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Abstract. The process-based Spatial Logics are multi-modal logics de-
veloped for semantics on Process Algebras and designed to specify concur-
rent properties of dynamic systems. On the syntactic level, they combine
modal operators similar to operators of Hennessy-Milner logic, dynamic
logic, arrow logic, relevant logic, or linear logic. This combination gener-
ates expressive logics, sometimes undecidable, for which a wide range of
applications have been proposed.

In the literature, there exist some sound proof systems for spatial log-
ics, but the problem of completeness against process-algebraic semantics
is still open. The main goal of this paper is to identify a sound-complete
axiomatization for such a logic. We focus on a particular spatial logic
that combines the basic spatial operators with dynamic and classical
operators. The semantics is based on a fragment of CCS calculus that
embodies the core features of concurrent behaviors. We prove the logic
decidable both for satisfiability /validity and mode-checking, and we pro-
pose a sound-complete Hilbert-style axiomatic system for it.

1 Introduction

Process algebras [2] are calculi designed for modelling complex systems of pro-
cessedl organised in a modular way, which run in a decentralised manner and
are able to interact, collaborate and communicate. Starting with Robin Mil-
ner’s classical work on a Calculus of Communicating Systems [17], a plethora
of process calculi have been developed and successfully applied to a multitude
of issues in concurrent computing, e.g. modelling computer networks, cellu-
lar /molecular/chemical networks, and a wide class of problems related to them.
This success raises the necessity to define query languages able to express com-
plex properties of systems and, eventually, to develop model-verification tech-
niques. The dual nature of these calculi - algebraical /equational syntax versus
coalgebraical operational semantics, makes them appropriate for a modal logic-
based approach.

! In this paradigm, the processes are understood as spatially localised and indepen-

dently observable units of behaviour and computation (e.g. programs or processors
running in parallel).
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In this context were proposed the process semantics for modal logics, that
can be considered as a special case of Kripke semantics: it involves structuring a
class of processes as a Kripke model, by endowing it with accessibility relations
and then using the standard clauses of Kripke semantics. The most obvious
accessibility relations on processes are the ones induced by action transitions
a.P -2+ P, and thus the corresponding (Hennessy-Milner) logic [I3] was the
first process-based modal logic to be developed. Later, temporal [21I], mobile or
concurrent features were added [I0/18]. A relatively new type of process logics
are spatial logics [8I3], which are particularly tailored for capturing spatial and
concurrent properties of processes. Among the various spatial operators we men-
tion: the parallel opemtmg @|Y and its adjoint - the guarantee operator ¢>1p; the
location operators characterize ambient logic@ [8]; for semantics based on calculi
with name passing and name restrictions other specific operators have been pro-
posed, e.g. placement, revelation and hiding operators etc [3]. In addition, most
of these logics include transition-based modalities and quantifiers.

The modal operators of spatial logics are similar to modal operators studied
in other contexts. The parallel operator, for instance, is just a modal operator
of arity 3 that satisfies the axioms of associativity, commutativity and modal
distribution, as will be proved latter. Operators such as this have been studied,
e.g., in the context of Arrow Logic [1] where it entails undecidability for Kripke
semantics, as proved in [I1]. The parallel operator and the guarantee operator
of spatial logics are similar to two operators used in Relevant and Substructural
Logics [22] - the intentional conjunction and relevant implication respectively.
But, as in the case of Arrow Logic, Relevant Logic has a semantics in terms of
Kripke structures. Consequently, not many known results can be projected over
the process semantics. Some spatial logics are using dynamic operators [12] for
expressing the transitions. There are also other relations between spatial logics
and well studied modal logicsH.

