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Abstract
We introduce a version of the probabilistic µ-calculus (PMC) built on top of a probabilistic modal logic
that allows encoding n-ary inequational conditions on transition probabilities. PMC extends previously
studied calculi and we prove that, despite its expressiveness, it enjoys a series of good metaproperties.
Firstly, we prove the decidability of satisfiability checking by establishing the small model property. An
algorithm for deciding the satisfiability problem is developed. As a second major result, we provide a
complete axiomatization for the alternation-free fragment of PMC. The completeness proof is innovative
in many aspects combining various techniques from topology and model theory.
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1 Introduction

From the perspective of industrial practice, especially in the area of embedded and cyber-physical
systems, an essential problem is how to deal with the high complexity of the systems, while still
meeting the requirements of correctness, predictability, performance and also non-functional prop-
erties. In this respect, for embedded systems, specification and verification should not only consider
functional properties but also non-functional properties. Particularly, effort has been put into form-
alisms and logics that address stochastic aspects of a system. The seminal work of Hansson and
Jonsson [13] introduced pCTL, a probabilistic extension of CTL. In a number of recent work results
related to decidability and complexity of model checking and satisfiability checking of (variants of)
pCTL have been established [1, 4, 5, 14, 22, 24].

In parallel, various probabilistic modal µ-calculi have been considered. Typically, one character-
izes the probabilistic bisimulation by using a probabilistic version of modal logic with the modality
indexed by a subunital positive real: e.g. 〈〉>pφ describes that the probability of reaching a next
state satisfying φ is greater than p. Whereas the resulting logic does fully characterize probabilistic
bisimulation, it is not sufficiently expressive with respect to decomposition of properties under static
operators. To address this, in [20] an extended n-ary next-state modality ((in-)equational modality)
was introduced: e.g. [〈x〉φ1, 〈y〉φ2 : x + y ≤ 0.7] describes that the probabilities x and y of reaching
next-states satisfying φ1 and φ2 respectively must satisfy the constraint x + y ≤ 0.7. This modality
allows one to encode complex linear constraints on probabilities.

In this paper we introduce a probabilistic µ-calculus (PMC) for specifying and reasoning about
the Markov processes. PMC extends with block sequences (equation systems) the modal logic of
[20]. As a first main result, we prove the decidability of satisfiability checking by establishing a
small model property for this logic. As a second main result, we provide a sound and complete
axiomatization for the alternation-free fragment of PMC.
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2 Probabilistic Mu-Calculus

Related Work. The satisfiability problem for the probabilistic logics with fixed points has been
a hot topic for a number of years. While this is still an open problem for pCTL and pCTL*, various
fragments have been solved. In [4,14], it is shown that qualitative pCTL (expressing only whether a
probability is bigger than 0 or equal to 1) has no finite model property and its satisfiability problem is
ExpTime-complete. Moreover, it is proven that satisfiability checking for pCTL against models with
bounded branching degree is highly undecidable; however, every satisfiable formula has a model
with branching degree bounded by the size of the formula. More recently, in [1], pCTL satisfiability
problem for bounded-size models is studied and proved to be decidable. In [22, 24], the qualitative
fragment of pCTL* is proved to be decidable too. In recent works [6, 23], the satisfiability problem
for an extension of the logic in [19] with fixed points is proven to be decidable. This logic only
involves probabilistic next-state operator and it cannot express the (in-)equational modalities of [20].

The decidability of probabilistic µ-calculus of [23] also derives as a particular case of the more
general results proven in [7], where it is shown that the decidability of coalgebraic mu-calculi para-
metrized by a tractable set of so-called one-step rules is in ExpTime; in [17] such a rule set has been
exhibited for probabilistic modal logic with linear inequalities. However, all these works were done
only for finite sets with discrete probability distributions.

In [25–27] probabilistic modal µ-calculus, Łukasiewicz µ-calculus, probabilistic modal µ-
calculus with independent product are studied in the context of denotational semantics and game
semantics, relying on a satisfiability relation that is not essentially boolean but rather quantitative.

Another fixed points probabilistic logic is proposed in [8]. Its syntax is divided into a probab-
ilistic part (so called state formulas) and a non-probabilistic part involving fixed points (so called
fuzzy formulas). This logic can encode the probabilistic modal logic and pCTL* and it is studied
from the perspective of (finite) model checking and bisimulation checking.

Considering the axiomatization, complete axiomatizations for the qualitative fragment of pCTL*
are shown in [22], but only for bounded finite systems.

Our Work. With respect to the related work described above, our probabilistic µ-calculus in-
volves the equational modalities of [20], thus allowing us to encode (in-)equational conditions on
probabilities. The logic is definitely more general than that of [23]. The semantics, with respect to
the other related works such as [7, 17] is in term of general (analytical) measurable sets and not just
finite spaces with discrete sigma-algebras; it has been repeatedly proven in literature, see e.g. [28],
that going from discrete systems to continuous systems is far from being a trivial step, and complex
topological and measure theoretical arguments applied to model theory must be invoked.

Our logic is incomparable with pCTL and pCTL* as it cannot express modalities such as "prob-
abilistic Until". The work here includes a modality extension but does not try to add this modality
to the more complicated logics of [5, 25–27]. However, our logic can be used to approximate pCTL
formulas with arbitrary precision when restricting to finite models. This is interesting as the satis-
fiability problem for quantitative pCTL is still open.

We prove that this logic enjoys the finite model property and its satisfiability problem is de-
cidable. We develop an algorithm that checks the satisfiability of a formula and, if the formula is
satisfiable, it constructs a finite model. Being the aforementioned state of the art in the field, these are
important results presenting our logic as a good trade-off between expressiveness and decidability.
Moreover, these results generalize the ones in [23] while our proof constructs on top of the classic
tableau method [15, 33, 34].

Another key contribution of our paper is the complete axiomatization that we propose for the
alternation-free fragment of PMC. At the best of our knowledge, the problem of axiomatizing prob-
abilistic µ-calculus has not been previously approached at this level of generality. The complete-
ness proof is a non-standard extension of the filtration method relying on topological facts such
as Rasiowa-Sikorski lemma and its relation to Lindenbaum’s lemma (following the technique de-
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veloped by the first two authors in collaboration with Dexter Kozen and Prakash Panangaden [16]).
The proof also applies the technique developed in [21] by the authors for proving the completeness
of fixed points logics. These can be easily adapted to other versions of probabilistic µ-calculus.

Due to space limit, most of the results stated in this extended abstract are without proofs. For a
detailed presentation, the reader is referred to http://people.cs.aau.dk/~bingt/probaMuCalc.pdf.

