.

Hence, δU (x, y) = 0 for any variables x, y ∈ X, implying further that for arbi-
trary terms t, s ∈ T(X), δU (s, t) = 0.

Proposition 5.2 For arbitrary s, t ∈ T(X), γU (s, t) = dU (s, t).

Proof. We prove that

∅ ` s =ε t ∈ U iff [for any V ∈ Pf (V(X)), V ` s =ε t ∈ U ].

(⇐): Since ∅ ∈ Pf (V(X)), this direction is trivial.

(⇒): Suppose that ∅ ` s =ε t ∈ U . Applying (Cut) instantiated with Γ = V
and Γ′ = ∅ we get that for any V ∈ Pf (V(X)), V ` s =ε t ∈ U .

The equivalence mentioned above guarantees that:

inf{ε | ∅ ` s =ε t ∈ U} = inf{ε | ∀V ∈ Pf (V(X)), V ` s =ε t ∈ U}.

Hence dU = γU .
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6 Free Quantitative Algebras

Fix a signature Ω and a quantitative equational theory U over Ω-terms in TX
with variables in X.

Term Quantitative Algebra. Define dU : TX × TX −→ R+ ∪ {∞} (possibly
taking infinite values) as

dU (t, s) = inf{ε | U ` t =ε s} .

By (Refl), (Symm), and (Triang), dU is a well-defined pseudometric on TX.
Observe that due to (Arch) we can characterize the distance 0 as follows

dU (s, t) = 0 iff U ` s =0 t.

This pseudometric induces on TX the following equivalence relation

∼= {(s, t) ∈ TX2 | dU (s, t) = 0}.

Lemma 6.1 ∼ is a congruence relation w.r.t. Ω.

Proof. Let f : n ∈ Ω and let xi, yi ∈ TX, i = 1, ..n be such that xi ∼ yi for all
i = 1, ..n. We need to prove that f(x1, ..xn) ∼ f(y1, ..yn).

Since xi ∼ yi, U ` xi =0 yi. Using (NExp) and (Cut) we further derive that
U ` f(x1, .., xn) =0 f(y1, .., yn). Hence, f(x1, ..xn) ∼ f(y1, ..yn).

Since ∼ is a congruence, the quotient TX∼ of TX w.r.t. ∼ can be organized as
an Ω-algebra by lifting arbitrary f : n ∈ Ω to the quotient set and defining the
operator f∼:

f∼(x∼1 , .., x
∼
n ) = (f(x1, .., xn))∼,

where x∼ denotes the ∼-equivalence class of x ∈ TX.

Similarly, dU became the metric d∼ on the quotient set characterized by

d∼(x∼, y∼) = dU (x, y).

Under these interpretations TX∼ became a quantitative algebra and a model
for U .

Lemma 6.2 TX∼ = (TX∼,Ω, d∼) is an Ω-quantitative algebra and a model of
U , i. e., TX∼ ∈ K(Ω,U).

Proof. The construction, together with the fact that ∼ is a congruence, guar-
antees that TX is an Ω-algebra and that (TX∼, d∼) is a metric space.

We prove now that all the operators f∼ : n are non-expansive w.r.t. d∼.

Suppose that for each i = 1, ..n, d∼(x∼i , y
∼
i ) ≤ ε, where xi, yi ∈ TX. Hence, for

any e ∈ Q+ s.t. e ≥ ε, U ` xi =e yi. (NExp) and (Cut) gives us further that

U ` f(x1, .., xn) =e f(y1, .., yn).
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Hence, for any e ≥ ε, dU (f(x1, .., xn), f(y1, .., yn)) ≤ e, i.e.,

dU (f(x1, .., xn), f(y1, .., yn)) ≤ ε.

But then,
d∼(f∼(x∼1 , .., x

∼
n ), f∼(y∼1 , .., y

∼
n )) ≤ ε

meaning that, indeed, f∼ is non-expansive w.r.t. d∼. This proves that TX∼ is
an Ω-quantitative algebra.

It remains now to show that TX∼ is a model of U .

Suppose that {si =εi ti | i ∈ I} ` s =e t ∈ U . Then, using (Subst), for any
substitution σ ∈ Σ(X), {σ(si) =εi σ(ti) | i ∈ I} ` σ(s) =e σ(t) ∈ U .

Consider an assignment ι ∈ T(X|TX∼) and let σι ∈ Σ(X) be such that for
any x ∈ X, σι(x) ∈ TX is an element of the equivalence class of ι(x) ∈ TX∼.
Hence, our hypothesis guarantees that

{σι(si) =εi σι(ti) | i ∈ I} ` σι(s) =e σι(t) ∈ U .

In order to prove that {si =εi ti | i ∈ I} |=TX∼ s =e t ∈ U , we need to prove
that for any ι ∈ T(X|TX∼),

[d∼(ι(si), ι(ti)) ≤ εi for any i ∈ I] implies d∼(ι(s), ι(t) ≤ e.

Since εi are indexes of quantitative equations, they must be rationals, hence
[d∼(ι(si)ι(ti)) ≤ εi for any i ∈ I] is equivalent to

[∅ ` σι(si) =εi σι(ti) ∈ U for any i ∈ I].

Because {σι(si) =εi σι(ti) | i ∈ I} ` σι(s) =e σι(t) ∈ U , we obtain that

∅ ` σι(s) =e σι(t) ∈ U ,

which is equivalent to d∼(ι(s), ι(t)) ≤ e – and this concludes our proof.

Freely Generated Algebra. In what follows, for a set M of generators, we
construct a quantitative algebra T[M ] with support a quotient of TM . The
equivalence relation by which we quotient is

s ∼ t iff U ` s =0 t

which we call 0-provability for U .

We endow TM with a pseudometric in order to eventually get a quantitative
algebra. This pseudometric is defined following the model theoretic intuition:
it is generated by the quantitative equational theory U such that TM is a model
for U .

d(m,n) = inf{ε | ∃ι ∈ T(X|TM), ∃s, t ∈ TX,m = ι(s), n = ι(t) and U ` s =ε t}.

Notice that due to the density of rationals and due to (Arch), if the infimum is
a rational number, then it belongs to the set, hence it is a minimum.
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Lemma 6.3 d : TM2 −→ R+ ∪ {∞} is a pseudometric.

Proof. The symmetry and the fact that d(m,m) = 0 for any m ∈ TM derive
trivially from the definition. In what follows we prove the triangle inequality.

Let m1,m,m2 ∈ TM . We aim to prove that

d(m1,m2) ≤ d(m1,m) + d(m,m2).

For this, we prove that for each ε1, ε2 ∈ Q+, d(m1,m) ≤ ε1 and d(m,m2) ≤ ε2
implies that d(m1,m2) ≤ ε1 + ε2.

Suppose that d(m1,m) ≤ ε1 and d(m,m2) ≤ ε2. Since ε1, ε2 ∈ Q+, there
exist ι1, ι2 ∈ T(X|TM), t1, t2, s1, s2 ∈ TX, such that ιi(ti) = mi, ιi(si) = m,
U ` t1 =ε1 s1 and U ` s2 =ε2 t2.

For each i = 1, 2, since si, ti ∈ TX, there exist yi1, .., y
i
ki
∈ X and two functions

f i, hi that can be constructed from the operators of the signature Ω, such that
si = f i(yi1, .., y

i
ki

) and ti = hi(yi1, .., y
i
ki

) – some of these functions might not
depend of all these parameters, but possibly by a subset of them.

For each i = 1, 2, since ιi : TX −→ TM is a morphism, there exist mi
1, ..,m

i
ki
∈

TM such that m = f i(mi
1, ..,m

i
ki

) and mi = hi(mi
1, ..,m

i
ki

); and moreover,

ιi(y
i
j) = mi

j for each j = 1, .., ki.

However, it is not necessarily that mi
j ∈ M . For this reason, there must exist

n1, .., nl ∈ M and some functions gij definable from the signature such that

mi
j = gij(n1, .., nl) for each i = 1, 2 and each j = 1, .., k – again, some of these

functions might not depend of all these l parameters, but possibly by a subset
of them. Obviously, n1, .., nl are (distinct by choice and) unique and moreover,

f1(g1
1(n1, .., nl), .., g

1
k1(n1, .., nl)) = f2(g2

1(n1, .., nl), .., g
2
k2(n1, .., nl)) = m, (1)

and
hi(gi1(n1, .., nl), .., g

i
ki

(n1, .., nl)) = mi, i = 1, 2.

Since n1, .., nl ∈M and m ∈ TM , from the universality of the term algebra (as
an Ω-algebra) we get that equation (1) also prove that for arbitrary x1, .., xl ∈
X,

f1(g1
1(x1, .., xl), .., g

1
k1(x1, .., xl)) = f2(g2

1(x1, .., xl), .., g
2
k2(x1, .., xl)). (2)

Consider now a set {x1, .., xl} ⊆ X of distinct variables in X and two substitu-
tions σ1, σ2 ∈ Σ(X) such that σi(yij) = gij(x1, .., xl) for each i = 1, 2 and each

j = 1, .., ki. Observe that such substitutions can always be defined, since yij are
variables in X.

Observe now that

σi(si) = σi(f i(yi1, .., y
i
ki

)) = f i(σi(yi1), .., σi(yiki))

= f i(gi1(x1, .., xl), .., g
i
ki

(x1, .., xl)),
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and similarly,

σi(ti) = σi(hi(yi1, .., y
i
ki

)) = hi(σi(yi1), .., σi(yiki))

= hi(gi1(x1, .., xl), .., g
i
ki

(x1, .., xl)).

Applying equation (2) and (Refl), we obtain that

σ1(s1) = σ2(s2), i.e., U ` σ1(s1) =0 σ
2(s2) (3)

We already know that U ` t1 =ε1 s1 and applying (Subst) we further obtain

U ` σ1(t1) =ε1 σ
1(s1). (4)

Similarly, from U ` s2 =ε2 t2 we obtain

U ` σ2(s2) =ε2 σ
2(t2). (5)

Applying (Triang) to equations (3), (4) and (5) we obtain that

U ` σ1(t1) =ε1+ε2 σ
2(t2). (6)

Consider an assignment ι ∈ T(X|TM) such that ι(xj) = nj for j = 1, .., l. Such
an assignment can always be defined since xj are variables in X. Then,

ι(σi(ti)) = ι(hi(gi1(x1, .., xl), .., g
i
ki

(x1, .., xl)))

= hi(gi1(ι(x1), .., ι(xl)), .., g
i
ki

(ι(x1), .., ι(xl)))

= hi(gi1(n1, .., nl), .., g
i
ki

(n1, .., nl)) = hi(mi
1, ..,m

i
ki

) = mi.

Consequently, we have proven that there exist t′1 = σ1(t1), t′2 = σ2(t2) ∈ TX
and ι ∈ T(X|TM) such that ι(t′1) = m1, ι(t′2) = m2 and U ` t′1 =ε1+ε2 t

′
2.

This, by definition, guarantees that d(m1,m2) ≤ ε1 + ε2 and it concludes our
proof.

Let (T[M ], d
∼=) be the metric space induced by the pseudometric d by quoti-

enting TM w.r.t. the equivalence relation ∼= = {(p, q) | d(p, q) = 0} on TM .
Explicitly, T[M ] is the set of ∼=-equivalence classes on TM and

d
∼=(p
∼=, q

∼=) = d(p, q)

where p
∼=, q

∼= are the ∼=-equivalence classes of p, q ∈ TM , respectively.

Lemma 6.4 ∼= is a congruence w.r.t. the operators in Ω, i.e., for arbitrary
f : n ∈ Ω and pi, qi ∈ TM , i = 1, . . . , n,

pi ∼= qi implies f(p1, . . . , pn) ∼= f(q1, . . . , qn).

11



Proof. pi ∼= qi is equivalent with the statement that for any rational ε > 0
there exists ιi ∈ T(X|TM) such that pi = ιi(si), qi = ιi(ti) and U ` si =ε ti.
Thus, when we characterize pi ∼= qi for all i = 1, ..n we initially get a set

{ιi | i = 1, ..n} ⊆ T(X|TM).

Suppose that si and ti depend on the variables xi1, .., x
i
k. Then for any other set

{y1, .., yk} of variables in X there exists a bijective substitution σ ∈ Σ(X) such
that σ(xij) = yj , σ(yj) = xij and σ(x) = x for the rest of variables. Applying

(Subst) we will further get that U ` σ(si) =ε σ(ti) and ιi ◦ σ−1 ∈ T(X|TM) is
such that (ιi ◦ σ−1)(σ(si)) = pi and (ιi ◦ σ−1)(σ(ti)) = qi.

This observation allows us to assume that when we chose ιi to characterize
pi ∼= qi, for i 6= j the set of variables on which si and ti depend is disjoint of
the set of variables of sj and tj .

Since the active role of ιi in the characterization of pi ∼= qi has to do only with
the variables on which si and ti depend and because these variables are distinct
for i 6= j, there exists ι ∈ T(X|TM) such that for each i = 1, ..n ι coincides
with ιi on the set of variables on which si and ti depend.

Hence, for any ε > 0, there exists ι ∈ T(X|TM) such that for any i = 1, ..n,
pi = ι(si), qi = ι(ti) and U ` si =ε ti. Applying (NExp) and (Cut) we get
further that U ` f(s1, .., sn) =ε f(t1, .., tn).

Observe now that because

f(p1, .., pn) = f(ι(s1), .., ι(sn)) = ι(f(s1, .., sn))

and
f(q1, .., qn) = f(ι(t1), .., ι(tn)) = ι(f(t1, .., tn)),

we obtain that there exist s = f(s1, ..sn), t = f(t1, .., tn) ∈ TX and ι ∈
T(X|TM) such that ι(f(p1, .., pn)) = s, ι(f(q1, .., qn)) = t and U ` s =ε t.
Hence, for any ε > 0, d(f(p1, .., pn), f(q1, .., qn)) ≤ ε implying

d(f(p1, .., pn), f(q1, .., qn)) = 0.

This means that f(p1, .., pn) ∼= f(q1, .., qn).

Due to the fact that ∼= is a congruence, we can endow T[M ] with the structure
of an Ω-algebra by interpreting f : n ∈ Ω, for arbitrary p1, . . . , pn ∈ TM as
follows:

f(p
∼=
1 , . . . , p

∼=
n ) = (f(p1, . . . pn))

∼= .

Notice that, by this construction, what we actually get is a quantitative alge-
bra.

Lemma 6.5 T[M ] = (T[M ],Ω, d
∼=) is an Ω-quantitative algebra.

12



Proof. That check that d
∼= is a metric on T[M ] derives from the fact that d is

a pseudometric and from the fact that d
∼=(p
∼=, q

∼=) = 0 iff p
∼= = q

∼=.