On the other hand, there are many peculiarities of spatial logics that make
them interesting from a modal perspective. For example, the spatial logic we
study in this paper allows us to define characteristic formulas for processes. Such
a formula identifies a process up to structural congruence, i.e. we have formulas
fp that names a particular state P of the system, thus giving to the logic the
expressivity of Hybrid Logics [I9]. Another peculiarity is that we can define a
universal modality o¢ and thus, we can express syntactically meta properties
such as validity and satisfiability of a formula. The guarantee operator can be
used to translate any satisfiability /validity problem of spatial logic into a model
checking problem for the null process, as = ¢ can be proved equivalent with
0 = T, [9. In this way, decidability of satisfiability and validity is directly
related with the decidability of model checking. All these peculiarities of spatial

2 A process P has the property o|¥, if it can be split into two disjoint parts P = Q|R
s.t. @ satisfies ¢ and R satisfies 1.

3 Ambient logic is a spatial logic defined over ambient calculus.

* See e.g. [§] for a detailed description of the connection between Ambient logic and
Linear Logic
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logics emerge mainly from the structure of their models, which are not just
labelled graphs, but processes with a structure bound by the rigid rules of the
operational semantics of process calculi.

The challenge we take in this paper is to find a sound and complete Hilbert-
style axiomatic system for spatial logic that will reveal the nature of the spatial
operators, as well as the interrelation between them and the dynamic or classical
operators. The axioms we propose are sometimes similar with the axioms of
the related modal logics and these similarities are useful in placing the spatial
logics in the general context of modal logics. To the best of our knowledge, the
problem of completeness for this class of logics has not been approached in the
literature, even if the problem of defining sound sequence calculi for them has
been considered [6I84]. Related to static ambient logic, for instance, there exists
a sound-complete sequent calculus [6], but its syntax differs from the syntax of
ambient logics. It is done for atomic construction of type P : ¢ for a process P and
a logic formula ¢, that encodes the satisfiability relation P = ¢ of ambient logic;
the sequent rules just rewrite the semantics of ambient logic. In this context, the
soundness and completeness are proved as P = ¢ iff = P : ¢, result that does
not clarify the axiomatics of spatial logics, the syntactic behavior of the spatial
operators, or the relation with other logics. Our previous work [I4/15] present
some completeness results from a modal perspective, but for only for epistemic
versions of spatial logics without the guarantee operator.

A second achievement of the paper is a decidability result that is essential in
the completeness proof. The particular spatial logic studied in this paper (that
extends the Hennessy-Milner logic with the parallel and guarantee operators)
is proved decidable for both satisfiability/validity and model checking against a
fragment of CCS calculus that embodies the core features of finite concurrent
behaviors. The decidability proof goes on the lines of decidability proofs in [7J6]
and consist in proving the bound model property for the logic. As for the se-
mantics, the same fragment of CCS yields undecidability for other spatial logics,
e.g. with a modality encoding communication-based transitions [5].

2 Preliminaries on Process Algebra

In this section we recall a number of basic notions of process algebra, mainly
to establish some basic terminology and notations for this paper. We introduce
a fragment of CCS calculus that will be latter used as semantics for the logic.
The novelty of the section is the structural bisimulation, a special relation on
processes that will be latter used for proving the bounded model property for
the spatial logic.

Definition 1 (CCS processes). Let X' be a denumerable set of elements called
actions and 0 € X a special object called the null process. The class of CCS
processes s introduced inductively, for arbitrary a € X, as follows.

P:=0|aP| PP

We denote by P the class of CCS processes.
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Definition 2 (Structural congruence). The structural congruence is the
smallest congruence relation =C P x P such that (P,],0) is an abelian monoid
with respect to =, i.e.

1. (PIQ)|R = P|(Q|R) 2.PI0=0|P=P 3. PlIQ =Q|P

Definition 3 (Operational semantics). Let 7 ¢ X UP and consider a func-
tion on X that associates to each o € X its complementary action @, such
that @ = . The operational semantics on P defines a labeled transition system
T:P— (XU{r}) x P by means of the rules in Table[d, where T(P) = (o, Q) is
denoted by P -~ Q for any a € X, T(P) = (1,Q) is denoted by P —— @Q, and
W is used to denote arbitrary elements in X U {7}.