2 Probabilistic µ-Calculus

Probabilistic µ-Calculus (PMC) that we develop in this paper encodes properties of Markov pro-
cesses. As usual with µ-Calculus based on equation systems, the syntax is given in two stages: we
firstly introduce the basic formulas and secondly use them to define blocks. The basic formulas are
boolean formulas, constructed on top of a setA of atomic propositions and involving the following:
• recursive-variables range over the set X; they are used to define simultaneous recursive equations
in order to express maximal and minimal fixed points, in the style of [2, 9, 10, 18];
• (in-)equational modalities of type 〈x1〉φ1, . . . , 〈xn〉φn : Σn

i=1aixi ≥ r where x1, ..., xn are probability
variables ranging over a setV and a1, ..., an, r ∈ Q.

IDefinition 1 (Basic formulas). The basic formulas of PMC are defined by the following grammar,
for arbitrary p ∈ A, X ∈ X, a1, ..., an, r ∈ Q, x1, ..., xn ∈ V:

L : φ := p | ¬φ | φ ∨ φ | 〈x1〉φ1, . . . , 〈xn〉φn : Σn
i=1aixi≥r | X .

Notation: For arbitrary x ∈ Vn, a ∈ Qn, r ∈ Q and φ ∈ Ln, instead of 〈x1〉φ1...〈xn〉φn, we simply
write 〈x〉φ and instead of Σn

i=1aixi≥r we write a·x≥r. This will simplify the syntax of the equational
modalities and instead of 〈x1〉φ1...〈xn〉φn : Σn

i=1aixi ≥ r, we will write 〈x〉φ : a ·x ≥ r. In this case, n
is called the length of 〈x〉φ : a · x ≥ r. If 〈x〉φ = 〈x1〉φ1...〈xn〉φn and a · x = Σn

i=1aixi, for k < n, let
〈x〉φ

∣∣∣
k

def
= 〈x1〉φ1...〈xk〉φk and a·x

∣∣∣
k

def
= Σk

i=1aixi.
Observe that in the basic formulas we only allow one inequality using ≥ to specify the constraints

on x. However, we can, for instance, encode reversed inequalities since we are using all rationals;
and we can encode a finite set of constraints by involving conjunctions of the equational modalities.

The dual of 〈x〉φ : a ·x ≥ r can be defined as 〈x〉φ : a ·x < r; for this reason, we write constraints
freely using ≥,≤, > or <. We use both E and D to range over the set {≤,≥} such that {E,D} = {≤,≥}.
Similarly, we use C and B to range over the set {<, >} such that {C,B} = {<, >}.

Now we introduce the equation blocks. Given φ, ψ1, ..., ψh ∈ L and X1, ..., Xh ∈ X, let
φ{ψ1/X1, ..., ψh/Xh} be the formula obtained by substituting each occurrence of Xi in φ with ψi for
i = 1, ..., h; denoted shortly φ{ψ/X}, where ψ = (ψ1, ..., ψh) and X = (X1, ..., Xh). Following [2,9,10],
we allow sets of the maximal or minimal blocks of mutually recursive equations in PMC.

I Definition 2 (Equation Blocks). An equation block B over the set XB = {X1, . . . , XN} ⊆ X

of pairwise distinct variables has one of two forms – min{E} or max{E}, where E is a system of
(mutually recursive) equations such that for any i, j ∈ {1, ...,N}, φi is monotonic in X j.

E : 〈 X1 = φ1, . . . , XN = φN 〉

If B = max{E} or B = min{E}, the elements of XB are called max-variables or min-variables
respectively. Given the system E of equations in the previous definition, its dual is

Ẽ : 〈 X1 = ¬φ1{¬X1/X1, . . . ,¬XN/XN}, . . . , XN = ¬φN{¬X1/X1, . . . ,¬XN/XN} 〉

If B = max{E} or B = min{E}, then its dual is B̃ = min{Ẽ} or B̃ = max{Ẽ} respectively.
We say that a formula φ ∈ L depends on B if it involves variables in XB. If XB ∩ XB′ = ∅, we

say that B is dependent on B′ if the right hand side formulas of the equations in B depend on B′.

I Definition 3 (Block Sequence). A sequence B = B1, . . . , Bm of m ≥ 1 pairwise-distinct equation
blocks is a block sequence if XBi ∩ XB j = ∅ for i , j. A block sequence B = B1, . . . , Bm of m ≥ 1 is
called alternation-free if Bi is not dependent on B j whenever i < j.

http://people.cs.aau.dk/~bingt/probaMuCalc.pdf
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A formula φ ∈ L is dependent on B if it is dependent of each block in the sequence.
The semantics of our calculus is defined in terms of (probabilistic) Markov processes [28].

I Definition 4 (Markov Process). A (probabilistic) Markov process (PMP) is a tuple M =

(M,Σ, l, θ) with (M,Σ) an analytic measurable space1 of states, l : M → 2A a labeling function
associating a set of state labels (i.e., atomic propositions) to each state and θ : M → Π(M,Σ) the
transition function associating a probability measure over (M,Σ) to each state.

Given a PMP M = (M,Σ, l, θ), an environment is a function ρ : X → 2M that interprets the
recursive-variables as sets of states. We use 0 as the empty environment that associates ∅ to all
recursive-variables. Given an environment ρ and S ⊆ M, let ρ[X 7→ S ] be the environment that
interprets X as S and all the other recursive-variables as ρ does. Similarly, for a pairwise-disjoint
tuple X = (X1, ..., XN) ∈ XN and S = (S 1, ..., S N) ⊆ MN , let ρ[X 7→ S ] be the environment that
interprets Xi as S i for all i = 1, ...,N and all the other variables as ρ does.

Given a PMPM = (M,Σ, l, θ) and an environment ρ, the semantics for the basic formulas in L
is defined, on top of the classic semantics for Boolean logic, inductively as follows,
M,m, ρ |= p iff p ∈ l(m);
M,m, ρ |= ¬φ iffM,m, ρ 6|= φ;
M,m, ρ |= φ1 ∨ φ2 iffM,m, ρ |= φ1 orM,m, ρ |= φ2;
M,m, ρ |= X iff m ∈ ρ(X);
M,m, ρ |= 〈x〉φ : a·x≥r iff Σn

i=1aiθ(m)(~φi�
M
ρ ) ≥ r, where ~φ�Mρ = {m ∈ M | M,m, ρ |= φ}.

Following [2, 9, 10, 18], we extend now the semantics to include the restrictions imposed by a
sequence of blocks and obtain the so-called block-semantics.

Given a set of equations E with X = (X1, ..., XN), an environment ρ and Υ = (Υ1, ...,ΥN) ⊆ MN ,
let the function f ρE : (2M)N −→ (2M)N be defined as: f ρE (Υ) = 〈~φ1�ρ[X 7→Υ], . . . , ~φN�ρ[X 7→Υ]〉.