It remains to prove that every f : n ∈ Ω is non-expansive w.r.t. d
∼=, i.e., if

d
∼=(p
∼=
i , q

∼=
i ) ≤ ε for all i = 1, ..n, then d

∼=(f(p
∼=
1 , .., p

∼=
n ), f(q

∼=
1 , .., q

∼=
n )) ≤ ε.

But since ∼= is a congruence, d
∼=(p
∼=
i , q

∼=
i ) ≤ ε is equivalent to d(pi, qi) ≤ ε and

d
∼=(f(p

∼=
1 , .., p

∼=
n ), f(q

∼=
1 , .., q

∼=
n )) ≤ ε is equivalent to d(f(p1, .., pn), f(q1, .., qn)) ≤

ε. Hence, the aforementioned implication can be proven by reusing part of the
proof of Lemma 6.4.

Now returning to the term quantitative algebra TX∼, observe that the previous
construction can also be done for the case when M = X and we obtain the
quantitative algebra T[X] = (T[X],Ω, d

∼=) of terms modulo 0-provability.

Lemma 6.6 T[X] = (T[X],Ω, d
∼=) and TX∼ = (TX∼,Ω, d∼) are isomorphic

quantitative algebras. Moreover, d = dU , hence d
∼= = d∼.

Proof. If we prove that d = dU , we get firstly that ∼=∼=, and being the way
the two algebras have been constructed, we eventually prove that they are
isomorphic, where the isomorphism h : TX∼ −→ TX∼= is the coincidence of the
congruence classes: for any t ∈ TX, h(t∼) = t

∼=.

Note that any assignment ι ∈ T(X|TX) is also a substitution ι ∈ Σ(X), since
they are both just homomorphisms from TX to TX. Consequently, for any
ι ∈ T(X|TX), any s, t ∈ TX and any ε ∈ Q+,

U ` s =ε t iff U ` ι(s) =ε ι(t).

But then,

d(s1, s2) = inf{ε | ∃t1, t2 ∈ TX,∃ι ∈ T(X|TX) s.t. ι(ti) = si and U ` t1 =ε t2}

= inf{ε | ∃t1, t2 ∈ TX,∃ι ∈ Σ(X) s.t. ι(ti) = si and U ` ι(t1) =ε ι(t2)}

= inf{ε | ∃t1, t2 ∈ TX,∃ι ∈ Σ(X) s.t. ι(ti) = si and U ` s1 =ε s2}

= inf{ε | U ` s1 =ε s2}

= dU (s1, s2).

The previous lemma allows us to prove that T[M ] indeed satisfies the quanti-
tative equational theory U used for its construction.

Theorem 6.7 For an arbitrary set M , T[M ] = (T[M ],Ω, d
∼=
U ) ∈ K(Ω,U).

Proof. We know already that T[X] ∈ K(Ω,U), since we have proven that
TX∼ ∈ K(Ω,U).

We split the cases according to whether the cardinality of M is less than or
greater than that of X.
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I. If |M | ≤ |X|, let Y ⊂ X be such that |Y | = |M |. Obviously, T[Y ] ≤ T[X] and
since T[X] ∈ K(Ω,U), applying Lemma 4.4, we obtain that T[Y ] ∈ K(Ω,U).

Since |M | = |Y |, T[M ] and T[Y ] are isomorphic (freely generated) quantitative
algebras with the isomorphism generated by any bijective map between M and
Y . So, from T[Y ] ∈ K(Ω,U), we get T[M ] ∈ K(Ω,U).

II. If |M | > |X|, let Z ⊇ X be such that |M | = |Z|. As before, T[M ] and T[Z]
are isomorphic. Observe now that because X ⊆ Z, U generates a quantitative
equational theory U ′ on Z, which contains U and in addition some other infer-
ences that might be obtain, for instance, from inferences of U by applying the
(Subst) rule that involve some variables from Z \X. What is essential here is
that U ⊆ U ′.

Lemma 6.2 guarantees that for any Γ ` φ ∈ U ′, Γ |=T[Z] φ. In particular, for
Γ ` φ ∈ U we have Γ |=T[Z] φ. And since T[Z] and T[M ] are isomorphic, we
also obtain Γ |=T[M ] φ.

Completeness. Having in hand all these results, we are ready now to prove
the following strong completeness theorem.

For a quantitative inference Γ ` φ, we write Γ |=K(Ω,U) φ whenever

Γ |=A φ for all A ∈ K(Ω,U).

Theorem 6.8 (Completeness) Given a quantitative equational theory U over
the set X of variables and signature Ω,

Γ |=K(Ω,U) φ iff Γ ` φ ∈ U .

Proof. The right-to-left implication (soundness) is a direct consequence of the
definition of K(Ω,U).

It remains for us to prove the left-to-right implication:

[Γ |=A φ for any A ∈ K(Ω,U)] implies Γ ` φ ∈ U .

Suppose that the left-hand side is satisfied. Assume that φ is the quantitative
equation s =e t.

Let U ∪ Γ be the quantitative equational theory induced by U∪{∅ ` ψ | ψ ∈ Γ}.
Obviously, U ∪ Γ is a theory over TX. Applying Lemma 6.2, we obtain that
(T[X],Ω, d

∼=
U∪Γ

) is a model for U ∪ Γ, hence both for U and for {∅ ` ψ | ψ ∈ Γ}.

Because (T[X],Ω, d
∼=
U∪Γ

) ∈ K(Ω,U), (T[X],Ω, d
∼=
U∪Γ

) satisfies Γ ` φ. And be-

cause (T[X],Ω, d
∼=
U∪Γ

) is a model of Γ, (Cut) proves that (T[X],Ω, d
∼=
U∪Γ

) is also

a model for s =e t. Consequently, inf{ε | U ∪ Γ ` s =ε t} ≤ e, i.e.,

dU∪Γ(s, t) ≤ e.

Suppose now that Γ ` s =e t 6∈ U .
If ∅ ` s =e t ∈ U , applying (Cut) we get that Γ ` s =e t ∈ U - contradiction.
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Also, ∅ ` s =e t 6∈ {∅ ` ψ | ψ ∈ Γ}, because otherwise s =e t is derived from the
hypothesis in Γ and the use of some of the closure conditions in Definition 2.2,
i.e., Γ ` s =e t is guaranteed by the closure rules in Definition 2.2. But then,
we also have Γ ` s =e t ∈ U - contradiction.

Since ∅ ` s =e t 6∈ U ∪ Γ, if ∅ ` s =e t ∈ U ∪ Γ, then there exists Γ′ ⊆ Γ and
∆ ∈ U such that Γ′ ∪∆ ` s =e t ∈ U . Then, using (Assumpt) and (Cut), we
must also have Γ ∪∆ ` s =e t ∈ U .

Because ∅ ` ρ ∈ U for all ρ ∈ ∆, we also have Γ ` ρ ∈ U for all ρ ∈ ∆
and applying (Assumpt) we get further Γ ` ρ ∈ U for all ρ ∈ Γ ∪ ∆. Since
Γ ∪∆ ` s =e t ∈ U , applying (Cut) we get Γ ` s =e t ∈ U - contradiction.

Hence, ∅ ` s =e t 6∈ Γ ∪ U .

Let i = inf{ε | Γ ∪ U ` s =ε t} = dΓ∪U (s, t).

If i ∈ Q, then using (Arch) we can prove that Γ ∪ U ` s =i t and further (Max)
guarantees that i > e, since ∅ ` s =e t 6∈ Γ ∪ U .

If i 6∈ Q, from ∅ ` s =e t 6∈ Γ ∪ U we derive that i ≥ e. But since e ∈ Q, this
means that i > e.

Hence, dΓ∪U (s, t) > e. Thus, we derive a contradiction, since we have already
proved that dU∪Γ(s, t) ≤ e.

Universality. The next theorem proves that the construction of T[M ] is uni-
versal (in the categorical sense) with respect to all the quantitative algebras
satisfying the quantitative equational theory U . Specifically, T[M ] has the uni-
versal mapping property for M to the (obvious) forgetful functor

USet : K(Ω,U) −→ Set.

This situation is described by the following commutative diagram (cf. Defini-
tion 3.5):

in Set in K(Ω,U)

M T[M ] T[M ]

A A

α

ηM

h h

where ηM : M −→ T[M ] is the map given by ηM (m) = m
∼=.

Theorem 6.9 (T[M ], ηM ) is a universal arrow from M ∈ Set to USet.

Proof. We have already proven that T[M ] ∈ K(Ω,U). Consider an arbitrary
quantitative algebra A = (A,ΩA, dA) ∈ K(Ω,U) and a set-map α : M −→ A.
This map can be canonically extended to a morphism α̂ : TM −→ A of Ω-
universal algebras by defining, for arbitrary f : k ∈ Ω and t1, .., tk ∈ TM ,

α̂(fM (t1, .., tk)) = fA(α̂(t1), .., α̂(tk)).
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To start with, we prove that α̂ is nonexpansive. Since the metric d
∼= on T[M ] is

just the pseudo-metric d on TM quotiented by the equivalence relation, what
we need to prove is that for arbitrary s, t ∈ TM ,

dA(α̂(s), α̂(t)) ≤ d(s, t).

To do that, we show that for two arbitrary elements s, t ∈ TM such that
d(s, t) ≤ e0 ∈ Q+, we also have dA(α̂(s), α̂(t)) ≤ e0.

Because d(s, t) ≤ e0, for any rational e > 0 there exists ιe ∈ T(X|TM) and
there exist se, te ∈ TX such that U ` se =e+e0 t

e and ιe(s
e) = s, ιe(t

e) = t.

Because U ` se =e+e0 t
e and A ∈ K(Ω,U), we have that A |= se =e+e0 t

e, i.e.,
for any ι ∈ T(X|A), dA(ι(se), ι(te)) ≤ e+e0. Note that α̂◦ιε ∈ T(X|A). Hence,

dA((α̂ ◦ ιe)(se), (α̂ ◦ ιe)(te)) ≤ e+ e0

or equivalently,
dA(α̂(s), α̂(t)) ≤ (e+ e0).

Since this is true for any e > 0, we obtain that necessarily

dA(α̂(s), α̂(t)) ≤ e0,

hence, α̂ is nonexpansive.

If we consider now two arbitrary elements s, t ∈ TM such that d(s, t) = 0, the
previous argument also proves that

dA(α̂(s), α̂(t)) = 0.

Since dA is a metric, not just a pseudo-metric, we get further that α̂(s) = α̂(t).

TX TM T[M ]

A

ιε

α̂◦ιε
α̂

τ

h

Let τ be the map that sends an element in TM to its equivalence class in T[M ].
What we have shown is that elements in the same equivalence class in TM are
sent by α̂ to the same element of A. Thus we can define h : T[M ] −→ A by
mapping [t] to α̂(t); i.e., by h([t]

∼=) = α̂(t) for any t ∈ TM . It is evident that
h ◦ τ = α̂.

By definition of the interpretation of the operators f : n ∈ Ω in T[M ], it
immediately follows that h is a homomorphism of Ω-algebras. Moreover, by the
definition of h and of τ , the map h is also the unique Ω-algebra homomorphism
from (T[M ],Ω) to (A,ΩA) satisfying h ◦ τ = α̂.

It remains to prove that h is non-expansive, i.e.,

dA(h(p
∼=), h(q

∼=)) ≤ d∼=(p
∼=, q

∼=).

However, d(p, q) = d
∼=(p
∼=, q

∼=) and h(p
∼=) = α̂(p), h(q

∼=) = α̂(q). We have
shown above that dA(α̂(p), α̂(q)) ≤ d(p, q) hence,

dA(h(p
∼=), h(q

∼=)) = dA(α̂(p), α̂(q)) ≤ d(p, q) = d
∼=(p
∼=, q

∼=).

This completes the proof.
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Since X and U are arbitrarily chosen, Theorem 6.9 justifies calling T[X] the
free Ω-quantitative algebra generated over X in K(Ω,U).

In standard presentation of universal algebra, the set of terms gives rise to
a monad, the term monad. As one would expect, this is the case also for
quantitative algebras, with the only difference that now terms are quotiented
w.r.t. 0-provability in U . (Note that U can be chosen arbitrarily).

Indeed the free-construction above gives rise to a functor

TU : Set −→ Set

that maps objects M ∈ Set to the set T[M ] of Ω-terms constructed over M
and quotiented w.r.t. 0-provability in U .

Moreover, TU is monadic, with unit and multiplication given, respectively, by
the natural transformations η : Id ⇒ TU and µ : TUTU ⇒ TU , defined, for
arbitrary m ∈M , t ∈ T[M ], f : n ∈ Ω, and C1, .., Cn ∈ T[T[M ]], as

ηM (m) = m
∼= ,

µM (t) = t ,

µM (f(C1, .., Cn)
∼=) = f

(
µM (C1), .., µM (Cn)

)∼=
.

Note that this monad corresponds to the standard equational term monad, that
can be constructed from the equational algebras.

In Section 7, we will show that quantitative equational theories are actually
stronger then their non-quantitative counterparts, by allowing the construction
of metric term monads.

7 Free Quantitative Algebras over Metric Spaces

Fix a set of variables X and a quantitative equational theory U of type Ω over
X. In this section we focus on the equational class K(Ω,U).

There is an obvious forgetful functor UMet : K(Ω,U) −→Met to the category of
metric spaces (possibly taking infinite values) and non-expansive maps. Simi-
larly to Theorem 6.9, we aim to show that any metric space (M,d) admits a
free quantitative algebra Td[M ] generated over (M,d) in K(Ω,U).

Define ΩM = Ω ∪ {m : 0 | m ∈ M} as the extension of Ω with additional
constant symbols taken from M (for this reason we assume that Ω ∩M = ∅);
and let UM be the smallest quantitative equational theory of type ΩM over X,
containing U and such that, for all m,n ∈M , ε ∈ Q+,

∅ ` m =ε n ∈ UM , whenever d(m,n) ≤ ε .

The construction of UM guarantees that any algebra in K(ΩM ,UM ) can be
turned into an algebra in K(Ω,U) simply by forgetting the interpretations of
the constants in M . Conversely, given a non-expansive map α : M −→ A, any
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algebraA = (A,ΩA, dA) ∈ K(Ω,U) can be turned into an algebra in K(ΩM ,UM )
just by interpreting each constant symbol m : 0 ∈M as α(m) ∈ A.