Table 1. The transition system

ap 2 p @€YX a.Pla.Q = pPlQ *€X%
pP= P P b, p
O TP iesutn —LE— esun
QP PIQ - P'|Q

Hereafter, we call a process P guarded if P = «.Q) for some o € X' and we use
the notation P* %</ P|...|P for k < 1.
——

k

Definition 4. The set of actions Act(P) C X of an arbitrary process P € P is
defined, inductively, as follows.

1.Act(0) 2 0 2.Act(a.P) ™ {a} UAct(P) 3.Act(P|Q) Y Act(P)U Act(Q).

For a set 2 C XY and a pair h,w of nonnegative integers we define the class
]P’((ihw of processes having the actions from (2 and the syntactic trees bound by
two dimensions - the depth h of the tree and the width w that represents the
maximum number of congruent processes that can be found in a node of the
tree. sz,w) is introduced inductively on h.

]P)E((Z),w) = {0}7
P{i_,’_l’w) = {(Ozl.Pl)kl|...|(ai.Pi)ki', for ki <w,aj € Q,Pj € P&)w),v_j = 17,}

Lemma 1. If 2 C X is a finite set, then sz,w) is a finite set of processes.

2.1 Structural Bisimulations

In this subsection we introduce the structural bisimulation, a relation on pro-
cesses indexed by a subclass {2 C X of actions and by two nonnegative integers
h,w. This relation is similar to the pruning relation proposed for trees (static
ambients) in [6]. Intuitively, two processes are {2-structural bisimilar on size
(h,w) if they look indistinguishable for an external observer that sees only the
actions in {2, does not following a process for more than h transition steps and
cannot distinguish more than w cloned subprocesses of a process.
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Definition 5 ({2-Structural Bisimulation). Let 2 C X and h,w two non-
negative integers. The (2-structural bisimulation on P is denoted by = ( w) and
is defined inductively as follows
IfP=Q=0, thenPth) Q;
IfP;‘éO and Q # 0, then

P~ 0 ) Q always.

P= N(h+1,w) Q iff for any i € 1.w and any o € §2:

— P =a.P|..|a.P|P implies Q = .Q1]...|a.Qi|Q’, P; ~ (h w) Qj, 7
- Q= a.Q1]...]a.Qs|Q" implies P = a.Py|...|a. B| P, Q; =~ (h,w) P, j= 1..@.

Hereafter we present some results about (2-structural bisimulation.

Lemma 2 (Equivalence). For a set 2 C X and nonnegative integers h,w,
%(% w) s an equivalence relations on P.

Lemma 3 (Congruence). Let 2 C X be a set of actions.
1. IfPN )Q,thenaPN(h+1w)aQ

2. If P~ N(h,w) P and Q ~ ~( h’w) Q’, then P|Q %&,w) PQ.

For nonnegative integers h, b, w, w’ we convey to write (h', w’) < (h,w)iff A’ < h
and v’ < w.

Lemma 4. Let 2 C 2 C X and (W,v') < (h,w). If P z&w) Q, then
p %(%//,w/) Q.

Lemma 5 (Split). If P'|P” N(h w1+w2) Q for some 2 C X, then there exists
Q,Q" € P such that Q = Q'|Q" and P’ R h’wl) Q', P" N(h,w2 Q".

Lemma 6 (Step-wise propagation). If P %{,}Z wy @ and P =, P’ for some
a € 2 C X, then there exists a transition Q —— Q' such that P’ %ghl,wfl) Q.

As X is a denumerable set, assume a lexicographic order <C X x X on it.
Then, any element o € X' has a successor denoted by succ(a) and any finite
subset 2 C X has a maximum element denoted by sup({2). We define 27 =
N U {succ(sup(2))}.