Observe that (2M)N forms a complete lattice with the ordering, join and meet operations defined
as the point-wise extensions of the set-theoretic inclusion, union and intersection, respectively.
Moreover, for any E and ρ, f ρE is monotonic with respect to the order of the lattice and therefore, it
has a greatest fixed point denoted by νX. f ρE and a least fixed point denoted by µX. f ρE [9]. These can
be characterized as: νX. f ρE =

⋃
{Υ | Υ ⊆ f ρE (Υ)}, µX. f ρE =

⋂
{Υ | f ρE (Υ) ⊆ Υ}.

The blocks max{E} and min{E} define environments that satisfy all the equations in E; max{E}
is the greatest fixed point and min{E} is the least fixed point. The environment defined by the block
B is denoted by ~B�ρ. Given a block sequence B = B1, . . . , Bm and an environment ρ0, let ρ1, . . . , ρm

be defined by ρi = ~Bi�ρi−1 for i = 1, . . . ,m. The semantics of B is then given by
~B�ρ0 = ρm.

I Definition 5 (Block-Semantics). Given a block sequence B, the B-semantics of a formula φ ∈ L
that depends on B is given for a PMPM = (M,Σ, l, θ) with m ∈ M and an environment ρ, as follows,

M,m, ρ |=B φ iff M,m, ~B�ρ |= φ.

We say that a formula φ is B-satisfiable if there exists at least one PMP that satisfies it for the
block sequence B in one of its states under some environment; φ is a B-validity, written |=B φ, if it
is satisfied for B in all states of any PMP under any environment.

I Example 6. Suppose a file is divided into n blocks that are distributed among several peers in
a peer-to-peer network. When a user wants to get the complete file from the network, he needs to
download all n blocks. When the user tries to download a block, there are three possibilities: (1)
he gets the block successfully and he will try to download the next block (with probability 0.6);

1 An analytic space1 is a continuous image of a Polish space in a Polish space; a Polish space is the topological space
underlying a complete separable metric space.
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(2) the block is not available anymore, in which case it is not possible to get the complete file (with
probability 0.1); (3) the peer did not response within a time limit and the user retries (with probability
0.3). To simplify the example, we assume that only one block can be downloaded at one time. The
system (1) in Figure 1 is one of this type.

m0

m1

...

mn−1

mn SUCCESS

m f
...

FAIL

0.6

0.3

0.6

0.6

0.3

0.6

0.3

1

1

0.1

0.1

0.1

(1) Probabilistic System

m′0

m′1

...

m′n−1

m′n SUCCESS

m′f

FAIL

(2) Non-probabilistic System

Figure 1 Peer-to-peer file sharing network

Consider the safety property that "it will never
FAIL to get the file" as shown in the system (2)
in Figure 1. In the non-probabilistic case, this can
be specified by the mu-calculus formula φ:

φ = SUCCESS ∨ X

B = max
{

X = ¬FAIL ∧ ¬SUCCESS
∧(〈〉SUCCESS ∨ 〈〉X)

}
,

where φ is satisfied by m′0, ...,m
′
n and X is satisfied

by m′0, ...,m
′
n−1.

Consider the probabilistic safety property that "at
any moment, the probability of FAIL to get the file
is less than or equal to 0.1". This requirements can
be expressed in PMC as:

φ = SUCCESS ∨ X

B = max
{

X = ¬FAIL ∧ ¬SUCCESS∧
(〈x1〉SUCCESS, 〈x2〉X : x1 + x2 ≥ 0.9)

}
,

where φ is satisfied by m′0, ...,m
′
n and X by

m′0, ...,m
′
n−1. Notice that, the properties still hold

when the system is infinite, i.e., n goes to +∞.

3 Decidability and finite model property

In this section, we prove that the B-satisfiability problem of PMC is decidable, i.e., it is decidable
whether a given formula φ of PMC which is closed w.r.t. a block sequence B is satisfiable. We
do this by involving the tableau construction [15, 33, 34] that will eventually help us constructing a
model for φ. We show that PMC enjoys the finite model property and present a decision procedure.
This work is done for the entire PMC and not only for the alternation-free fragment.

Given a formula φ dependent on B, the construction of the model follows 4 steps (in brief):
1. Find the so-called co-prime formula φc for φ, which has a special format and admits the same
models as φ. Similarly, we construct a co-prime block sequence Bc. Both φc and Bc only involve
integer inequalities with co-prime coefficients in the equational modalities.
2. Construct a set of formulas which is vital in constructing the tableau for φc. In contrast to that of
the classical µ-calculus, this set not only contains the subformulas of φc and Bc but also it is still a
finite set of formulas. This construction involves complex continuity arguments on rationals and this
makes it particularly different of any similar techniques used previously with µ-calculi. The basic
idea behind it is that every rational inequality (system) has (at least) one rational solution.
3. Construct a tableau for φc by adapting the classical tableau method. They key here is to use
maximal sets as nodes, in order to get the probability distributions over the state space.
4. The tableau provides a PMP, which is also a model for φc, hence also for φ.

I Definition 7 (Co-Prime). A block sequence B (a formula φ ∈ L dependent on B) is said to be
co-prime iff for any 〈x〉ψ : a·x≥r that appears in B (in φ or B), a1, . . . , an are co-prime integers.

For any inequality Σn
i=1aixi ≥ r, one can divide both sides of the inequality by the greatest

common divisor of a1, ..., an to get an inequality that has the same solution. Hence, for any block
sequence (formula), one can get its co-prime block sequence (co-prime formula) by changing all
inequalities in it by the above mentioned method.
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Properties: 1. For any block sequence B, there exists a unique co-prime block sequence denoted by
Bc; for any formula φ, there exists a unique co-prime formula denoted by φc.
2. For any formula 〈x〉φ : ax≥r, (〈x〉φ : ax≥r)c ∈ {〈x〉φ : x ≤ r

a , 〈x〉φ : x ≥ r
a }.

I Proposition 8. For any φ ∈ L dependent on B and its co-prime formula φc, any model satisfying
one also satisfies the other, i.e., for any PMPM = (M,Σ, l, θ) with m ∈ M and any environment ρ,

M,m, ρ |=B φ iffM,m, ρ |=Bc φc.

Therefore, for solving the satisfiability problem of a formula, it is sufficient to solve the satis-
fiability problem of its co-prime formula.

Consider φ ∈ L dependent on B. The set of all the recursive-variables in φ and B is denoted
X[φ,B]. Let R[φ,B] ⊆ Q be the set of all rationals in φ or B; let R∗[φ,B] ⊆ Q be the set of all r

ai
s.t.