Lemma 7.1 (Conversion Lemma) The following two statements hold:

1. If A = (A,ΩA ∪ MA, dA) ∈ K(ΩM ,UM ), then A′ = (A,ΩA, dA) ∈
K(Ω,U);

2. If α : M −→ A is a non-expansive map and A = (A,ΩA, dA) ∈ K(Ω,U),
then A′ = (A,ΩA ∪ {mA′ | m ∈M and mA

′
= α(m)}, dA) ∈ K(ΩM ,UM ).

Proof. (1) We need to check that A′ |= U . This follows immediately by
T(X|A′) ⊆ T(X|A) and U ⊆ UM from the hypothesis A |= UM .

(2) We need to check that A′ |= UM . Since A |= U and UM is the smallest
quantitative equational theory that contains U and satisfies the inferences of
type ∅ ` m =ε n, for all m,n ∈ M with d(m,n) ≤ ε ∈ Q+, we only need to
prove that A′ |= m =ε n for all m,n ∈ M with d(m,n) ≤ ε ∈ Q+. For any
assignment ι and m,n ∈M , we have that

dA(ι(m), ι(n)) = dA(mA, nA) (ι homomorphism)

= dA(α(m), α(n)) (def. mA)

≤ d(m,n) ≤ ε . (α non-expansive)

Hence, A′ |= m =ε n.

The definition of the conversion from an algebra in K(ΩM ,UM ) to an algebra in
K(Ω,U) in Lemma 7.1(1) is functorial, and it gives the (forgetful) functor

U : K(ΩM ,UM ) −→ K(Ω,U) .

Consider T[∅] ∈ K(ΩM ,UM ), the free ΩM -quantitative algebra generated over
the empty set, given by the construction in Section 6, and define

Td[M ] = U(T[∅]) ∈ K(Ω,U)

which is the quantitative Ω-algebra obtained from T[∅] by forgetting the inter-
pretations of the constants in M . Denote its quantitative algebraic structure
by Td[M ] = (Td[M ],Ω, d

∼=
M ).

The following theorem states that Td[M ] is the quantitative algebra in K(Ω,U)
freely generated from the metric space (M,d). Specifically, Td[M ] has the
universal mapping property for (M,d) ∈Met to the forgetful functor

UMet : K(Ω,U) −→Met .
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This situation is described by the commutative diagram below (cf. Defini-
tion 3.5):

in Met in K(Ω,U)

(M,d) (Td[M ], d
∼=
M ) Td[M ]

(A, dA) A

α

ηM

h h

where ηM : M −→ Td[M ] is the map given by ηM (m) = m
∼=. Observe that ηM

is non-expansive since for arbitrary m,n ∈M ,

d
∼=
M (η(m), η(n)) = d

∼=
M (m

∼=, n
∼=) = inf{ε | UM ` m =ε n} ≤ d(m,n) .

Theorem 7.2 (Td[M ], ηM ) is a universal arrow from (M,d) ∈Met to UMet.

Proof. Consider an arbitrary quantitative algebra A = (A,ΩA, dA) ∈ K(Ω,U)
and a non-expansive map α : M −→ A. Let A′ be the algebra constructed
from A by interpreting the constants m ∈ M as α(m). By Lemma 7.1(2),
A′ ∈ K(ΩM ,UM ).

Let T[∅] ∈ K(ΩM ,UM ) be the free algebra generated over ∅, given as in Sec-
tion 6. Recall that ∅ is an initial object in Set. Therefore, by Theorem 6.9, T[∅]
is initial in K(ΩM ,UM ). Let h : T[∅] −→ A′ be the unique ΩM -homomorphism
from the initial algebra T[∅] in K(ΩM ,UM ). Since h is a homomorphism of
ΩM -algebras, for all m ∈M , the following hold:

h(ηM (m)) = h(m
∼=) (def. ηM )

= α(m) , (h homomorphism)

hence h ◦ η = α. Recall that Td[M ] = U(T[∅]). Moreover A = U(A′) and
U(h) = h. Hence U(h) is the unique Ω-homomorphism from Td[M ] to A such
that U(h) ◦ ηM = α. This concludes the proof.

The free-construction described above gives rise to what we will call the metric
term monad. Indeed, given an arbitrary quantitative equational theory U , one
can define the functor

TU : Met −→Met

that map an object (M,d) ∈ Met (hence a metric space) to the metric space
(Td[M ], d

∼=
M ) of Ω-terms constructed over M and quotiented w.r.t. 0-provability

in UM , with metric d
∼=
M induced by the equational theory UM .

Moreover, TU is monadic, with unit and multiplication given, respectively, by
the natural transformations η : Id ⇒ TU and µ : TUTU ⇒ TU , given, for arbi-
trary m ∈M , t ∈ Td[M ], f : n ∈ Ω, and C1, .., Cn ∈ Td[Td[M ]], by

ηM (m) = m
∼= ,

µM (t) = t ,

µM (f(C1, .., Cn)
∼=) = f

(
µM (C1), .., µM (Cn)

)∼=
.
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Unlike the situation in Section 6, this monad lives in Met and the metrics asso-
ciated with the set of terms are uniquely induced by the quantitative equational
theories U .

We conclude this section with a characterization of the consistency of UM from
a metric perspective.

We say that a metric space is degenerate if its support is empty or a singleton.
Otherwise, they are non-degenerate. Notice that the support of a degenerate
quantitative algebra is a degenerate metric space and that any quantitative
algebra supported by a degenerate metric space is degenerate.

Theorem 7.3 If (M,d) is a non-degenerate metric space, then UM is consis-
tent iff the map ηM : (M,d) −→ (Td[M ], d

∼=
M ) is an isometry3.

Proof. (⇒) Suppose that ηM is an isometry. Let m,n ∈M two distinct points.

d
∼=
M (ηM (m), ηM (n)) = inf{ε | UM ` m =ε n} = d(m,n) > 0 .

Suppose that UM is inconsistent. Then, there exist two variables x, y ∈ X
such that UM ` x =0 y. Applying (Subst) for any substitution σ such that
σ(x) = m, σ(y) = n, we get UM ` m =0 n. Hence, d

∼=
M (ηM (m), ηM (n)) =

inf{ε | UM ` m =ε n} = 0. But 0 < d(m,n), since m and n are distinct points
in a metric space – contradiction.

(⇐) Suppose that UM is consistent and ηM is not an isometry. Then, there
exist two distinct elements m,n ∈M such that

d
∼=
M (ηM (m), ηM (n)) = inf{ε | UM ` m =ε n} < d(m,n) .

However, this strict inequality can be true only if UM proves an equation of type
m =δ n for some δ < d(m,n). Suppose this is the case, then since m,n ∈ M ,
we have that

d(m,n) ≤ diam(M) = sup{ε | d(u, v) ≤ ε, u, v ∈M} .

Because m and n are constants in ΩM , the equation m =δ n cannot be derived
from the axioms induced by the metric space (M,d) only. On the other hand,
because M ∩ Ω = ∅ and U is a quantitative equational theory of type Ω, the
elements of M cannot be distinguished by the theory U alone. Hence, the proof
of UM ` m =δ n must be derived using (Subst) from a provable quantitative
statement of type UM ` x =δ y for some variables x, y ∈ X. Substituting
these variables with all pairs of constants in M , we obtain that diam(M) ≤ δ
– contradiction.

3By isometry in this context we mean a distance-preserving map, since η is obviously not
a bijection.
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Corollary 7.4 If (M,d) is non-degenerate, then UM is inconsistent iff U is
inconsistent.

Proof. (⇐) It follows by U ⊆ UM .

(⇒) Assume UM to be inconsistent. By construction, UM is the smallest quanti-
tative equational theory that contains U and satisfies the inferences ∅ ` m =ε n
whenever d(m,n) ≤ ε, for all m,n ∈ M . If U is consistent, then the alge-
bra Td[M ] is non-degenerate and we know that Td[M ] |= UM – contradiction.
Hence, U must be inconsistent.

8 Free models over complete metric spaces

A basic result that we will show in this section is the following: if one takes a
quantitative theory and forms its free algebra in the category of metric spaces
(possibly with infinite values) and then takes its metric completion (suitably ex-
tending the operations) then that is the free algebra in the category of complete
metric spaces (possibly with infinite values). This gives a general characteri-
zation of the monad on complete metric spaces; though, of course, for specific
examples one can give much better characterizations. The corresponding result
fails for dcpos.

Recall that we could have metrics that take values in the extended reals [0,∞].
This means that notions like completion are a little different from the usual
situation. In particular, we have to deal with the components of the (extended)
metric space. Let FMet be the category of what are usually called metric
spaces, “F” signifies that the the metric takes finite values in [0,∞), and non-
expansive maps. We write Met for the category where the objects are metric
spaces with the metric taking values in [0,∞]; the maps are non-expansive.
Clearly FMet is a full subcategory of Met.

In the category FMet one has the familiar notion of Cauchy completion where
one adds points corresponding to (equivalence classes of) Cauchy sequences.
Given a space X in FMet one gets a complete metric space X in FMet. A
non-expansive function4 f fromX to a complete metric space Y can be extended
to a function f from X to Y by the standard formula

f(limxi) = lim f(xi)

for any Cauchy sequence (xi). Cauchy completion defines a functor C from
FMet to CFMet, the category of complete metric spaces with finite metrics.
This functor is left adjoint to the inclusion functor I : CFMet −→ FMet.

More precisely, there exists an adjunction C a I defined by the following natural
transformations:

• η : IdFMet =⇒ IC defined for a metric space X ∈ FMet by ηX : X −→ X.

4Recall, such functions are automatically continuous.
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• ε : CI =⇒ IdCFMet defined for a complete metric space K by
εK : K −→ K.

Stated another way, (X, e : X −→ I(X)) is a universal arrow from X ∈ FMet
to I. This means that for any morphism f : X −→ I(Y ), where Y is an object
of CFMet, there is a morphism f : X −→ Y of CFMet such that

I(f) ◦ e = f.

Thus, the Cauchy completion is the universal completion of X. This is illus-
trated in the diagram below where we have dropped explict mention of the
inclusion functor I.

X X

Y

e

f
f

We have to mimic this in the case of Met where the metrics are not finite.

Coproducts in Met are easy to describe5. Let {(Xi, di)|i ∈ I} be an indexed

family of objects. The underlying set of the coproduct
∐
i∈I

Xi is the disjoint

union
⊎
i∈I

Xi. We write (x, i) for a typical element of this set, where x ∈ Xi.

The metric d on
∐
i∈I

Xi is given by

d((x, i), (y, j)) =

{
∞ if i 6= j,

di(x, y) if i = j.

The verification that this is indeed the coproduct is straightforward.

Products in Met are obtained by taking the cartesian product of the underlying
sets and using the supremum of the distances in the base spaces. More precisely,

let {(Xi, di)|i ∈ I} be a family in Met. The distance in
∏
i∈I

Xi is

d((xi), (yi)) = sup
i∈I

di(xi, yi)

where we have written (xi) for an element of the product. The usual category
of metric spaces only has finite products and this is what we need for our
purposes.

Let (X, d) be an object in Met. We define an equivalence relation ∼ on X
by x ∼ y if d(x, y) < ∞. We call the equivalence classes the components6 of
X; each component is an ordinary metric space. It is easy to see that X is
(isomorphic to) the coproduct of its components.

5The category of ordinary metric spaces does not have coproducts.
6Do not confuse this with the connected components of the underlying topological space.
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Suppose (X, d) has components {(Xi, di)|i ∈ I}. We claim that the Cauchy

completion of X, written X, is isomorphic to
∐
i∈I

Xi where by Xi we mean the

usual Cauchy completion.

Xi
∐
i∈Xi

X

αi

ιi

α

The diagram shows that the coproduct of the completions of the components
naturally embeds in X. To see that this is an isomorphism note that any Cauchy
sequence (xn) in X will, apart from at most finitely many elements, be in one
component. If we drop the elements that are not in the same component as
the majority of the elements we still have a Cauchy sequence and it will be in
some component, say Xi. Thus when we complete the space X, the new point
added associated with the Cauchy sequence (xn) can be identified with a point
in the Cauchy completion of Xi corresponding to the Cauchy sequence obtained
from (xn) by dropping the finitely many points that are not in the component
Xi.

It is easy to see that in fact
∐
Xi is the universal completion in the same sense

that we had for ordinary metric spaces. If we define CMet as the category of
complete metric spaces then, as before, we have Cauchy completion defining a
functor C from Met to CMet which is left adjoint to the functor I embedding
CMet in Met. Thus, if we have a space (X, d) in Met with components
{(Xi, di)} then

∐
Xi is the universal completion of X. To see this, consider the

diagram below.

Xi
∐
iXi ' X Y

Xi
∐
iXi ' X

ιi

ei

fi

f

e

κi

fi

f

The ιi and κi are the canonical injections into the coproduct. The ei are the
embeddings of spaces into their completions and e is the embedding of X in
X. Let f : X −→ Y be a morphism to the complete metric space Y . The
maps fi : Xi −→ Y are given by fi = f ◦ ιi. Since the universal completions
of Xi is the Xi, we have maps fi : Xi −→ Y such that fi = fi ◦ ei. Finally, by
couniversality there is an induced morphism f from X to Y . It is clear that
everything commutes as required and is unique. Thus,

∐
Xi is the universal

completion of X.

In the usual category of metric spaces, Cauchy completion of a finite product of
spaces is isomorphic to the product of the Cauchy completions of the individual
spaces. Thus the finite product of the universal completions is the universal
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completion of the product. One can combine this with the above discussion
of components to see that the completion of a finite product7 of spaces in our
category Met is the product of the completions of the individual spaces. Now
we can extend n-ary functions to their completions and discuss the completions
of quantitative algebras.

Definition 8.1 Given a quantitative algebra A = (A,Ω, d), its completion is
the quantitative algebra A = (A,Ω, d), where (A, d) denotes the completion of
the metric space (A, d); and for arbitrary f : n ∈ Ω, a1, .., an ∈ A, y1, .., yn ∈ A,
(xi)i ⊆ A a Cauchy sequence converging to x in A, the following hold

• fA(a1, .., an) = fA(a1, .., an);

• limi f
A(y1, .., yk, xi, yk+2, .., yn) = fA(y1, .., yk, x, yk+2, .., yn)

Notice that the previous definition is indeed correct and A is a quantitative
algebra. What we need to verify for this is that fA are non-expansive w.r.t.
d.

Let xi, yi ∈ A for i = 1, .., n. We need to prove that that

for each i = 1, .., n, d(xi, yi) ≥ d(fA(x1, .., xn), fA(y1, .., yn)).

For each i = 1, .., n, let (xij)j ⊆ A be a Cauchy sequence in A that converges to

xi in A.