All the previous results can be used to prove the next theorem. It states that
for any finite set {2 of actions and any nonnegative integers h,w, the equiva-
lence relation z(fi divides P in equivalence classes such that each equivalence

class has a representative in the set ]P’ w)’ This set, by Lemma] is finite. This
observation will be the key for provmg, latter the bounded model property.

Lemma 7 (Pruning Theorem). For any finite set 2 C X, any nonnegative
integers h,w and any process P € P, there exists a process Q) € IP’gjw) such that

~0
P &) Q-
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3 Spatial Logic

In this section we introduce the spatial logic SL that contains only one atomic
propositiorﬁ 0, a class of dynamic operators (o) indexed by a denumerable set
2’ 5 «, the parallel operator and its adjoint together with the Boolean operators.

Definition 6 (Syntax of Spatial Logics). Let X be a denumerable alphabet.
The class L of well formed formulas of SL is introduced inductively as follows.

¢:=0]-¢[oNQ[()¢ ||| o>¢.

Definition 7 (Semantics of SL). The semantics of SL is given by the satis-
fiability operator, P |= ¢ that relates a process P € P with the formula ¢ € L,
ductively by.

PO iff P=0.

Pl—¢iff P I ¢

PEoANY iff PE¢ and P = .

P = ()¢ iff there exists a transition P -~ P’ and P' |= ¢.

Pl ol iff P=QIR, Q¢ and R .

P ¢4 iff for any Q. Q b= ¢ implies P|Q k= .

For arbitrary ¢,1 € £ and o € X' we introduce some derived operatorsﬁ.

def def def

T =0v-0 L =-T ol = =(=¢|-y)
0 = (=g) > L 1= oA (0] 0) a0 Z 1A (a)e
def
.¢ = ﬁ(0ﬁ¢)
The derived operators can be characterized semantically by:
P =T always.
P = 1 never.

PE ¢ | ¢ iff P = P|P,, then either P;,v = ¢ or Pj,v =, {1,j} = {1,2}.
P |= o¢ iff for any process @, Q = ¢.
P |= o¢ iff there exists a process @, Q = ¢.
P =1 iff there exists & € ¥ and P = a.Q.
P |= a.¢ iff there exists o € X s.t. P = a.P' and P’ |= ¢.
Notice, from the semantics, that o is a universal modality as the satisfiability of
o¢ is equivalent with the validity of ¢, while e is its dual.

Definition 8. A formula ¢ € L is satisfiable if there exists a process P € P
such that P = ¢. A formula ¢ € L is valid (a validity ), denoted by = ¢, if for
any process P € P, P = ¢.

5 In spatial logics the symbol 0 it is used both in syntax for representing the atomic
proposition and in semantics to represent the null process in CCS.
6 We also assume all the boolean operators.
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4 Decidability of SL

In what follows we show that satisfiability, validity and model checking are decid-
able for SL against process semantics. The proof is based on the bounded model
property technique which consists in showing that, given a formula ¢ € L, we
can identify a finite class of processes bound by the dimension of the formula, Py
such that if ¢ has a model in P, then it has a model in Pg. Thus, the satisfiability
problem in P is equivalent with the satisfiability in P. This result can be further
used to prove the decidability of satisfiability. Indeed, as Py is finite, checking
the satisfiability of a formula can be done by investigating, one by one, all the
processes in Py.

Definition 9 (Size of a formula). The sizes of a formula of £, denoted by

(o) = (h,w), is defined inductively on the structure of a formula. In what follows,

suppose that (p) = (h,w) and () = (b, w’).

1. (0) < 1,1). 2. .

3. (A Y) Y (maz(h, 1), maz(w,w')). 4. ((Q)¢) < (h+1,0+1).
6

5. (¢ ) def (max(h,h),w + w').