〈x〉ψ : (a1, .., an)·x≥r appears in φ or B and ai , 0. Obviously, R[φ,B] and R∗[φ,B] are both finite.
• The granularity of φ dependent on B, denoted by gr(φ,B), is the least common denominator
of the elements of R∗[φ,B]. Let I[φ,B] be the set of all rationals of type p

gr(φ,B) in the interval
[min(R∗[φ,B]),max(R∗[φ,B])], for p ∈ Z. Notice that I[φ,B] = ∅ whenever R∗[φ,B] = ∅.
• The modal depth of φ dependent on B, denoted by md(φ,B), is defined inductively by

md(φ,B) =


0, if φ = p or φ = X
md(ψ,B), if φ = ¬ψ

max{md(ψ),md(ψ′)}, if φ = ψ ∨ ψ′

max{md(ψi) | i = 1, . . . , n} + 1, if φ = 〈x〉ψ : a·x≥r
• The modality length of φ dependent on B, denoted by ml(φ,B), is largest length of the sub-formula
〈x〉ψ : a·x≥r that appears in φ or B.

In the following, we fix a co-prime formula φc ∈ L dependent on a co-prime block sequence Bc

and we construct a model for it. Let
(~) L[φc,Bc] = {φ ∈ L | X[φ,Bc] ⊆ X[φc,Bc],R[φ,B] ⊆ R[φc,Bc],

I[φ,B] ⊆ I[φc,Bc],md(φ,Bc) ≤ md(φc,Bc),ml(φ,Bc) ≤ ml(φc,Bc)}.
The classical construction will take sets of formulas from the set L[φc,Bc], which are proposi-

tional maximal as defined in the next definition. However, in our setting, the set L[φc,Bc] does not
contain enough quantitative information for constructing the model yet. Therefore, there are two
extension steps to gather all the quantitative information to get the right candidate for the states of
the model, which are quantitative maximal and quantitative complete as defined in Definition 10 and
Definition 11. This information will make sure that we are able to find the rational solutions for all
the inequalities, which will be used to define the probabilities on the transitions.

I Definition 9 (Propositional Maximal Set). A set Λ ⊆ L[φc,Bc] is (propositional) maximal iff:
1. if φ ∈ Λ, then ¬φ < Λ; if φ ∨ ψ ∈ Λ, then φ ∈ Λ or ψ ∈ Λ; if X ∈ Λ and X = φ ∈ Bc, then φ ∈ Λ;
2. for all φ ∈ L[φc,Bc], 〈x〉φ : x≥0 ∈ Λ and 〈x〉φ : x≤1 ∈ Λ;
3. if 〈x〉ψ : a·xC r ∈ Λ, then 〈x〉ψ : a·xE r ∈ Λ.

Let Π[φc,Bc] the set of all the (propositional) maximal sets of L[φc,Bc]. Since L[φc,Bc] is
finite, Π[φc,Bc] is finite and any Λ ∈ Π[φc,Bc] is finite. As we mentioned earlier, L[φc,Bc] is not
sufficient for constructing the model, so we will extend L[φc,Bc] and Π[φc,Bc] in two steps. Firstly,
Λ∈ Π[φc,Bc] is not quantitative maximized defined as follows:

I Definition 10 (Quantitatively Maximized Set). A set A ⊆ L is quantitatively maximized iff
1. if 〈x〉φ : xE r ∈ A, then 〈x〉¬φ : xD1 − r ∈ A;
2. if 〈x〉(φ ∧ ψ) : xE r1 ∈ A and 〈x〉(φ ∧ ¬ψ) : xE r2 ∈ A, then 〈x〉φ : xE r1+r2 ∈ A;
3. if 〈xn〉φn : xn D rn ∈ A, 〈x〉φ : a·xE r ∈ A and an ≥ 0, then 〈x〉φ

∣∣∣
n−1 : a·x

∣∣∣
n−1 E r−anrn ∈ A;

4. if 〈xn〉φn : xn D rn ∈ A, 〈x〉φ : a·xC r ∈ A and an ≥ 0, then 〈x〉φ
∣∣∣
n−1 : a·x

∣∣∣
n−1 C r−anrn ∈ A;

5. if 〈xn〉φn : xn E rn ∈ A, 〈x〉φ : a·xE r ∈ A and an ≤ 0, then 〈x〉φ
∣∣∣
n−1 : a·x

∣∣∣
n−1 E r−anrn ∈ A;

6. if 〈xn〉φn : xn E rn ∈ A, 〈x〉φ : a·xC r ∈ A and an ≤ 0, then 〈x〉φ
∣∣∣
n−1 : a·x

∣∣∣
n−1 C r−anrn ∈ A.
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The quantitative maximization extends the lower bound and upper bound of all the rationals
considered. This makes sure that all the numbers related to the given formula are included. These
numbers are needed in order to find all the solutions for the inequalities in φc and Bc.

Extension Step I: Let pmax
gr(φc,Bc) ,

pmin
gr(φc,Bc) with pmax, pmin ∈ Z and max′,min′ ∈ Q be such that if

the conditions 1 – 4 below are satisfied, then for any Λ ∈ Π[φc,Bc], there exists Λ′ ∈ Π′[φc,Bc] such
that Λ ⊆ Λ′ and Λ′ is quantitatively maximized,
1. I′[φc,Bc] be the set of all p

gr(φc,Bc) in the interval [ pmax
gr(φc,Bc) ,

pmin
gr(φc,Bc) ] for any p ∈ Z;

2. R′[φc,Bc] = {r ∈ Q | min′ ≤ r ≤ max′]};
3. L′[φc,Bc] ⊇ L[φc,Bc] is the set of formulas defined as (~) based on I′[φc,Bc] and R′[φc,Bc];
4. Π′[φc,Bc] the set of the propositional maximal sets of L′[φc,Bc].

In order to find the maximal number related to 2 in Definition 10, one can start with adding the
〈x〉φ : x E r1 + r2 and its negation which are not in L[φc,Bc] to get L′[φc,Bc] and continue doing
the same to the new L′[φc,Bc]. Since L[φc,Bc] is finite, this procedure will terminate. Similarly
one can do the same for the others and find the numbers. It is obvious that L′[φc,Bc] and Π′[φc,Bc]
are still finite. For any Λ ∈ Π[φc,Bc], choose Λ′ ∈ Π′[φc,Bc] s.t. Λ ⊆ Λ′ and Λ′ is quantitatively
maximized. Let the set of the chosen Λ′ be Ω′[φc,Bc], which is finite.

In order to define the distribution on the model correctly, we need to obtain more information
about the maximal sets, which is the quantitative completeness defined as follows.

I Definition 11 (Quantitatively Complete Set). Given any finite set L∗ ⊆ L. A propositional
maximal set Λ∗ of L∗ is called quantitatively complete iff ulφ

Λ∗
= urφ

Λ∗
for any φ ∈ L∗, where

ulφ
Λ∗

= max{r ∈ Q | 〈x〉φ : x≥r ∈ Λ∗}, urφ
Λ∗

= min{s ∈ Q | 〈x〉φ : x≤ s ∈ Λ∗}.