Because fA is non-expansive in A we have that for arbitrary i, j,

d(xij , y
i
j) ≥ d(fA(x1

j , ..., x
n
j ), fA(y1

j , .., y
n
j )),

and since xij are all in A, this is equivalent to

d(xij , y
i
j) ≥ d(fA(x1

j , ..., x
n
j ), fA(y1

j , .., y
n
j )).

Now taking this inequality repeatedly to the limit, we will eventually get that

for each i = 1, .., n, d(xi, yi) ≥ d(fA(x1, .., xn), fA(y1, .., yn)).

If we consider a category K of quantitative algebras and the category CK of
their completions, we can easily observe that, as for metric spaces, we can define
two functors

• C : K −→ CK that maps a quantitative algebra to its completion and any
morphism f : A −→ A′ to the morphism f : A −→ A′, where X ∈ CK
denotes the completion of X ∈ K; and f is defined by f(x) = f(x)
for x ∈ A and such that for any Cauchy sequence (xi)i in A we have
f(limi xi) = limi f(xi).

7In fact this works for any products.
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• I : CK −→ K is the embedding of CK into K.

K CK

C

I

As for the case of metric spaces, there exists an adjunction C a I defined by
the following natural transformations:

• η : IdK =⇒ IC defined for an arbitrary quantitative algebra A ∈ K by
ηA : A −→ A.

• ε : CI =⇒ IdCK defined for an arbitrary complete quantitative algebra
K ∈ CK by εK : K −→ K – notice that in this case K = K.

Definition 8.2 (Continuous equation scheme) Let Ω be an algebraic sim-
ilarity type. A set

{{x1 =e1 y1, .., xn =en yn} ` s =f(e1,..,en) t | e1, .., en ∈ R+}

of basic quantitative inference over TX such that f is a continuous function in
all variables is called a continuous equation scheme on TX.

We say that an algebra satisfies a continuous equation scheme if it satisfies all
the elements of the continuous equation scheme.

Proposition 8.3 If a quantitative algebra A satisfies a continuous equation
scheme, so does its completion A.

Proof. Assume that A is a model for the continuous equation scheme

{{x1 =e1 y
1, .., xn =en y

n} ` s =f(e1,..,en) t | e1, .., en ∈ R+}.

This means that for any e1, ..en ∈ R+ and any assignment ι ∈ T(X|A),

[dA(ι(xi), ι(yi)) ≤ ei for all i = 1, .., n] implies dA(ι(s), ι(t)) ≤ f(e1, .., en).

Consider arbitrary e1, .., en ∈ R+ and let ι′ ∈ T(X|A) be such that

dA(ι′(xi), ι′(yi)) ≤ ei for all i = 1, .., n.

We need to prove that dA(ι′(s), ι′(t)) ≤ f(e1, .., en).

For each i = 1, .., n, let (aij)j ⊆ A be a Cauchy sequence in A that converges to

ι(xi) in A and similarly (bij)j ⊆ A be a Cauchy sequence in A that converges to

ι(yi) in A - in case some of these variables coincide, we chose the same Cauchy
sequence.

For each j, let ιj ∈ T(X|A) be such that ιj(x
i) = aij , ιj(y

i) = bij and the
interpretation of all variables are in A - we can always define such assignments.
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This construction guarantees that for each i = 1, .., n there exists a convergent
sequence (αij)j ⊆ R+ such that limj α

i
j = 0 and

dA(ιj(x
i), ιj(y

i)) ≤ ei + αij .

Observe that, due to the way they were defined, we also have ιj ∈ T(X|A).
Hence,

dA(ιj(x
i), ιj(y

i)) ≤ ei + αij .

Applying now the hypothesis, we get

dA(ιj(s), ιj(t)) ≤ f(e1 + α1
j , .., en + αnj ).

Hence,

dA(ιj(s), ιj(t)) ≤ f(e1 + α1
j , .., en + αnj )

and taking this to the limit after j and using the continuity of f in all variables,
we obtain further

dA(ι′(s), ι′(t)) ≤ f(e1, .., en).

From the above, one concludes the following.

Theorem 8.4 Consider a quantitative equational theory U axiomatized by con-
tinuous equation schemes and a metric space (M,d). The freely generated quan-

titative algebra Td[M ] over the completion (M,d) of (M,d) is isomorphic to the

completion Td[M ] of the quantitative algebra Td[M ].

Proof. We already know that Td[M ] is the freely generated algebra from (M,d).

If we consider the adjunction C a I where C : K −→ CK and I : CK −→ K,
it is sufficient to prove that there exists a universal morphism from Td[M ] to I
given by the tuple (Td[M ], α) where α : Td[M ] −→ ITd[M ] is the embedding in
K. This is sufficient in the light of Theorem 7.2.

in K in CK

Td[M ] ITd[M ] Td[M ]

IA A

β

α

Ih h

This is not difficult to verify. Indeed, we can uniquely extend the morphism
β of quantitative algebras to the morphism β between their completions, as
defined at the beginning of this section. Now note that A coincides with its
completion, hence we can take h = β.
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It is pleasing that separability is also preserved as complete separable metric
spaces play a major role in probability theory.

Corollary 8.5 Consider a quantitative equational theory axiomatized by con-
tinuous equation schemes, over a signature with countably many operation sym-
bols. Then the free model over a complete separable metric space M is separable,
with countable set of generators being the least subalgebra containing any count-
able set of generators of M .

9 Left-Invariant Barycentric Algebras

In this section we present a first example of quantitative algebra, the left-
invariant barycentric algebra, and demonstrate that the freely generated one
is, in this case, the algebra of probability distributions with finite support over
the set of generators and the metric space is induced by the total-variation
distance between distributions.

Consider the algebraic similarity type

B = {+e : 2 | e ∈ [0, 1]}

containing, for each e ∈ [0, 1], a binary operator +e. We call it the barycentric
signature.

Definition 9.1 (Left-Invariant Barycentric Equational Theory) This the-
ory is given by the following axiom schemata, where x, x′, x′′ ∈ X (X is the
countable set of variables) and e, e′ ∈ [0, 1]:

(B1) ` x+1 x
′ =0 x

(B2) ` x+e x =0 x

(SC) ` x+e x
′ =0 x

′ +1−e x

(SA) ` (x+e x
′) +e′ x

′′ =0 x+ee′ (x
′ + e′−ee′

1−ee′
x′′) provided that e, e′ ∈ (0, 1)

(LI) ` x′ +e x =ε x
′′ +e x where e ≤ ε ∈ Q+

(SC) stands for skew commutativity and (SA) for skew associativity. We call
(LI) the left-invariance axiom schema. Observe that if e ∈ Q, (LI) takes the
simpler form:

` x′ +e x =e x
′′ +e x.

The algebras satisfying left-invariant barycentric equational theories are called
left-invariant barycentric algebras or LIB algebras for short.

Hereafter we focus on the the class K(B,ULI) defined by the left-invariant
barycentric equational theory ULI .
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Total-Variation Duality

Let (M,Σ) be a measurable space and ∆[M,Σ] the class of probability mea-
sures over (M,Σ). The total variation distance between probability measures
is defined, for arbitrary µ, ν ∈ ∆[M,Σ] by

T (µ, ν) = sup
E∈Σ
|µ(E)− ν(E)| .

This is a metric that has a well known dual characterization, based on the
notion of coupling.

For µ, ν ∈ ∆[M,Σ], a coupling for the pair (µ, ν) is a probability measure ω on
the product space (M ×M,Σ⊗ Σ), such that, for all E ∈ Σ

ω(E ×M) = µ(E) and ω(M × E) = ν(E) .

We denote by C(µ, ν) the set of couplings for (µ, ν).

Let ≡Σ =
⋂
{E × E | E ∈ Σ}, called the inseparability relation of Σ.

Lemma 9.2 (Total variation duality [Lin02, Th.5.2]) Let µ, ν be proba-
bility measures on (X,Σ). Then, provided that ≡Σ is measurable in Σ⊗ Σ,

T (µ, ν) = min{ω( 6≡Σ) | ω ∈ C(µ, ν)} .

Next we state two technical lemmas that will be useful in what follows.

Lemma 9.3 (Convex Combination of Couplings) Let µi, νi ∈ ∆[M,Σ] and
ωi ∈ C(µi, νi), for i ∈ {1, 2}. Then, for all e ∈ [0, 1]

(eω1 + (1− e)ω2) ∈ C
(

(eµ1 + (1− e)µ2), (eν1 + (1− e)ν2)
)
.

Proof. We show only the left marginal, the other is similar. Let E ∈ Σ, then

(eω1 + (1− e)ω2)(E ×M) = eω1(E ×M) + (1− e)ω2(E ×M) (by def.)

= eµ1(E) + (1− e)µ2(E) (by ωi ∈ C(µi, νi))
= (eµ1 + (1− e)µ2)(E) . (by def.)

The result above states that the set of all couplings between arbitrary measures
in ∆[M,Σ] is a convex set (note that ∆[M,Σ] is a convex set too).

Lemma 9.4 (Splitting Lemma) Let µ, ν ∈ ∆[M,Σ] and e = T (µ, ν). Then,
there exist µ′, ν ′, ρ ∈ ∆[M,Σ] such that

µ = eµ′ + (1− e)ρ and ν = eν ′ + (1− e)ρ .
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Proof. If e ∈ 1, choose µ′ = µ and ν ′ = ν. If e = 0 (hence µ = ν) choose
ρ = µ = ν. Otherwise, let ω ∈ C(µ, ν) minimal in Lemma 9.2 for T (µ, ν). By
hypothesis T (µ, ν) = ω( 6≡Σ) 6= {0, 1}. Define µi, νi ∈ ∆[M,Σ], for arbitrary
E ∈M , as follows:

µ1(E) =
ω((E ×M) ∩ 6≡Σ)

ω(6≡Σ)
, µ2(E) =

ω((E ×M) ∩ ≡Σ)

1− ω(6≡Σ)
,

ν1(E) =
ω((M × E) ∩ 6≡Σ)

ω(6≡Σ)
, ν2(E) =

ω((M × E) ∩ ≡Σ)

1− ω(6≡Σ)
.

We show µ = ω( 6≡Σ)µ1 + (1− ω( 6≡Σ))µ2. Let E ∈ Σ, then

ω(6≡Σ)µ1(E) + (1− ω( 6≡Σ))µ2 =

= ω((E ×M) ∩ 6≡Σ) + ω((E ×M) ∩ ≡Σ) (def. µ1, µ2)

= ω(E ×M) (additivity of ω)

= µ(E) . (ω ∈ C(µ, ν))

Similarly, ν = ω( 6≡Σ)ν1 + (1− ω(6≡Σ))ν2.

By definition of ≡Σ, for all E ∈ Σ, (E ×M)∩ ≡Σ= (M × E)∩ ≡Σ. Thus it
follows that µ2 = ν2. This concludes the proof.

9.1 The Freely-Generated Algebra

Fix a set M . Let T[M ] be the variation barycentric algebra in K(B,ULI) freely
generated from M , as constructed in Section 6. By Theorem 6.9, T[M ] has the
universal mapping property for M to

USet : K(B,ULI) −→ Set.

Denote by Π[M ] the set of finitely-supported discrete probability distributions
on M (i.e., defined on the discrete σ-algebra 2M ). Next we will show that Π[M ]
endowed with the total-variation distance can be organized as a LIB algebra in
K(B,ULI) having the universal mapping property for M to USet. By uniqueness
(up to isomorphism) of universal arrows of the same type, this proves that Π[M ]
and T[M ] are isomorphic.

We can regard Π[M ] as an algebra of type B by interpreting each operator
+e : 2 ∈ B, for arbitrary µ, ν ∈ Π[M ], as follows

µ+e ν = eµ+ (1− e)ν ,

We can further regard Π[M ] as a quantitative algebra by taking the total-
variation distance as a metric on Π[M ].

Theorem 9.5 Π[M ] = (Π[M ],B, T ) ∈ K(B,ULI), i.e., Π[M ] |= ULI .
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Proof. Note that each assignment ι : X −→ Π[M ] maps variables to distribu-
tions in Π[M ], hence we only need to check the axioms on B-terms constructed
over Π[M ]. (Refl), (Symm), (Triang), (Max), and (Arch) follow from the fact
that T is a metric. As for (NExp) we need to prove that, for arbitrary e ∈ [0, 1]
and µ, µ′, ν, ν ′ ∈ Π[M ],

1. T (µ+e ν, µ+e ν
′) ≤ T (ν, ν ′);

2. T (µ+e ν, µ
′ +e ν

′) ≤ T (µ, µ′).

We show only (1); the other follows similarly.

Let ω ∈ C(ν, ν ′) and ρ ∈ C(µ, µ) be two couplings that attain the minimum in
Lemma 9.2 for T (ν, ν ′) and T (µ, µ), respectively. (Note that the inseparability
relation is simply the equality relation in M , obviously measurable in a discrete
σ-algebra). Then

T (ν, ν ′) = T (µ, µ) + T (ν, ν ′) (T metric)

≥ eT (µ, µ) + (1− e)T (ν, ν ′) (e ∈ [0, 1])

= eρ(6=) + (1− e)ω(6=) (hp. on ρ, ω)

≥ T (eµ+ (1− e)ν, eµ+ (1− e)ν ′) (Lemmas 9.3 & 9.2)

= T (µ+e ν, µ+e ν
′) . (def. +e)

(B1), (B2), (SA), and (SC) follow by the definition of the interpretation for
+e : 2 ∈ B and the fact that T is a metric. As for (LI), assume ω ∈ C(µ, ν)
and ω ∈ C(ρ, ρ) be two couplings that attains the minimum in Lemma 9.2 for
T (µ, ν) and T (ρ, ρ), respectively. Then, for e ≤ ε ∈ Q+

ε ≥ e T (µ, ν) (e ≤ ε & T 1-bounded)

= e T (µ, ν) + (1− e)T (ρ, ρ) (T metric)

= eω( 6=) + (1− e)ω′(6=) (hp. on ω, ω′)

≥ T (eµ+ (1− e)ρ, eν + (1− e)ρ) (Lemmas 9.3 & 9.2)

= T (µ+e ρ, ν +e ρ) . (def. +e)

This concludes the proof.

The next theorem shows that Π[M ] has the universal mapping property for
M to USet, with universal arrow (Π[M ], δM ), where δM : M −→ Π[M ] maps
m ∈M to δm ∈ Π[M ] —the Dirac measure with probability mass concentrated
at m ∈M .

Theorem 9.6 (Π[M ], δM ) is an universal arrow from M ∈ Set to USet.

Proof. Let A = (A,BA, dA) ∈ K(B,ULI) and α : M −→ A a set-map.

Theorem 2 in [Sto49] proves that any barycentric algebra (A,BA) has a one-
to-one embedding into a convex subset of a suitable vector space. By this
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result, if a1, . . . , an ∈ A, then also
∑n

i=1 eiai ∈ A, provided that ei ∈ [0, 1] and∑n
i=1 ei = 1.

For Π[M ], we additionally note that Π[M ] is a simplex, i.e. any µ ∈ Π[M ],
can be canonically represented as a finite convex combination of the form
µ =

∑k
i=1 ciδmi , where supp(µ) = {m1, . . . ,mk} and ci ∈ (0, 1] are such that∑k

i=1 ci = 1.

By using these facts we define the map h : Π[M ] −→ A as follows:

h(
k∑
i=1

ciδmi) =
k∑
i=1

ciα(mi) .

Clearly h ◦ δM = α: for any m ∈M , h(δM (m)) = h(δm) = α(m). Now we show
that h is a homomorphism. Let µ =

∑k
i=1 ciδmi , ν =

∑n
j=1 djδnj and e ∈ [0, 1].

Then the following holds:

h(µ+e ν) = h(eµ+ (1− e)ν) (def. +e)

= h(e
k∑
i=1

ciδmi + (1− e)
n∑
j=1

djδnj ) (canonical rep.)

(∗)
= e

k∑
i=1

ciα(mi) + (1− e)
n∑
j=1

djα(nj) (def. h & Π[M ],A |= (B2))

= h(µ) +Ae h(ν) . (def. h & def. +Ae )

Note that in (∗), the formal definition of h requires that the measure is canon-
ically represented without repetitions of Dirac measures δm. The repetitions
can be removed by applying (B2) in Π[M ] and, once h is applied, they can be
recovered by applying (B2) in A in the reverse direction.

As for the uniqueness, assume that there exists another homomorphism h′ 6= h
such h′ ◦ δM = α. Let µ =

∑k
i=1 ciδmi be a measure in Π[M ] with minimal

support such that h′(µ) 6= h(µ). If k = 1, we get a contradiction by h′ ◦ δM =
α = h ◦ δM . Assume k > 1, then we get the following contradiction

h′(

k∑
i=1

ciδmi) = h′(δm1) +Ac1 h
′(

k∑
i=2

ci
1− c1

δmi) (h′ homo.)

= h(δm1) +Ac1 h(
k∑
i=2

ci
1− c1

δmi) (minimal supp.)

= h(
k∑
i=1

ciδmi) (h′ homo.)

It remains to show that h is non-expansive, i.e., that for all µ, ν ∈ Π[M ],
T (µ, ν) ≥ dA(h(µ), h(ν)). Let µ, ν ∈ Π[M ]. By the splitting lemma (Lemma 9.4),
there exist µ′, ν ′, ρ ∈ Π[M ] such that

µ = µ′ +e ρ and ν = ν ′ +e ρ .
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where e = T (µ, ν), then the following holds

dA(h(µ), h(ν)) = dA(h(µ′ +e ρ), h(ν ′ +e ρ)) (splitting lemma)

= dA(h(µ′) +Ae h(ρ), h(ν ′) +Ae h(ρ)) (h homo.)

≤ T (µ, ν) (A |= B3)

This concludes the proof.

The next result follows directly by Theorem 6.9 and 9.6.

Corollary 9.7 The left-invariant barycentric algebras Π[M ] and T[M ] are iso-
morphic with bijective isometry h : Td[M ] −→ Π[M ] given, for m ∈ M and
t, s ∈ TM by

h(m
∼=) = δm , h((t+e s)

∼=) = eh(t
∼=) + (1− e)h(s

∼=) .

Consequently, the metric induced by the quantitative equational theory ULI
coincides with the total variation distance on Π[M ]. Thus we say that ULI
axiomatizes the total variation distance.

10 Quantitative Semilattices with Zero

In this section we provide a first example of free quantitative algebra over
metric spaces. We discuss the case of the quantitative semilattices and show
how their axiomatization induces Hausdorff distances both in the finitary and
in the continuous case.

Consider the algebraic similarity type of (bounded join-) semilattices

S = {+ : 2, 0 : 0}

containing one binary operator + and one constant 0. We shall call it the
semilattice signature.

Definition 10.1 (Quantitative Semilattice Equational Theory) This the-
ory is given by the following axiom schemata where x, x′, x′′, y, y′ ∈ X (X is the
countable set of variables) and ε, ε′ ∈ [0, 1]:

(S0) ` x+ 0 =0 x

(S1) ` x+ x =0 x

(S2) ` x+ x′ =0 x
′ + x

(S3) ` (x+ x′) + x′′ =0 x+ (x′ + x′′)

(S4) {x =ε y, x
′ =ε′ y

′} ` x+ x′ =δ y + y′, where δ = max{ε, ε′}.
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In this section we focus on the algebras satisfying quantitative semilattice equa-
tional theories; we call these quantitative semilattices with zero.

Fix a set of variables X and a quantitative semilattice equational theory US of
type S over X. In this section we focus on the class KS = K(S,US).

Hausdorff Duality

Let (M,d) be a metric space (possibly taking infinite values). The Hausdorff
metric induced by d on the set of all closed subsets ofM (in the ope-ball topology
induced by d), is defined, for arbitrary closed sets A,B ⊆M as

Hd(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}
,

where, d(m,N) = infn∈N d(m,n) denotes the distance from an element m ∈M
to a set N ⊆M .

As usual, we assume that sup ∅ = 0 and inf ∅ =∞; so, for any closed nonempty
set A,

Hd(∅, A) = Hd(A, ∅) =∞ and Hd(∅, ∅) = 0.

Our definition is somehow non-standard and generalizes, for the case of metric
spaces with infinite values, the standard definition which is usually given either
for compact sets or for closed and bounded sets. For our purposes neither the
compactness nor the boundness are needed, as we will prove hereafter.

Before proving that Hd is indeed a metric, we provide a dual characterization
for Hd. For an arbitrary set A ⊆M and arbitrary ε > 0, let

Aε = {x ∈M | ∃a ∈ A, d(x, a) ≤ ε}.

Lemma 10.2 If A and B are closed subsets of M , then

Hd(A,B) = inf{ε | A ⊆ Bε and B ⊆ Aε}.

Proof. Let’s observe for the beginning that if x ∈ Aε, then d(x,A) ≤ ε.

Suppose that A and B are such that A ⊆ Bε and B ⊆ Aε.

Since A ⊆ Bε, for any a ∈ A, d(a,B) ≤ ε. Hence, sup
a∈A

d(a,B) ≤ ε. Simi-

larly, from B ⊆ Aε we get sup
b∈B

d(b, A) ≤ ε. From these we derive firstly that

Hd(A,B) ≤ ε and further,

Hd(A,B) ≤ inf{ε | A ⊆ Bε and A ⊆ Bε}.

Suppose that Hd(A,B) < inf{ε | A ⊆ Bε and A ⊆ Bε}. Let δ be such that
Hd(A,B) < δ < inf{ε | A ⊆ Bε and A ⊆ Bε}. Then, either A 6⊆ Bδ or B 6⊆ Aδ.
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If A 6⊆ Bδ, then there exists a ∈ A s.t. a 6∈ Bδ. Hence, for any b ∈ B, d(a, b) > δ,
implying further that there exists a ∈ A such that d(a,B) ≥ δ. But then,

sup
a∈A

d(a,B) ≥ δ,

which guarantees that
Hd(A,B) ≥ δ

contradicting the assumption that Hd(A,B) < δ.

Hence, Hd(A,B) = inf{ε | A ⊆ Bε and A ⊆ Bε}.

We show now that Hd is indeed a metric, possibly taking infinite values, over
the set of closed sets of M .

To achieve this, we firstly prove a lemma.

Lemma 10.3 Let A,B be nonempty closed sets in the open-ball topology and
a ∈ A an arbitrary point. Then, for any ε > 0, there exists b ∈ B such that

d(a, b) ≤ Hd(A,B) + ε.

Proof. We can assume, without loosing generality, that

Hd(A,B) = sup
x∈A

d(x,B).

Hence,
Hd(A,B) ≥ d(a,B) = inf

y∈B
d(a, y).

This implies Hd(A,B) + ε > inf
y∈B

d(a, y). Then, there exists b ∈ B such that

d(a, b) ≤ Hd(A,B) + ε.

Theorem 10.4 Hd is a metric on the set of closed subsets of M , possibly taking
infinite values.

Proof. 1. Assume that Hd(A,B) = 0. We prove that A = B.
If at least one of the two sets is empty, the other one must be empty too, since
otherwise Hd(A,B) =∞.
Assume that A 6= ∅ 6= B. Because Hd(A,B) = 0, for any a ∈ A, d(a,B) = 0,
i.e., inf

b∈B
d(a, b) = 0. Hence, there exists a sequence (bi) of elements in B such

that
lim
i−→∞ d(a, bi) = 0.

But then, (bi) converges to a and since B is closed, a ∈ B. Hence, A ⊆ B.
Similarly one can prove that B ⊆ A, hence A = B.

2. That Hd(A,B) = Hd(B,A) derives from the symmetry of max.

3. We prove now that for arbitrary closed sets A,B,C,

Hd(A,C) ≤ Hd(A,B) +Hd(B,C).
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Observe that if at least one of them is empty, the inequality is trivially true
since r +∞ =∞+∞ =∞ > r for any r ∈ R+.

Assume they are not empty. Let a ∈ A. Fora any ε > 0, we can apply Lemma
10.3 and get that there exists b ∈ B such that

d(a, b) ≤ Hd(A,B) + ε.

We apply again Lemma 10.3 for b ∈ B and C and we obtain that there exists
c ∈ C such that

d(b, c) ≤ Hd(B,C) + ε.

Consequently, after applying the triangle inequality for d, we get

d(a, c) ≤ d(a, b) + d(b, c) ≤ Hd(A,B) +Hd(B,C) + 2ε.

It follows that
d(a,C) ≤ Hd(A,B) +Hd(B,C) + 2ε

and further that

sup
a∈A

d(a,C) ≤ Hd(A,B) +Hd(B,C) + 2ε.

Symmetrically (using also the symmetry of Hd),

sup
c∈C

d(c, A) ≤ Hd(A,B) +Hd(B,C) + 2ε.

Hence for any ε > 0,

Hd(A,C) ≤ Hd(A,B) +Hd(B,C) + 2ε

which further entails

Hd(A,C) ≤ Hd(A,B) +Hd(B,C).

Next we prove a dual characterization for Hd in terms of what we call relational
coupling. For M a set and A,B ⊆M , a relational coupling for the pair (A,B)
is a relation R ⊆M ×M such that

π1(R) = A and π2(R) = B ,

where π1 and π2 are the canonical projections of R. We denote by C(A,B) the
set of couplings for (A,B).

Theorem 10.5 (Hausdorff Duality) Let (M,d) be a metric space possibly
taking infinite values and A,B ⊆M closed sets in the open-ball topology, then

Hd(A,B) = inf

{
sup

(m,n)∈R
d(m,n) | R ∈ C(A,B)

}
,
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Proof. If either A or B is empty while the other one is not empty, the equality
is trivially true since Hd(A,B) =∞ and C(A,B) = ∅ constricting{

sup
(m,n)∈R

d(m,n) | R ∈ C(A,B)

}
= ∅.

On the other hand, if A = B = ∅, then Hd(A,B) = 0 and moreover{
sup

(m,n)∈R
d(m,n) | R ∈ C(A,B)

}
= {0}.

Assume now that A 6= ∅ 6= B.

(≤): It suffices to show that for any relational coupling R ∈ C(A,B),

Hd(A,B) ≤ sup
(m,n)∈R

d(m,n).

Let R ∈ C(A,B). Note that, for any a ∈ A and b ∈ B, since π1(R) = A and
π2(R) = B, the following sets are nonempty:

Ra = {n ∈M | (a, n) ∈ R} ⊆ π2(R) , Rb = {m ∈M | (m, b) ∈ R} ⊆ π1(R) .

Then, the following holds

sup
(m,n)∈R

d(m,n) ≥ max

{
sup
a∈A

d(a,Ra), sup
b∈B

d(b, Rb)

}
(def. Ra, R

b)

≥ max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}
(R ∈ C(A,B))

= Hd(A,B) . (def. Hd)

(≥): Recall the equivalent characterization of Hd, given as

Hd(A,B) = inf{ε ≥ 0 | A ⊆ Bε and B ⊆ Aε} .

If {ε ≥ 0 | A ⊆ Bε and B ⊆ Aε} = ∅, since we have assumed that A 6= ∅ 6= B,
then Hd(A,B) =∞ and the inequality is trivially satisfied.

Suppose now that {ε ≥ 0 | A ⊆ Bε and B ⊆ Aε} 6= ∅. To prove the inequality
it is sufficient to show that for any ε ≥ 0 such that A ⊆ Bε and B ⊆ Aε, the
following inequality holds:

ε ≥ inf

{
sup

(m,n)∈R
d(m,n) | R ∈ C(A,B)

}
.

Let ε ≥ 0 be such that A ⊆ Bε and B ⊆ Aε. We define Rε ⊆ M × M as
Rε = {(a, b) ∈ A×B | d(a, b) ≤ ε} and we show that Rε ∈ C(A,B).

π1(Rε) = π1({(a, b) ∈ A×B | d(a, b) ≤ ε}) (def. Rε)

= {a ∈ A | b ∈ B , d(a, b) ≤ ε} (def. π1)

= Bε ∩A (def. Bε)

= A (A ⊆ Bε)
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Similarly, π2(Rε) = B. The following concludes the proof:

ε ≥ sup
(m,n)∈Rε

d(m,n) (by def. Rε)

≥ inf

{
sup

(m,n)∈R
d(m,n) | R ∈ C(A,B)

}
. (Rε ∈ C(A,B))

10.1 The Finitary Case

Fix a metric space (M,d). Let Td[M ] be the quantitative semilattice in K(S,US)
freely generated from (M,d), constructed in Section 7. By Theorem 7.2, Td[M ]
has the universal mapping property for (M,d) to UMet : K(S,US) −→Met.

Theorem 10.6 If (M,d) is a non-degenerate metric space then Td[M ] is a
non-degenerate quantitative semilattice. In particular, US and USM are consis-
tent quantitative theories.

Denote by F[M ] the set of all finite subsets of M . In what follows we show that
F[M ] can be organized as a quantitative semilattice in K(S,US) that has the
universal mapping property for (M,d) to UMet : K(S,US) −→ Met. This will
prove that F[M ] and Td[M ] are isomorphic S-quantitative algebras.

We organize F[M ] as an algebra of type S by defining, for arbitrary A,B ∈
F[M ], A+ B = A ∪ B, 0 = ∅. We can further organize F[M ] as a quantitative
algebra by taking the Hausdorff metric Hd induced by d.