The above notion captures the accuracy of the rationals, which states how precise we can express
in the logic. This makes sure that we include (at least) one rational solution for every inequality.

I Lemma 12. For any φ ∈ L′[φc,Bc] (L[φc,Bc]) and any Λ′ ∈ Ω′[φc,Bc] (Λ ∈ Π[φc,Bc]),
1. ulφ

Λ′
, urφ

Λ′
∈ [0, 1] ∩ Q; 2. either ulφ

Λ′
= urφ

Λ′
or ulφ

Λ′
+ 1

gr(φc,Bc) = urφ
Λ′

.

Extension Step II: Let h ∈ N be such that if the conditions 1 – 3 below are satisfied, then for any
Λ′ ∈ Ω′[φc,Bc], there exists Λ+ ∈ Π+[φc,Bc] such that Λ′ ⊆ Λ+ and Λ∗ is quantitatively complete.
1. gr+(φc,Bc) = gr(φ,B) · 2h;
2. L+[φc,Bc] ⊇ L′[φc,Bc] is the set of formulas defined as (~) based on gr+(φc,Bc);
3. Π+[φc,Bc] the set of the propositional maximal sets of L+[φc,Bc].

Since L′[φc,Bc] is finite and all the numbers in the constraints on the quantitative variables are
rationals, there exist rational solutions for the inequality systems. Hence, we can find such an h
in finitely many steps by multiplying the granularity by 2 every time. Obviously L+[φc,Bc] and
Π+[φc,Bc] are finite. For any Λ′ ∈ Ω′[φc,Bc], choose Λ+ ∈ Π+[φc,Bc] s.t. Λ′ ⊆ Λ+ and Λ+ is
quantitatively complete. Let the set of the chosen Λ+ be Ω+[φc,Bc].

I Lemma 13. For any φ ∈ L+[φc,Bc] and any Λ+ ∈ Ω+[φc,Bc],
ulφ

Λ+ = urφ
Λ+ ∈ [0, 1] ∩ Q.

In what follows, let uφ
Λ+ = ulφ

Λ+ = urφ
Λ+ . Now we are ready to construct a model for φc dependent

on Bc. We construct a tableau T [φc,Bc] for φc with Λ+ ⊆ Ω+[φc,Bc] as the nodes. The reason for
here, unlike in the standard construction [15,33,34], we consider Λ+ as a node is because we need to
derive information about probabilities from the nodes. The tableau rules are listed in Table 1, where
∆ ⊆ Λ+ denotes Λ+ including ∆ and {φ,∆} denotes {φ} ∪ ∆.

If (Mod) is applied at node t, the nodes ∆ j ⊆ Λ+
j obtained from 〈x〉φ : a·x≥r s.t. φi ∈ ∆ j are called

φi-sons of t. The tableaux may be infinite. However, because Ω+[φc,Bc] and any Λ+ ∈ Ω+[φc,Bc]
are both finite, the nodes of the type ∆ ⊆ Λ+ appear in T [φc,Bc] are finitely many.

As in the classic method for µ-calculus [15, 33, 34], we use max-trace, min-trace to capture the
idea of a history of the regeneration of a formula (similar to the classic definitions and presented
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(∧)
{φ1, φ2,∆} ⊆ Λ+

{φ1 ∧ φ2,∆} ⊆ Λ+
(∨)

{φi,∆} ⊆ Λ+

{φ1 ∨ φ2,∆} ⊆ Λ+
φi ∈ Λ+, i = 1 or 2 (Reg)

{φX ,∆} ⊆ Λ+

{X,∆} ⊆ Λ+
X = φX ∈ B

(Mod)
∆1 ⊆ Λ+

1 · · · ∆k ⊆ Λ+
k

∆ ⊆ Λ+
∅ , ∆ j ⊆

⋃
〈x〉φ : a·x≥r∈∆

{φ1, . . . , φn} ⊆
⋃

j=1,...,k

∆ j

Table 1 Tableau Rules

in the appendix). We adapt the notions of markings, consistent markings to the probability case to
characterize B-satisfiability of a formula in a state of a PMP.

I Definition 14 (Marking). For a tableau T , we define its marking with respect to a PMP M =

(M,Σ, l, θ) and state m0 ∈ M to be a relationM ⊆ M × T satisfying the following conditions:
(i) (m0, t0) ∈ M, where t0 is the root of T ;

(ii) if (m, t) ∈ M and a rule other than (Mod) was applied at t, then for the son t′ of t, (m, t′) ∈ M;
(iii) if (m, t) ∈ M with t = (∆ ⊆ Λ+) and rule (Mod) was applied at t, then for any 〈x〉φ : a·x≥r ∈ ∆,
there exists F1, . . . , Fn ⊆ M s.t. for any i = 1, . . . , n:

(a) for every φi-son t′ of t, there exists a state m′ ∈ Fi s.t. (m′, t′) ∈ M, and
(b) for every state m′ ∈ Fi, there exists a φi-son t′ of t s.t. (m′, t′) ∈ M, and
(c) uφi

Λ+ = θ(m)(Fi).

I Definition 15 (Consistent Marking). A marking M of T is consistent with respect to M =

(M,Σ, l, θ) and m0 ∈ M, if and only ifM satisfies the following conditions:
• local consistency: for any node t = (∆ ⊆ Λ+) ∈ T and state m ∈ M, if (m, t) ∈ M then for any
ψ ∈ ∆,M,m, 0 |=B ψ;
• global consistency: for every path P = t0, t1, . . . of T s.t. there exist πi with (πi, ti) ∈ M for
i = 0, 1, . . ., there is no min-trace on P.

I Lemma 16. φc is satisfied at state m0 in a PMPM = (M,Σ, l, θ) if and only if there is a consistent
marking of T [φc,Bc] with respect toM and m0.

The proof of Lemma 16 relies on notion of signature, similar to that considered by Streett and
Emerson [33]. These notions come from the characterization of fixed point formulas by means
of transfinite chains of approximations, which have been extended to the setting with fixed points
defined with blocks in [9, 10]. Involving these, the previous lemma is proven similarly to the case
of classic µ-calculus [15, 33, 34]. The correctness of the cases with probability is guaranteed by the
quantitative maximatization and quantitative completeness defined in Definition 10 and 11.

This lemma allows us to prove the finite model property for PMC, by following the classic proof
strategy of [15]; the only difference consists in managing the probability modalities.

I Theorem 17 (Finite Model Property). Let φ0 ∈ L be a formula that depends of B0. If φ0 is
B0-satisfiable, then there exists a finite PMPM f = (M f ,Σ f , θ f ) with m f ∈ M f and an environment
ρ f such thatM f ,m f , ρ f |=B0 φ0.

According to Proposition 8, Lemma 16 and Theorem 17, we can obtain an algorithm to decide
the satisfiability of a given PMC formula.