Theorem 10.7 F[M ] = (F[M ],S, Hd) ∈ K(S,US), i.e., F[M ] |= US .

Proof. Note that each assignment ι ∈ T(X|F[M ]) maps variables in X to sets
in F[M ]. Hence we only need to check the axioms on S-terms constructed over
M . (Refl), (Symm), (Triang), (Max), and (Arch) follows from the fact that Hd

is a metric on F[M ] (note that finite sets are closed in any metric d). As for
(Add) we need to prove that, for arbitrary A,A′, B,B′ ∈ F[M ],

1. Hd(A+B,A+B′) ≤ Hd(B,B
′);

2. Hd(A+B,A′ +B′) ≤ Hd(A,A
′).

We show only (1); (2) follows similarly. To this end we use the Hausdorff duality.
Note that since B,B′ are finite sets, there are only finitely many relations over
them, hence there exists a coupling R ∈ C(B,B′) that attains the minimum in
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Lemma 10.5, i.e., Hd(B,B
′) = max(m,n)∈R d(m,n). Then the following hold

Hd(B,B
′) = Hd(A,A) +Hd(B,B

′) (Hd metric)

= max
(m,n)∈id(A)

d(m,n) + max
m,n∈R

d(m,n) (Lemma 10.5)

≥ max
(m,n)∈id(A)∪R

d(m,n) (triangular ineq. for max)

≥ Hd(A ∪A,B ∪B′) (id(A) ∪R ∈ C(A ∪B,A ∪B′))
= Hd(A+A,B +B′) . (def. +)

(S0)–(S3) follow by the interpretations for + : 2 ∈ S and 0 : 0 ∈ S and
the fact that Hd is a metric on F[M ]. As for (S4), assume Hd(A,B) ≤ ε,
Hd(A

′, B′) ≤ ε′, and let R ∈ C(A,B) and R′ ∈ C(A′, B′) optimal, i.e. such that
Hd(A,B) = max(m,n)∈R d(m,n) and Hd(A

′, B′) = max(m,n)∈R′ d(m,n). Then

max{ε, ε′} ≥ max
{
Hd(A,B), Hd(A

′, B′)
}

(by hp.)

= max

{
max

(m,n)∈R
d(m,n), max

(m,n)∈R′
d(m,n)

}
(R,R′ optimal)

= max
(m,n)∈R∪R′

d(m,n) (max on ∪)

≥ Hd(A ∪B,A′ ∪B′) (R ∪R′ ∈ C(A ∪B,A′ ∪B′))
= Hd(A+B,A′ +B′) . (def. +)

This concludes the proof.

The next theorem shows that F[M ] has the universal mapping property for
(M,d) to UMet, with universal arrow (F[M ], χM ), where χM : M −→ F[M ] is
the map that assigns to arbitrary m ∈ M , the singleton set χM (m) = {m}.
Note that, Hd({m}, {n}) = d(m,n), hence χM is non-expansive.

Theorem 10.8 (F[M ], χM ) is an universal arrow from (M,d) ∈Met to UMet.

Proof. Let A = (A,SA, dA) ∈ K(S,US) and α : M −→ A a non-expansive map.
Define h : F[M ] −→ A as follows, by induction on the size of the sets:

• h(∅) = 0A;

• for m ∈ P ∈ F[M ], h(P ) = α(m) +A h(P \ {m}).

To show that h is well-defined need to prove that its definition is independent of
the choice of the element m ∈ P . Assume m,n ∈ P , be two distinct elements.
Then the following hold:

h(P ) = α(m) +A (α(n) +A h(P \ {m,n})) (def. h)

= (α(m) +A α(n)) +A h(P \ {m,n}) (A |= (S3))

= (α(n) +A α(m)) +A h(P \ {m,n}) (A |= (S2))

= α(n) +A (α(m) +A h(P \ {m,n})) (A |= (S3))

= α(n) +A h(P \ {n}) (def. h)

= h(P ) . (def. h)
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Clearly, by definition of h, we have that h ◦ χM = α. Now we prove that h
is an homomorphism. By definition h(0) = h(∅) = 0A. Let P,Q ∈ F[M ], by
induction on the size of P we show h(P +Q) = h(P ) + h(Q).

(Base case) Let P = ∅

h(∅+Q) = h(Q) (def. +)

= 0A +A h(Q) (A |= (S0),(S2))

= h(∅) + h(Q) . (def. h)

(Inductive step) Assume m ∈ P ∩ Q. We consider two cases: m ∈ Q and
m /∈ Q. We show only the first case; the other can be derived by avoiding the
application of (S1) in what follows:

h(P +Q) = h(P ∪Q) (def. +)

= α(m) +A h((P ∪Q)\{m}) (def. h)

= (α(m) +A α(m)) +A h((P\{m}) ∪ (Q\{m})) (A |= (S1))

= (α(m) +A α(m)) +A (h(P \ {m}) +A h(Q\{m})) (hp. ind)

= (α(m) +A h(P\{m})) +A (α(m) +A h(Q\{m})) (A |= (S2),(S3))

= h(P ) + h(Q) (def. h)

As for the uniqueness of the homomorphism. Let h′ 6= h be another homomor-
phism such that h′ ◦ χM = α; and let P a minimal set such that h′(P ) 6= h(P ).
If P = ∅, the contradiction derives by the fact the h′, h are homomorphisms
and the interpretation of ∅ as the constant 0. Assume P 6= ∅, and let m ∈ P .
Then

h(P ) = α(m) +A h(P\{m}) (def. h)

= α(m) +A h′(P\{m}) (minimality)

= h′({m}) +A h′(P\{m}) (h′ ◦ χM = α)

= h({m}+ P\{m}) (h′ homo.)

= h(P ) (def. +)

It remains to show that h is non-expansive, i.e., that for arbitrary P,Q ∈ F[M ],
Hd(P,Q) ≥ dA(h(P ), h(Q)). We proceed by Noetherian induction on pairs
or measures (P,Q) partially ordered by (P,Q) v (P ′, Q′) iff |P | ≤ |P ′| and
|Q| ≤ |Q′| (note that this is a well-founded partial order).

(Base case) Assume P,Q = ∅. Then, by definition of Hd, Hd(∅, ∅) =∞. Hence
Hd(∅, ∅) ≥ dA(h(∅), h(∅)) is trivially satisfied.

(Inductive step) Without loss of generality, assume P,Q 6= ∅. Then, there exists
m ∈ P and n ∈ Q. If P = {m}, then

Hd({m}, Q) ≥ d(m,n) (def. Hd)

≥ dA(α(m), α(n)) (α non-expansive)

= dA(h({m}), h({n})) . (α = h ◦ χM )
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Similarly for the case Q = {n}. Assume that P 6= {m} and Q 6= {n}. Since
P and Q are finite, the Hausdorff distance between them must be realised as
the distance between some element in P and some element in Q. Consequently,
there exist m ∈ P and n ∈ Q such that8

Hd(P,Q) = max{Hd({m}, {n}), Hd(P\{m}, B\{n})} . (7)

Then, the following holds

dA(h(P ), h(Q)) = dA(α(m) +A h(P\{m}), α(m) +A h(P\{m})) (def. h)

≤ max{dA(α(m), α(n)), dA(h(P\{m}), h(B\{n}))}
(A |= (S4))

≤ max{dA(α(m), α(n)), Hd(P\{m}, B\{n})} (hp. ind.)

≤ max{d(m,n), Hd(P\{m}, B\{n})} (α non-expansive)

= max{Hd({m}, {n}), Hd(P\{m}, B\{n})} (def. Hd)

= Hd(P,Q) (equation (7))

This concludes the proof.

An immediate consequence of Theorem 7.2 and 10.8 is the following.

Corollary 10.9 The quantitative S-algebras F[M ] and Td[M ] are isomorphic
with bijective isometry h : Td[M ] −→ F[M ] given, for m ∈M and t, s ∈ TM by

h(m
∼=) = {m} , h((t+ s)

∼=) = h(t
∼=) ∪ h(s

∼=) .

Hence, the distance induced by the quantitative equational theory US extended
with the axioms relative to the generator (M,d) is the Hausdorff metric induced
by d. Thus we say that USM axiomatizes the Hausdorff distance.

10.2 The Continuous Case

We now focus on the class of the closed subsets of a complete separable metric
space and prove that it can be organized as a quantitative semilattice by inter-
preting, as before, + by ∪, 0 by ∅ and the constants as singletons. It turns out
that this is the freely generated algebra in the category of quantitative semilat-
tices over complete separable metric spaces. As might be expected, the proofs
here are more analytic rather than the combinatorial proofs of the previous
subsection.

Consider a complete separable metric space (M,d). Let G[M ] be the set of the
closed subsets of M in the open-ball topology of d. We show that by interpreting
+ by ∪, 0 by ∅ and endowing G[M ] with the Hausdorff metric Hd, we obtain a
quantitative semilattice that satisfies US .

8Notice that this equation is reminiscent of the splitting lemma used, for example, with
the Kantorovich metric.
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As shown in the previous section, we can also construct the freely gener-
ated quantitative semilattice Td[M ] = (Td[M ],S, d∼=M ), which is isomorphic to
F[M ] = (F[M ],S, Hd).

However, (Td[M ], d
∼=
M ) is separable (with countable dense subset given by Td[D],

where D is the countable dense set in M) but it is not a complete metric
space.

Consider (Td[M ], d
∼=
M ), the completion of (Td[M ], d

∼=
M ). Since Td[M ] is isomor-

phic to F[M ], their completions must be isomorphic metric spaces.

Let KS be the subcategory of quantitative semilattices with complete sepa-
rable metric spaces. We prove that G[M ] = (G[M ],S, Hd) and Td[M ] =

(Td[M ],S, d∼=M ) are isomorphic quantitative semilattices with zero.

Theorem 10.10 If (M,d) is a complete separable metric space, then G[M ] ∈
KS . Moreover, G[M ] is isomorphic to Td[M ].

Proof. Verifying the axioms of the quantitative semilattices with zero for G[M ]
is routine. What we need to prove further is that (G[M ], Hd) is a complete
separable metric space.

Let D ⊆ M be a countable dense subset of M (its existence is guaranteed by
the fact that (M,d) is a separable space). F[D] is countable and we now show
that it is dense in G[M ].

Consider an arbitrary closed set C ∈ G[M ]. The set S = D∩C is countable and
dense in C. Suppose that S = {s1, s2, . . .}. Then, the sets Si = {s1, . . . , si},
i ∈ N are all closed, hence elements of F[M ], and their sequence converges to
C in (G[M ], Hd). Hence, F[D] is dense in G[M ].

Previously, we have shown that d
∼=
M = Hd on F[M ], hence also on F[D]. Since

the completion of F[D] is unique and it gives us (G[M ], Hd), we obtain the

isomorphism between Td[M ] and G[M ]; hence also an isomorphism of metric
spaces.

Next we state that Td[M ] is the quantitative algebra in KS freely generated

from the complete separable metric space (M,d). Specifically, Td[M ] has the
universal mapping property for (M,d) ∈ CSMet (the category of complete
separable metric spaces with non-expansive maps) to the forgetful functor

UCSMet : KS −→ CSMet .

This situation is described by the commutative diagram below (cf. Defini-
tion 3.5):

in CSMet in KS

(M,d) (Td[M ], d
∼=
M ) Td[M ]

(A, dA) A

α

ηM

h h
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Theorem 10.11 (Td[M ], ηM ) is a universal morphism from (M,d) ∈ CSMet
to UCSMet.

Proof. Note that if SMet denotes the category of separable metric spaces with
non-expansive maps and CSMet the category of complete separable metric
spaces with non-expansive maps, then the functors C : SMet −→ CSMet that
maps a metric space to its completion and I : CSMet −→ SMet that maps a
complete metric space to itself define an adjunction C a I as follows.

SMet CSMet

C

I

η : IdSMet =⇒ IC defined for an arbitrary object M ∈ SMet by ηM : M
−→M , where M denotes the completion of M ; and ε : CI =⇒ IdCSMet defined
for arbitrary object K ∈ CSMet by εK : K −→ K, where K denotes the
completion of K.

In fact this adjunction already exists between the similar functors connecting
the category of metric spaces and the category of complete metric spaces. The
additional separability condition specializes further this general adjunction.

The result now follows from Theorem 10.8 and from the universal property
implicit in the adjunction.

11 Interpolative Barycentric Algebras

In this section we study a variation of quantitative barycentric algebras, which
is similar to the left-invariant barycentric algebra discussed in Section 9 but
with one slightly stronger axiom than (LI). The signature remains the same
but the axioms though, superficially, only slightly different give a very different
metric. Instead of axiomatizing the total variation distance, we get an axiom-
atization of the p-Wasserstein metric for p ≥ 1, both in the finitary and the
continuous cases. For p = 1 this reduces to the Kantorovich metric. We call
these algebras interpolative barycentric algebras or p-IB algebras for short. The
new axiom is a kind of interpolation axiom. In this section we are always as-
suming the underlying metric takes values in [0, 1]; they are called one-bounded
metrics.

Consider the barycentric signature B = {+e : 2 | e ∈ [0, 1]} from Section 9.

Definition 11.1 (p-IB Equational Theory) This theory is given by the axiom-
schemata (B1), (B2), (SC), (SA) from Definition 9.1 and the following axiom-
scheme (IBp), where ε1, ε2 ∈ [0, 1] and δ ∈ Q+ ∩ [0, 1]:

(IBp) {x =ε1 y, x
′ =ε2 y

′} ` x+e x
′ =δ y +e y

′, where (eεp1 + (1− e)εp2)1/p ≤ δ.
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Note that (IBp) is not an unconditional quantitative inference as are the previ-
ous examples. Moreover, it is stronger than the axiom (LI) in Definition 9.1 for
1-bounded metrics, in the sense that (LI) is than just an instantiation of (IBp).
Hence, this new proof system can prove more basic quantitative equations. If
we set ε1 = ε2 in this axiom we just get ε ≤ δ; in other words it says that the
+e operations are non-expansive.

If we state (IB1), we get the axiom below.

(IB1) {x =ε1 y, x
′ =ε2 y

′} ` x+e x
′ =δ y +e y

′, where eε1 + (1− e)ε2 ≤ δ.

In this section we focus on the class K(B,UIB) defined by the p-IB barycentric
equational theory UIB over a countable set X of variables.