I Algorithm. Given a PMC formula φ0 ∈ L dependent on the block sequence B0, the algorithm
constructs a finite PMPM f = (M f ,Σ f , l f , θ f ) and an environment ρ f such thatM f ,m f , ρ

f |=B0 φ0

in the following steps:
1. Construct the co-prime block sequence Bc

0 of B0 and the co-prime formula φc
0 of φ0.

2. Construct L[φc
0,B

c
0] and Π[φc

0,B
c
0], which are finite.

3. Construct L′[φc
0,B

c
0] and Ω′φc

0,B
c
0] by Extension Step I. L′[φc

0,B
c
0] and Ω′φc

0,B
c
0] are finite.

4. Construct L+[φc
0,B

c
0] and Ω+[φc

0,B
c
0] by Extension Step II. L+[φc

0,B
c
0] and Ω+[φc

0,B
c
0] are finite.

5. Construct the tableau T [φc
0,B

c
0] according to the rules in Table 1.
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6. ConstructM f = (M f ,Σ f , θ f ) as follows:
• M f is the set of the nodes of t ∈ T [φc

0,B
c
0] such that either (Mod) is appiled at t or no rules are

applicable at t (t is a leaf).
• Let LφiM = {Λ+

i | φi ∈ Λ+
i ∈ M

f }, N = {LψM | (Mod) is applied in T [φc
0,B

c
0] for 〈x〉φ

n
: a·x≥ r, ψ =

φi for some i} . Then Σ f = σ(N).
• l f is defined as: for any t = Λ+ ∈ M f , l f (t) = {p ∈ A | p ∈ Λ+}.
• For t = Λ+ ∈ M f where (Mod) is applied, let θ f (t)(LφM) = uφ

Λ+ for any LφM ∈ N.
Let ρ f (X) = {Λ+ | X ∈ Λ+} for X ∈ X. By Theorem 17M f , t, ρ f |=Bc

0
φc

0 for t = Λ+ s.t. φc
0 ∈ Λ+.

7. Therefore,M f , t, ρ f |=B0 φ0, by Theorem 8.

I Example 18. Consider the property in Example 6:
φ = SUCCESS ∨ X

B = max
{

X = ¬FAIL ∧ ¬SUCCESS
∧ (〈x1〉SUCCESS, 〈x2〉X : x1 + x2 ≥ 0.9)

}
,

As discussed in Example 6, φ is satisfiable. We can use the
above algorithm to construct a model for it (the smallest
one), as shown in Figure 2. The detailed steps of construc-
tion is omitted here.

m0

m1 SUCCESS

m′

FAIL
0.6

0.3 1
0.1

Figure 2 Small model Construction

I Theorem 19 (Decidability of B-Satisfiability). TheB-satisfiability problem for PMC is decidable.

PMC can be used to approximate pCTL formulas with arbitrary precision when restricting to
finite models. Our approximation is based on a partition P : 0 < π1 < · · · < πk < 1 of [0, 1]. To
(under-)approximate the pCTL formula φi = P≥πi (φ1Uφ2) in PMC, we define recusively:

BP = min{Xu
i = φu

2 ∨ (φu
1 ∧ 〈x j〉Xu

j : (x j − x j+1)π j ≥ πi | i = 1 . . . k}.
Let S i be the set of states satisfying the pCTL formula φi. Then the vector 〈S i : i = 1 . . . k〉 is a fixed
point to the block B above, and it follows (from minimal fixed point semantics of B) that Xu

i ⇒ φi.
Thus successful application of our finite-model property construction to Xu

i will provide a model for
φi as well. We conjecture that if there is a finite modelM satisfying φi = P≥π(φ1Uφ2), then for any
ε > 0 we can find a partitioning P such thatM |=BP Xu

i where πi ≥ π − ε. This will be an alternative
to the construction for pCTL satisfiability problem in [1]. This also shows that, when restricting to
finite models, even though we could not encode pCTL in PMC (e.g., the until operator), we could
use a PMC theory (a (infinite) set of formulas) to approximate it.

4 Axiomatization for Alternation-free PMC

In this section, we propose an axiomatization for the validities of alternation-free fragment of PMC
with respect to the PMP-semantics and prove it sound and (weak-)complete.

4.1 Sound axiomatization
In order to state the axioms for PMC we need to establish some notions. Let X be a metavariable
quantifying over L and 〈x〉φ(X) = 〈x1〉φ1, . . . , 〈xi〉[X], . . . , 〈xn〉φn. For arbitrary sequences φ j =

φ j1...φ jk j and x j = x j1...x jk j , j = 1, ..., l, we construct the following generic formula involving X:
C[X] = 〈x1〉φ1(〈x2〉φ2(· · · (〈xl〉φl(X) : al·xl≥rl) · · · ) : a2·x2≥r2) : a1·x1≥r1.

We call C[X] a context; it can be instantiated to a PMC formula C[φ] for φ ∈ L. Also ε[X] is a
context - the empty one - and for φ ∈ L, ε[φ] = φ. Notice that the metavariable X only appears once
in the syntax of the context, i.e., we only consider contexts with one hole.

The axiomatization of PMC is given in two phases. Firstly, we provide axioms for deriving the
validities that do not depend on sequences of blocks; and secondly, we extend the axiomatization to
recursive constructs. The axioms and rules presented in Table 2 together with the axioms and the
rules of propositional logic axiomatize a classic deducibility relation (see [12]) for the non-recursive
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validities of PMC denoted by `. The axioms and the rules are stated for arbitrary φ, ψ ∈ L, r, s ∈ Q,
x, y ∈ V and arbitrary context C[X], where {E,D} = {≤,≥} and B ∈ {<, >}.

(A1): ` 〈x〉φ : x≥0 ∧ 〈x〉φ : x≤1 (A2): ` 〈x〉φ : a·x≥r ∨ 〈x〉φ : a·x≤r
(A3): ` 〈x〉φ : a·x≤r → 〈x〉φ : a·x< s, r < s (A4): ` ¬(〈x〉φ : a·x≥r)↔ 〈x〉φ : a·x<r
(A5): ` 〈x〉φ : a·x≥r ↔ 〈x〉¬φ : a·x<a − r (A6): ` 〈x1〉(φ ∧ ψ) : x1 E r1 ∧ 〈x2〉(φ ∧ ¬ψ) : x2 E r2

(A7): ` 〈x〉φ : a·x≥r → 〈x〉φ : α·(a·x)≥αr, α ∈ Q≥0 → 〈x〉φ : xE r1+r2

(A8): ` 〈x〉φ : a·x≥r ∧ 〈x〉φ : b·x≥ s→ 〈x〉φ : (a + b)·x≥r + s (A9):if an = 0, then ` 〈x〉φ : a·x≥r → 〈x〉φ
∣∣∣
n−1 : a·x

∣∣∣
n−1 ≥r

(R1): if ` φ↔ ψ, then ` 〈x〉φ : xE r ↔ 〈x〉ψ : xE r (R2):{C[〈x〉φ : a·xE r] | r B s} ` C[〈x〉φ : a·xE s]
Table 2 Axiomatic System of PMC basic formulas

I Theorem 20 (Soundness). The axiomatic system of ` is sound, i.e., for arbitrary φ ∈ L,
` φ implies |= φ.