11.1 Kantorovich-Wasserstein metrics

Let (M,d) be a one-bounded complete separable metric space and let p ≥ 1.
The p-Wasserstein metric induced by d on the set ∆[M ] of Radon9 probability
measures over M , is defined, for arbitrary µ, ν ∈ ∆[M ] as

W p
d (µ, ν)p = inf

{∫
dp dω | ω ∈ C(µ, ν)

}
. (8)

The Kantorovich metric induced by d is usually defined by:

Kd(µ, ν) = sup

{∣∣∣∣∫ f dµ−
∫
f dν

∣∣∣∣} .

with supremum ranging over the set positive 1-bounded non-expansive real-
valued functions over M .

We generally work with Polish spaces in this section. A Polish space is a
separable topological space for which can be metrized so that it is complete.
Note that a space like (0, 1) is Polish even, though it is not complete with
the usual metric. However, it is homeomorphic to (0,∞), hence can be given
a complete metric that gives the same topology. In a Polish space all Borel
measures are Radon.

Theorem 11.2 (Kantorovich Duality - Thm 5.10, [Vil08]) Let (M,d) be
a Polish metric space with the metric taking real values. Then, for arbitrary
Borel probability measures µ, ν ∈ ∆[M ]

Kd(µ, ν) = min

{∫
d dω | ω ∈ C(µ, ν)

}
.

Kantorovich duality implies that for p = 1 in equation (8), one gets the Kan-
torovich metric induced by d on ∆[M ].

9Radon measures are tight. This means that for every ε > 0 there is a compact set Kε

such that the measure of M \Kε is less than ε. On complete separable metric spaces all Borel
measures are Radon.
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In the case of Kantorovich metric, we also know that there exists an optimal
coupling for W 1

d , i.e., there exists a coupling that attains the infimum (hence,
it is a minimum) in equation (8). It is not clear whether this holds for the
Wasserstein metric but fortunately we do not need that in the splitting lemma
below.

Note that the total variation distance is just a particular case of the Wassertstein
metric, namely, T (µ, ν) = K16=(µ, ν) = W 1

16=(µ, ν), where 1 6= is the metric that
assigns distance 1 to all distinct pairs of points.

Lemma 11.3 (Splitting Lemma) Let µ, ν ∈ ∆[M ] and ω ∈ C(µ, ν). If R is
a measurable set such that ω(R) /∈ {0, 1}, then

µ = ω(R)µ1 + (1− ω(R))µ2 and ν = ω(R)ν1 + (1− ω(R))ν2 ,

for some µ1, µ2, ν1, ν2 ∈ ∆[M ], such that supp(µ1) ⊆ π1(R), supp(µ2) ⊆
π1(Rc), supp(ν1) ⊆ π2(R), and supp(ν2) ⊆ π2(Rc), where Rc = (M ×M) \R.

Moreover, for any ε > 0, if
∫
dpdω ≤W p

d (µ, ν) + ε then

ω(R)W p
d (µ1, ν1)p + (1− ω(R))W p

d (µ2, ν2)p ≤W p
d (µ, ν)p + ε.

Proof. They key step is to use the conditional probabilities given R and Rc to
construct the splitting. Define µi, νi ∈ ∆[M ], for an arbitrary Borel set E, as
follows:

µ1(E) =
ω((E ×M) ∩R)

ω(R)
, µ2(E) =

ω((E ×M) ∩Rc)
1− ω(R)

,

ν1(E) =
ω((M × E) ∩R)

ω(R)
, ν2(E) =

ω((M × E) ∩Rc)
1− ω(R)

.

We show that µ = ω(R)µ1 + (1− ω(R))µ2. Let E be any Borel set, then

ω(R)µ1(E) + (1− ω(R))µ2 =

= ω((E ×M) ∩R) + ω((E ×M) ∩Rc) (def. µ1, µ2)

= ω(E ×M) (additivity of ω)

= µ(E) . (ω ∈ C(µ, ν))

Similarly, ν = ω(R)ν1 + (1− ω(R))ν2.

Now we prove that (ω|R) ∈ C(µ1, ν1) and (ω|Rc) ∈ C(µ2, ν2), where (ω|R)
(ω|Rc) are the conditional probability measures of ω given R and Rc, respec-
tively. We show only one membership, the other is similar. Let E be a Borel
measurable set. Then, by definitions of µ1, ν1 and conditional probability

(ω|R)(E ×M) =
ω((E ×M) ∩R)

ω(R)
= µ1(E) , (left marginal)

(ω|R)(M × E) =
ω((M × E) ∩R)

ω(R)
= ν1(E) . (right marginal)
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The conditions on the supports follow immediately by the definitions of µi, νi,
(i = {1, 2}).

For the last assertion in the lemma we proceed as follows. Fix ε > 0 and
suppose that

∫
dp dω ≤W p

d (µ, ν)p + ε. We compute as follows:

ω(R)W p
d (µ1, ν1)p + (1− ω(R))W p

d (µ2, ν2)p

≤ ω(R)

∫
dp d(ω|R) + (1− ω(R))

∫
dp d(ω|Rc)

(since ω|R and ω|Rc are couplings)

=

∫
R
dp dω +

∫
Rc
dp dω (def. µ|R & linearity of

∫
)

=

∫
dp dω (additivity of

∫
)

≤W p
d (µ, ν)p + ε . (hyp. on ω)

11.2 The Finitary Case

Fix a one-bounded metric space (M,d). Let Td[M ] be the p-IB algebra in
K(B,UIB) freely generated from (M,d), as constructed in Section 7. By Theo-
rem 7.2, Td[M ] has the universal mapping property for (M,d) to

UMet : K(B,UIB) −→Met.

Theorem 11.4 If (M,d) is a non-degenerate metric space then Td[M ] is a
non-degenerate p-IB algebra. In particular, UIB is a consistent quantitative
theory.

Denote by Π[M ] the set of finitely supported Borel probability measures on
M —i.e., those that can be represented as finite convex combinations of Dirac
distributions δm, form ∈M . Next we will show that Π[M ] can be organized as a
p-IB algebra in K(B,UIB), with metric given by the p-Wasserstein metric W p

d .
Moreover, we show that this algebra enjoys the universal mapping property
for (M,d) to UMet : K(B,UIB) −→ Met; consequently Π[M ] and Td[M ] are
isomorphic B-algebras.

Similarly to Section 9, we regard Π[M ] as an algebra of type B by interpreting
each operator +e : 2 ∈ B, for arbitrary µ, ν ∈ Π[M ], as

µ+e ν = eµ+ (1− e)ν ,

However, unlike the situation in Section 9, Π[M ] will be viewed as a quantitative
algebra by taking as a metric the p-Wasserstein metric W p

d induced by d, rather
then the total variation distance. Note that finitely supported Borel probability
measures are Radon, so that W p

d is a well defined metric on Π[M ].
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Theorem 11.5 Π[M ] = (Π[M ],B,W p
d ) ∈ K(B,UIB), i.e., Π[M ] |= UIB.

Proof. Note that each assignment ι : X −→ Π[M ] maps variables to Borel mea-
sures in Π[M ], hence we only need to check the axioms on B-terms constructed
over Π[M ]. (Refl), (Symm), (Triang), (Max), and (Arch) follows from the
fact that W p

d is a metric. As for (NExp) we need to prove that, for arbitrary
e, ε ∈ [0, 1] and µ, µ′, ν, ν ′ ∈ Π[M ],

W p
d (µ, µ′) ≤ ε and W p

d (ν, ν ′) ≤ ε implies W p
d (µ+e ν, µ

′ +e ν
′) ≤ ε.

Let δ > 0; let ω ∈ C(ν, ν ′) and ρ ∈ C(µ, µ) be two couplings such that∫
dp dω − δ ≤W p

d (ν, ν ′) and

∫
dp dω′ − δ ≤W p

d (µ, µ).

Then,

εp = eεp + (1− e)εp

≥ eW p
d (µ, ν)p + (1− e)W p

d (µ′, ν ′)p (by hp.)

≥ e
∫
dp dω + (1− e)

∫
dp dω′ − δ (hp. on ω, ω′)

=

∫
dp d(eω + (1− e)ω′)− δ (linearity of

∫
)

≥W p
d (eµ+ (1− e)µ′, eν + (1− e)ν ′)p − δ (Lemma 9.3)

= W p
d (µ+e µ

′, ν +e ν
′)p − δ . (def. +e)

Since this is satisfied by any δ > 0, we obtain that W p
d (µ+e ν, µ

′ +e ν
′) ≤ ε.

(B1), (B2), (SA), and (SC) follow by the definition of the interpretation for
+e : 2 ∈ B and the fact that W p

d is a metric.

As for (IBp), assume W p
d (µ, ν) ≤ ε1, W p

d (µ′, ν ′) ≤ ε2. Consider an arbitrary
δ > 0; and let ω ∈ C(ν, ν ′) and ρ ∈ C(µ, µ) be two couplings such that∫

dp dω − δ ≤W p
d (ν, ν ′) and

∫
dp dω′ − δ ≤W p

d (µ, µ).

Then,

eεp1 + (1− e)εp2
≥ eW p

d (µ, ν)p + (1− e)W p
d (µ′, ν ′)p (by hp.)

≥ e
∫
dp dω + (1− e)

∫
dp dω′ − δ (hp. on ω, ω′)

=

∫
dp d(eω + (1− e)ω′)− δ (linearity of

∫
)

≥W p
d (eµ+ (1− e)µ′, eν + (1− e)ν ′)p − δ (Lemma 9.3)

= W p
d (µ+e µ

′, ν +e ν
′)p − δ . (def. +e)

Since this inequality holds for any δ > 0, we obtain that

W p
d (µ+e µ

′, ν +e ν
′) ≤ eεp1 + (1− e)εp2.
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The next theorem shows that Π[M ] has the universal mapping property for
(M,d) to UMet, with universal arrow (Π[M ], δM ), where δM : M −→ Π[M ] maps
m ∈ M to δm ∈ Π[M ] —the Dirac measure with probability mass in m ∈ M .
Note that, Wd(δm, δn) = d(m,n), hence δM is non-expansive.

Theorem 11.6 (Π[M ], δM ) is an universal arrow from (M,d) ∈Met to UMet.

Proof. Let A = (A,BA, dA) ∈ K(B,UIB) and α : M −→ A a non-expansive
map.

By Theorem 2 [Sto49], any barycentric algebra (A,BA) has a one-to-one em-
bedding into a convex subset of a suitable vector space. By this result, if

a1, . . . , an ∈ A, then also

n∑
i=1

eiai ∈ A, provided that ei ∈ [0, 1] and

n∑
i=1

ei = 1.

As for the set Π[M ] of finitely supported Borel probability measures over M , we
additionally have that any µ ∈ Π[M ], can be canonically represented as a finite

convex combination of the form µ =
k∑
i=1

ciδmi , where supp(µ) = {m1, . . . ,mk}

and ci ∈ (0, 1] are such that

k∑
i=1

ci = 1.

By using these facts we define the map h : Π[M ] −→ A as follows:

h(
k∑
i=1

ciδmi) =
k∑
i=1

ciα(mi) .

Clearly h ◦ δM = α: for any m ∈M , h(δM (m)) = h(δm) = α(m). Now we show
that h is a homomorphism. Let µ =

∑k
i=1 ciδmi , ν =

∑n
j=1 djδnj and e ∈ [0, 1].

Then the following holds:

h(µ+e ν) = h(eµ+ (1− e)ν) (def. +e)

= h(e

k∑
i=1

ciδmi + (1− e)
n∑
j=1

djδnj ) (canonical repr.)

(∗)
= e

k∑
i=1

ciα(mi) + (1− e)
n∑
j=1

djα(nj) (def. h & Π[M ],A |= (B2))

= h(µ) +Ae h(ν) . (def. h & def. +Ae )

Note that in (∗), the formal definition of h requires that the measure is canon-
ically represented without repetitions of Dirac measures δm. The repetitions
can be removed by applying (B2) in Π[M ] and, once h is applied, they can be
recovered by applying (B2) in A in the reverse direction.

As for the uniqueness, assume that there exists another homomorphism h′ 6= h
such h′ ◦ δM = α. Let µ =

∑k
i=1 ciδmi be a measure in Π[M ] with minimal
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support such that h′(µ) 6= h(µ). If k = 1, we get a contradiction by h′ ◦ δM =
α = h ◦ δM . Assume k > 1, then we get the following contradiction

h′(
k∑
i=1

ciδmi) = h′(δm1) +Ac1 h
′(

k∑
i=2

ci
1− c1

δmi) (h′ homo.)

= h(δm1) +Ac1 h(
k∑
i=2

ci
1− c1

δmi) (minimal supp.)

= h(

k∑
i=1

ciδmi) (h′ homo.)

It remains to show that h is non-expansive, i.e., that for arbitrary µ, ν ∈ Π[M ],
W p
d (µ, ν) ≥ dA(h(µ), h(ν)). We proceed by well-founded induction on pairs or

measures (µ, ν) partially ordered by (µ, ν) v (µ′, ν ′) iff | supp(µ)| ≤ | supp(µ′)|
and | supp(ν)| ≤ | supp(ν ′)|; the | · | notation means cardinality of the set. Note
that it is indeed well-founded as we are dealing with finite sets here.

(Base case) Assume µ = δm and ν = δn, for some m,n ∈M .

W p
d (δm, δn) = d(m,n) (def. Wd)

≥ dA(α(m), α(n)) (α non-exp.)

= dA(h(δm), h(δn)) . (h ◦ δM = α)

(Inductive step) Without loss of generality, assume | supp(µ)| > 1 (the proof
follows similarly for | supp(ν)| > 1). Then, there exists a nontrivial measurable
partition (N ′;N ′) of supp(µ) such that µ(N1), µ(N2) 6= {0, 1}. Let ω ∈ C(µ, ν)
be minimal in Lemma 11.2 for W p

d (µ, ν) and R = N1× supp(ν). Note that R is
measurable (finite sets are always Borel measurable in the product space) and
ω(R) = µ(N1) /∈ {0, 1}. Let e = ω(R). By the splitting lemma (Lemma 11.3),
for any ε > 0 such that

∫
dpdω ≤ W p

d (µ, ν) + ε, there exist µi, νi ∈ Π[M ] such
that

µ = µ1 +e µ2 and ν = ν1 +e ν2 ,

W p
d (µ, ν)p + ε ≥ eW p

d (µ1, ν1)p + (1− e)W p
d (µ2, ν2)p .

Moreover, by the choice of R, we have that supp(µ1) ⊆ N1, supp(µ2) ⊆ N2,
supp(ν1) ⊆ supp(ν), and supp(ν2) = ∅. Thus,

(µ, ν) < (µ1, ν1) and (µ, ν) < (µ2, ν2) .

Then the following holds:

W p
d (µ, ν)p + ε ≥ eW p

d (µ1, ν1)p + (1− e)W p
d (µ2, ν2)p (splitting lemma)

≥ edA(h(µ1), h(ν1))p + (1− e)dA(h(µ2), h(ν2))p (hp. ind.)

≥ dA(h(µ1) +e h(µ2), h(ν1) +e h(ν2))p (A |= (IB))

= dA(h(µ1 +e µ2), h(ν1 +e ν2))p (h homo.)

= dA(h(µ), h(ν))p (splitting lemma)

Since in the inequality above ε > 0 is arbitrarily chosen, the proof is done.
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The next result follows directly by theorems 7.2 and 11.6.

Corollary 11.7 The quantitative B-algebras Π[M ] and Td[M ] are isomorphic
with bijective isometry h : Td[M ] −→ Π[M ] characterized, for m ∈M and t, s ∈
TM by

h(m
∼=) = δm , h((t+e s)

∼=) = eh(t
∼=) + (1− e)h(s

∼=) .

This means that the quantitative equational theory UIB, further extended with
the axioms relative to the space (M,d), axiomatizes the p-Wasserstein metric
induced by d; and for p = 1 it characterizes the Kantorovich metric.

11.3 The Continuous Case

We now focus on the class of the general Borel probability measures over a
one-bounded complete separable metric space and prove that it forms a p-IB
algebra. In this case we are not restricting to finitely-supported distributions.
It turns out that this is the freely-generated algebra in the category of the p-IB
algebras defined for complete separable one-bounded metric spaces.

Consider a complete separable metric space (M,d) with the metric taking values
in [0, 1]. Let ∆[M ] be the set of all Borel probability measures on M . Note that
since (M,d) is complete and separable, all the measures in ∆[M ] are Radon. We
endow ∆[M ] with the signature B, where we define for arbitrary µ, ν ∈ ∆[M ]
and r ∈ [0, 1],

µ+r ν = rµ+ (1− r)ν.

As shown previously, Td[M ] = (Td[M ],B, d∼=M ) is a barycentric algebra isomor-
phic to Π[M ] = (Π[M ],B,Wd). However, we prove below that (Td[M ], d

∼=
M ) is

separable but it is not a complete metric space.

Consider the metric space (Td[M ], d
∼=
M ) obtained by the completion of (Td[M ], d

∼=
M ).

We need now to recall a series of definitions and results that relates the concept
of weak topology and the p-Wasserstein distance.

Definition 11.8 The p-weak topology on ∆[M ] is the topology such that con-
vergence of the sequence of measures νi to ν means that for all continuous real-
valued functions f such that for arbitrary m ∈M , |f(m)| ≤ C(1 + d(m0,m)p),
for some C ∈ R+, and m0 ∈M ,∫

f dνi −→
∫
f dν.

If (M,d) is a Polish space then it is known that p-Wasserstein W p
d metrizes the

p-weak topology on ∆[M ] (see Theorem 6.9 and Corollary 6.13 in [Vil08]).

The following lemma is well known (see Theorem 6.18 in [Vil08]).
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Proposition 11.9 Let M be a Polish space and let {ci}ki=1 be positive real

numbers such that
∑k

i=1 ci = 1. Let {mi}ki=1 be points in M . Then measures

of the form
∑k

i=1 ciδmi are p-weakly dense in ∆[M ].

Proof. Suppose that we are given a basic open neighbourhood of ∆[M ]

U =

{
µ :

∣∣∣∣ ∫
M
fi dν −

∫
M
fi dµ

∣∣∣∣ < ε, i = 1, . . . , k

}
,

where the fi are bounded continuous functions, ν is a probability measure and
ε > 0.

Fix an ε > 0. Now the functions fi are measurable so there are simple functions
gi such that supx |fi(x) − gi(x)| < ε/2 for each i = 1, . . . , k. We partition M
into disjoint Borel sets Aj , j = 1, . . . , l such that all the gi are constant over
each Aj .

Now choose a point mj in each Aj and set cj = ν(Aj). The measure µ :=∑l
j=1 cjδmj is a convex combination of Dirac measures and has the property

that for each Aj , µ(Aj) = ν(Aj). Thus for each of the gi∫
gi dν =

∫
gi dµ.

Thus we have∣∣∣∣ ∫ fi dν−
∫
fi dµ

∣∣∣∣ =

∣∣∣∣ ∫ fi dν−
∫
gi dν+

∫
gi dµ−

∫
fi dµ

∣∣∣∣ ≤ ε/2+ε/2 = ε.

This proves that µ is in U . Since U is an arbitrary basic open it shows that
measures of the form µ are dense in the weak topology.

Let KB be the class of IB algebras with complete separable metric spaces. We
prove that ∆[M ] = (∆[M ],B,W p

d ) is isomorphic, as a barycentric algebra, to

Td[M ] = (Td[M ],B, d∼=M ).

Theorem 11.10 If (M,d) is a complete separable metric space, then ∆[M ] ∈
KB. Moreover, ∆[M ] is isomorphic to Td[M ].

Proof. Verifying the axioms of the barycentric algebras for ∆[M ] is routine
and follows closely the proof of Theorem 11.5. What we need to prove further
is that ∆[M ] is a complete separable metric space.

Let D ⊆ M be a countable dense subset of M (its existence is guaranteed by
the fact that (M,d) is a separable space). Now Π[D] is of course not countable
but we can take all distributions that assign only rational measures to points
and get a countable set. We call this P[D] for short. We now show that it is
dense in ∆[M ].

Let ρ ∈ ∆[M ]. Since (M,d) is Polish, W p
d metrizes the p-weak-topology on

∆[M ], which is also a Polish space (Corollary 6.13 in [Vil08]). Moreover, Π[M ]
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is dense in ∆[M ] with respect to this topology by Prop. 11.9. Hence, there
exists a sequence (ρi)i∈N ⊆ Π[M ] of distributions with finite support on M that
converges to ρ. Since D is dense in M and the rationals are dense in [0, 1],
for any sequence (εi)i∈N ∈ [0, 1] that converges to 0, we can find a sequence
(ρ′i)i∈N ⊆ P[D] such that W p

d (ρi, ρ
′
i) < εi. Thus, {ρi | i ∈ N} ∪ {ρ′i | i ∈ N}

is a Cauchy sequence in Π[M ] and since (ρi)i∈N converges to ρ and Π[M ] is
complete, also (ρ′i)i∈N converges to ρ. And this proves that P[D] is dense in
∆[M ].

In the previous section we have shown that d
∼=
M = W p

d on Π[M ], hence also on
Π[D]. Since the completion of Π[D] is unique and it gives us (∆[M ], d

∼=
M ), we

obtain the isomorphism between Td[M ] and ∆[M ]; hence, also the isomorphism
of metric spaces.

Next we show that Td[M ] is the quantitative algebra in KB freely generated

from the complete separable metric space (M,d). Specifically, Td[M ] has the
universal mapping property for (M,d) ∈ CSMet1 (the category of complete
separable one-bounded metric spaces with non-expansive maps) to the forgetful
functor

UCSMet : KB −→ CSMet1 .

This situation is described by the commutative diagram below (cf. Defini-
tion 3.5):

in CSMet1 in KB

(M,d) (Td[M ], d
∼=
M ) Td[M ]

(A, dA) A

α

ηM

h h

Theorem 11.11 (Td[M ], ηM ) is a universal morphism from (M,d) ∈ CSMet1
to UCSMet.

Proof. The proof of this theorem is essentially the same as that of Theorem
10.11.

As before, we can define two functors between the categories SMet1 of sep-
arable one-bounded metric spaces and CSMet of complete separable one-
bounded metric spaces with non-expansive maps. These functors are C : SMet1
−→ CSMet1 that maps a metric space to its completion and I : CSMet1
−→ SMet1 that maps a complete metric space to itself. They define an adjunc-
tion C a I.

SMet1 CSMet1

C

I

The result now follows from Theorem 11.6 and from the universal property
implicit in the adjunction.
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11.4 Pointed Interpolative Barycentric Algebras

All the results presented in the previous section can be readily extended to the
case of subprobability measures by introducing a new constant in the signature
where the “missing mass” can reside. These are called pointed interpolative
barycentric algebras.

Definition 11.12 (Pointed Interpolative Barycentric Algebra) Let B be
the barycentric signature, c a constant and B+ = B∪{c : 0}. A pointed barycen-
tric algebra is a quantitative algebra A = (A,B+,R) that satisfies the axioms
of interpolative barycentric algebras.

We maintain the notations of the previous section and denote by UIB+
the

approximated equational theory induced by the barycentric axioms over the
terms of the signature B+.

Let K(B+,UIB) be the class of the pointed interpolative barycentric alge-
bras.

The finitary case

Let (M,d) be a one-bounded metric space and let |M | = sup{d(m,n) | m,n ∈
M} be its diameter. Assume, without loss of generality, that M ∩ {c} = ∅ and
let M+ = M ∪ {c}. We extend d to M+ by assuming that

for any m ∈M, d(m, c) = d(c,m) = |M |.

Obviously, (M+, d) is a one-bounded metric space.

If we denote by Π−[M ] and Π[M ] the classes of subprobabilistic distributions
with finite support on M and probabilistic distributions with finite support on
M respectively, observe that there exists a bijective map

π : Π[M+] −→ Π−[M ]

given for µ ∈ Π[M+] by π(µ)(m) = µ(m) for m ∈M .

The definition of π also guarantees that it defines a morphism of B-barycentric
algebras and the metric induced is W p

d : Π−[M ] × Π−[M ] −→ [0, 1], the p-
Wasserstein metric of d for some p ≥ 1, on subprobability distributions with
finite support.

Consider now the barycentric algebra Td[M+] constructed as in Section 7. Re-
call that, by Corollary 11.7 there exists an (unique) isomorphism of barycentric
algebras h : Td[M+] −→ Π[M+].
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We use this result to prove the following theorem.

Theorem 11.13 Td[M+] and Π−[M ] are isomorphic barycentric algebras and
the isomorphism is given by the map

π ◦ h : Td[M+] −→ Π−[M ].

Observe that (π ◦ h)(c) = 0, the null distribution. We can use the null dis-
tribution to interpret c in the algebra Π−[M ] and thus, we regard it as a
pointed barycentric algebra. This entails the following corollary of Theorem
11.13.

Corollary 11.14 Td[M+] and Π−[M ] are isomorphic pointed interpolative barycen-
tric algebras and the unique isomorphism is given by the map

π ◦ h : Td[M+] −→ Π−[M ].

Applying Theorem 11.5, we get further the following result.

Theorem 11.15 If (M,d) is an one-bounded metric space, then Π−[M ] ∈
K(B+,UIB) and

Π−[M ] |= t =ε s iff W p
d ((π ◦ h)(t), (π ◦ h)(s)) ≤ ε.

The continuous case

As in the previous section, we now focus on general subprobability distributions
over a one-bounded complete separable metric space and prove that it is a
pointed interpolative barycentric algebra. By “general” we mean that we are
not restricting to finitely supported distributions. It turns out that this is the
initial algebra in the category of the pointed interpolative barycentric algebras
defined for separable metric spaces.

Consider a one-bounded complete separable metric space (M,d). Let K+
be

the class of pointed interpolative barycentric algebras with complete separable
metric spaces.

Let ∆[M ] and ∆−[M ] be the set of all Borel probability distributions on M
and of all Borel subprobability distributions on M respectively. Also in this
case there exists a bijective map π : ∆[M+] −→ ∆−[M ] given for µ ∈ ∆[M+]
by π(µ)(m) = µ(m) for m ∈M .

Applying Theorem 11.10, ∆[M+] ∈ K+
and the metric induced by the barycen-

tric axioms coincides with the p-Wasserstein metric W p
d on ∆[M+]. Moreover,

∆[M+] is isomorphic to Td[M+].

Now, since ∆[M+] is isomorphic to ∆−[M ] and Td[M+] is isomorphic to Π[M+]
which is further isomorphic to Π−[M ], we obtain directly the following theo-
rem.
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Theorem 11.16 If (M,d) is an one-bounded complete separable metric space,

then ∆−[M ] ∈ K+
and the metric induced by the barycentric axioms coincides

with the p-Wasserstein metric W p
d on ∆−[M ]. Moreover, ∆−[M ] is isomorphic

to Td[M+].

12 Related work

The closest related work is by van Breugel et al. [vBHMW07] and by Adamek et
al. [AMM12] both of which were important precursors to the present work. The
first paper really shows why the Hausdorff and Kantorovich metrics are canon-
ical. The second one shows the finitary natures of these monads. In the paper
by van Breugel et al. [vBHMW07] it was shown that the Kantorovich functor
is left adjoint to a forgetful functor from a suitable algebraic category (mean-
value algebras) to complete metric spaces. Similarly they show that a suitable
Hausdorff functor can be treated in a similar way. Their results are intended to
exhibit the power of an approach to solving recursive equations using the the-
ory of accessible categories. Adamek et al. [AMM12] have studied the finitary
versions of the same functors and have given equational presentations.

A fairly important difference with the present work is that we use the barycen-
tric axioms rather than the mean value axioms. The major difference, however,
is our use of quantitative equations that capture the idea of approximate equal-
ity.

The difference between the mean-value axiomatization and the barycentric ax-
iomatization may seem unimportant but we feel that barycentric algebras are
more fundamental. They allow all binary choices to be directly available; they
are of course all definable from the mean-value if you allow infinite terms but
certainly not if you want everything to be finitary. The barycentric algebras
are the axioms for abstract convex spaces and arise widely in mathematics; see
the historical remarks in [KP15]. Barycentric algebras work very well in other
settings too. For example, if one takes the free pointed barycentric algebras
in other categories like sets or cpos one gets the structures one expects: finite
probability distributions for the case of sets and the valuation powerdomain for
the case of continuous dcpos.

We do not see as yet how all this fits with the program being pursued by
Bart Jacobs and his group at Nijmegen where they have a general notion of
quantitative logic based on structures that they call an “effectus.”[CJWW15].
There are many intriguing possibilities but we must defer a proper comparison
until we have digested effectus theory more deeply. One of the motivating
strands of that work was various dualities involving convex structures so there
certainly should be connections.
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13 Future work

There is clearly much more to do both in the general theory and in specific
examples. A fundamental task is to understand how to combine effects just as
in the non-quantitative case; many of the basic results [HPP06, HLPP07] apply.
It should be possible to extend the results of Section 10.2 to metrics that take
extended real values by suitable rescalings of the metric.

We are actively looking at Markov processes as an example; this could benefit
from a many-sorted extension of the basic theory or could alternatively use
recursive domain equations. As far as we know, an equational presentation of
Markov processes does not exist. Other possible examples are general distribu-
tions coming from a suitable axiomatization of cones and also an axiomatization
of Choquet capacities which are of interest in games.
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