Now we can proceed with the recursive constructs.
Given a maximal equation block B = max{X1 = φ1, . . . , XN = φN} and an arbitrary classical

deducibility relation `∗, we define the deducibility relation `∗B as the extension of `∗ given by the
axioms and rules in Table 3, which are the equation-version of the fixed points axioms of µ-calculus
[15, 29, 32]. These are stated for arbitrary φ ∈ L and Ψ = (ψ1, ..., ψN) ∈ LN , where X = (X1, ..., XN).
Similarly, we define a classical deducibility relation `∗B for a minimal equation block B = min{X1 =

φ1, . . . , XN = φN} based on `∗ by using the axioms and rules in Table 4.

(max-R1): If `∗ φ, then `∗B φ
(max-A1): `∗B

∧
i=1,...,N (Xi → φi)

(max-R2): If `∗B
∧

i=1,...,N (ψi → φi{Ψ/X}),
then `∗B

∧
i=1,...,N (ψi → Xi)

Table 3 Axiomatic System of Maximal
Equation Blocks

(min-R1): If `∗ φ, then `∗B φ
(min-A1): `∗B

∧
i=1,...,N (φi → Xi)

(min-R2): If `∗B
∧

i=1,...,N (φi{Ψ/X} → ψi),
then `∗B

∧
i=1,...,N (Xi → ψi)

Table 4 Axiomatic System of Minumum
Equation Blocks

Given an alternation-free block sequence B = B1, ..., Bm, we define the classical deducibility
relations `0, `1, ..., `m as follows and consequently get `B=`m.

`0 = `; `i = `i−1
Bi

for i = 1, ...,m
As usual, we say that a formula φ (or a set Φ of formulas) is B-provable, denoted by `B φ

(respectively `B Φ), if it can be proven from the given axioms and rules of `B. We denote by
Ψ = {φ ∈ L | Ψ `B φ}. An induction on the structure of the alternation-free blocks shows that all the
theorems of `B are sound in the PMC-semantics.

I Theorem 21 (Extended Soundness). The axiomatic system of `B is sound, i.e., for any φ ∈ L,
`B φ implies |=B φ.

4.2 Completeness

In the rest of this section we prove that the axiomatic system of `B is not only sound, but also (weak-)
complete, meaning that all the B-validities can be proved, as theorems, from the proposed axioms
and rules, i.e., for arbitrary φ ∈ L, |=B φ implies `B φ. To complete this proof it is sufficient to show
that any B-consistent formula has a model.

For some set S ⊆ L, Φ is (S ,B)-maximally consistent if it is B-consistent and no formulat in
S can be added to Φ without making it inconsistent. Φ is B-maximally-consistent if it is (L,B)-
maximally-consistent.

In the following we fix a consistent formula φ0 depending on a fixed alternation-free sequence
B0 and we construct a model. Let

(~) L[φ0,B0] = {φ ∈ L | X[φ,B0] ⊆ X[φ0,B0],R[φ,B] ⊆ R[φ0,B0],
I[φ,B] ⊆ I[φ0,B0],md(φ,B0) ≤ md(φ0,B0),ml(φ,B0) ≤ ml(φ0,B0)}

and Π[φ0,B0] be the set of all the maximal consistent sets of L[φ0,B0]. Similar to the arguments in
Section 3, L[φ0,B0] and Π[φ0,B0] are finite. Let Π be the set of the L-maximal consistent sets.
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Different from the model construction in Section 3, we takeL-maximally consistent sets as sates.
However, we don’t take all the L-maximally consistent sets as the state space, which are countably
many. We will develop a finite state space as follows.

Since the set of instances of the infinitary rule in Table 2 is countable, we can use the Rasiowa-
Sikorski Lemma [12, 30] to prove Lindenbaum’s Lemma [11, 12] for PMC, following the technique
in [16]. These lemmas are presented in the appendix. Suppose that for each Λ ∈ Π[φ0,B0] we chose
one Γ ∈ Π such that Λ ⊆ Γ (Lindenbaum’s Lemma); to identify it, we denote this Γ by Λe. Let
Θ = {Λe ∈ Π | Λ ∈ Π[φ0,B0]}. Since Π[φ0,B0] is finite, Θ is obviously finite as well.

In what follows we will construct a PMPM = (Θ,Σ, l, θ) that satisfies φ0 in one of its states. To
do this, we have to properly define l, Σ and θ. l is defined as: l(Γ) = {p ∈ A | p ∈ Γ} for any Γ ∈ Θ.

For defining Σ and θ, we firstly observe that given aB0-maximally-consistent set of formulas, the
information contained about the resource-variable for a given formula is complete, in the sense that
we can really identify its value, since any real number can be seen as the limit of some sequences of
rational numbers. This is exactly what the next lemma states.

I Lemma 22. For arbitrary Γ ∈ Θ and φ ∈ L[φ0,B0],
sup{r ∈ Q≥0 | 〈x〉φ : x≥r ∈ Γ} = inf{s ∈ Q | 〈x〉φ : x≤ s ∈ Γ} ∈ R ∪ [0, 1].

I Lemma 23. Let LφM = {Γ ∈ Θ | φ ∈ Γ} and N = {LφM | φ ∈ L[φo,B0]}. Then 2Θ = N.

Then let Σ = σ(N), where σ(N) is the least σ-algebra generated by N. Then the previous lemmas
allow us to define, for any Γ ∈ Θ and φ ∈ L[φ0,B0],

θ(Γ)(LφM) = sup{r ∈ Q≥0 | 〈x〉φ : x≥r ∈ Γ}.

θ(Γ) is a set function defined on the field N. According to Theorem 11.3 of [3] 2, θ(Γ) can be
uniquely extended to a measure on Σ if it is finitely additive and countably subadditive on LφM. Since
Θ is finite, we only need to prove that θ(Γ) is finitely additive, as stated in the following lemma.
Notice also that since Θ is finite, (Θ,Σ) is an analytic space.

I Lemma 24. For any Γ ∈ Θ, the function θ(Γ) is finitely additive, i.e., for any Lφ1M and Lφ2M s.t.
Lφ1M ∩ Lφ2M = ∅, θ(Γ)(Lφ1M ∪ Lφ2M) = θ(Γ)(Lφ1M) + θ(Γ)(Lφ2M).

I Theorem 25. M = (Θ,Σ, l, θ) is a probabilistic Markov process.

Let ρ0 be the environment defined as: for any X ∈ X, by ρ0(X) = {Γ | X ∈ Γ}.
Firstly, we prove the restricted truth lemma that does not consider recursive constructs.

I Lemma 26 (Restricted Truth Lemma). For φ ∈ L[φ0,B0] and Γ ∈ Θ,
M,Γ, ρ0 |= φ iff φ ∈ Γ.

On the restricted truth lemma we can base the following two results that indicate how we can
extend the results to include the recursive cases, as developed in [21].

I Lemma 27. Let B = max{X1 = φ1, . . . , XN = φN} be an equation block in the sequence B0 and ρ
an environment such that ρ(Xi) = {Γ | Xi ∈ Γ} for any i = 1, ..,N. For any φ ∈ L[φ0,B0] and Γ ∈ Θ,

if [M,Γ, ρ |= φ iff φ ∈ Γ], then [M,Γ, ~B�ρ |= φ iff φ ∈ Γ].

Since the minimal blocks are dual of the maximal ones, we have a similar lemma for minimal blocks.

I Lemma 28. Let B = min{X1 = φ1, . . . , XN = φN} be an equation block in the sequence B0 and ρ
an environment such that ρ(Xi) = {Γ | Xi ∈ Γ} for any i = 1, ..N. For any φ ∈ L[φ0,B0] and Γ ∈ Θ,

if [M,Γ, ρ |= φ iff φ ∈ Γ], then [M,Γ, ~B�ρ |= φ iff φ ∈ Γ].

2 If F ⊆ 2M is a field of sets and µ : F → R≥0 is finitely additive and countably subadditive, then µ extends uniquely
to a measure on σ(F )
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These lemmas allow us to prove the stronger version of the truth lemma.

I Theorem 29 (Extended Truth Lemma). For φ ∈ L[φ0,B0] and Γ ∈ Θ,
M,Γ, ρ0 |=B φ iff φ ∈ Γ.

A direct consequence of Theorem 29 is the completeness3 of the axiomatic system.

I Theorem 30 (Completeness). The axiomatic system of `B is complete, i.e., for arbitrary φ ∈ L,
|=B φ implies `B φ.

5 Conclusions

In this paper we have extended the probabilistic modal logic of [20], which is a modal logic allow-
ing (in-)equational conditions on probabilities, with fixed point constructions in the form of block
sequences, thus obtaining the probabilistic µ-calculus (PMC).

We prove that PMC enjoys the finite model property and its satisfiability problem is decidable.
In order to do this, we involved the classic tableau construction that had to be adapted to the more
challenging probabilistic settings. Based on this, we develop an algorithm that checks the satisfiabil-
ity of a formula and, if the formula is satisfiable, it constructs a finite model. These results generalize
previous results from [23] and recommend our logic as a good trade-off between expressiveness and
decidability.

The second key contribution of our paper is the sound-complete axiomatization that we propose
for the alternation-free fragment of PMC. At the best of our knowledge, the problem of axiomatizing
probabilistic µ-calculus has not been previously approached. The completeness proof is a non-
standard extension of the filtration method relying on topological facts such as Rasiowa-Sikorski
lemma and its relation to Lindenbaum’s lemma. This method can be easily adapted to other versions
of probabilistic µ-calculus.

Unlike for the standard µ-calculus, the complexity of our algorithm is not clear. This is because
for every formula, we only know that there exists the number h in Extension Step II such that all
the inequalities in the given formula have rational solutions that can be expressed according to the
accuracy defined, but we do not know how big h would be. The complexity of the satisfiability
algorithm will be studied in the future work.

One might wonder whether there exists a finite axiomatization, as the model construction here is
similar to that in Section 3 and the rules there are all finite. However, how we define the probability
on the transition in Section 3 is using the truth that there is always rational solution(s) for any
rational inequality. In [35], Zhou proved that there exists a finite axiomatization for Markov Logic
by involving a finitary Archimedean rule (similar to our Rule (R2). The idea there is similar to our
satisfiability algorithm. We believe that similar arguments for finite axiomatization can be made for
our logic as well by applying the Fourier–Motzkin elimination method [31] as in [35]. However, it
is difficult to formalize this finite axiomatization. As we discussed in the last paragraph, we cannot
know how precise we need to be in the logic in order to specify the solutions for the inequalities.
Whether one can axiomatize and if yes how to will be interesting to look into.

Moreover, axiomatization for the full logic instead of the alternation-free fragment will also be
considered. In the axiomatization here, the axioms and rules for fixed points are the same as those
for the µ-calculus. Hence, for the full PMC, we believe that the axiomatization would look the
same. However, the difficulty for proving the completeness will be at least that for the full modal
µ-calculus [34].

3 In this context by completeness we mean the weak-completeness. Since PMC is not compact, the weak- and
strong-completeness do not coincide.
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Related Modal Theoretical Results and Definitions

Lemma [Rasiowa–Sikorski lemma [30]] For every boolean algebra B and every countable family T
of subsets of B, each member of which has a meet in B, and for every nonzero x ∈ B, there exists an
ultrafilter in B that contains x and respects T .

Let B be a Boolean algebra, B its completion and T a countable family of subsets of B each
member of which has a meet in B. If S ⊆ B is such that

∧
S , 0 in B, then there exists an ultrafilter

U of B such that S ⊆ U andU respects T .

Lemma [Lindenbaum’s Lemma for Countably-Axiomatized Logics]Given a Boolean logic L and
a countably-axiomatized deductibility relation `, then for every `-consistent set of formulas Φ ⊆ L

there exists a `-maximally consistent set of formulas that extends Φ.

Definition [Trace] Given a path P = t0t1 . . . of a tableau T φ, a trace on P is a function T assigning
a formula to every node t = ∆ ∈ Λ+ in some initial segment of P (possibly to all of P), satisfying the
following conditions:
(i) if T(t) is defined, T(t) ∈ ∆;

(ii) if T(t) is defined and t′ ∈ P is a son of t; if a rule applied at t does not reduce the formula T(t)
then T(t′) = T(t);if T(t) is reduced in t then T(t′) is one of the results of the reduction.

We say that there is a regeneration of a recursive-variable X on a trace T on some path of a
tableau, if for t and its son t′ on the path, T(t) = X and T(t′) = φ, where X = φ ∈ B.

Definition [max-Trace and min-Trace] We call a trace a max-trace iff it is an infinite trace (defined
for the whole path) on which the recursive-variable regenerated infinitely often is a max-variable.
Similarly, a trace will be called a min-trace iff it is an infinite trace where the recursive-variable
regenerated infinitely often is a min-variable.

Every infinite trace is either a max-trace or a min-trace; all the rules except (Reg) decrease the
size of formulas; hence, every formula is eventually reduced.
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