Definition 10. The set of actions of a formula ¢, act(¢) C X is given by:

1. act(0) = 2. act(=¢) = act(¢)
def

3. act(¢ A ) act() U act(v) 4. act({e)d) “ {a} Uact(o)
5. act(¢p> ) = act(@) U act(v)) 6. act(Plv) = act(@) U act(1))

The next Lemma states that a formula ¢ € £ expresses a property of a process
act(¢)

P up to o) This means that ¢ expresses a property that involves only its
actions and is bounded by its size.

Lemma 8. If P %Z;E(¢) Q, then P |= ¢ iff Q |= ¢.

This result guarantees the bounded model property.

Theorem 1 (Bound model property). If P = ¢, then there exists Q €

PZ;Ewﬁ such that Q = ¢.

Proof. The result is a direct consequence of Lemma [7] and Lemma 8]

Theorem 2 (Decidability). For SL validity, satisfiability and model checking
are decidable against process semantics.

Proof. The decidability of satisfiability derives from the bounded model prop-

erty. Indeed, if ¢ has a model, by Lemma[I], it has a model in P‘ql;g(¢)+. As act(¢) is

finite, by Lemmalll I[";i;g(d))+ is finite, hence checking for membership is decidable.
The decidability of validity derives from the fact that ¢ is valid iff —¢ is not
satisfiable.
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5 Characteristic Formulas

In this section we use the peculiarities of £ to define characteristic formulas for
processes. Consider the subclass F C £ of well formed formulas of SL given, for
arbitrary o € X by f:=0 | a.f | f|f. Let * : F — F be the function defined by:
0" =0;  (af) =a.fs  (FI0) = f5  (filfa)* = filfs, for fi 20 # fo.
Denote by F C F the set of fixed points of function * called proper formulas,
i.e., the set of formulas f € F s.t. f* = f. For arbitrary positive integers h,w
and arbitrary S C X, let

Fonwy = 1F € F [ (f) < (h,w), act(f) C S}.

Observe that F C £ and for a finite set S C X, ‘ng,w) is finite. In what follows,
we use Greek letters (sometime with indexes) ¢, 1, ¢1, etc. to denote arbitrary
formulas of £ and f, f’, f”, f1, f2, etc. to denote arbitrary proper formulas of F.

The next Lemma proves that the =-equivalence classes of P can be charac-
terized by formulas of F. For this reason, in what follows, we will use sometime
the notation fp to denote a proper formula f € F that characterizes the =-
equivalence class of P € P.

Lemma 9. 1. Let fe F, PLQeP. Then P=f and Q = f, iff P=Q.
2. For any P € P there exists f € F such that P = f.
3. For any f € F there exists P € P such that P = f.

Proof. The function [ ] : F — P given by the next rules defines the relation
between the formulas in F and the =-equivalence classes in P .
[0] = 0; [a.f] = a.[f]; LAl f2] = [Alllf2):

6 A Hilbert-Style Axiomatic System of SL

In table Blis proposed a Hilbert-style axiomatic system for SL. We assume the
axioms and the rules of propositional logic. In addition we have axioms and rules
that characterize the spatial and dynamic operators and their interrelations.
Recall that we use Greek letters to specify arbitrary formulas of £ and f, f1, fo
to specify arbitrary proper formulas (of F).

Due to the way the proper formulas are defined, the axioms (S1) — (54)
guarantees that for any formula f € F the set {(f', f") e FxF | + f < f'|f"}
is finite. This proves that the disjunction in axiom (S6) is finitary.

Observe that the rules (GR1) and (GR2) depicts the adjunction between the
two spatial operators | and .

n
The condition a. f, f|f’ € f&l;Dt(d)) reflects the finite model property and guar-
antees that (Ind) can be based on a finite number of premises.

Definition 11. A formula ¢ € L is provable in SL, denoted by = ¢ if ¢ is an
axiom or it can be derived, as a theorem, from the axioms of SL using the rules
of SL. A formula ¢ € L is consistent in SL if =¢ is not provable in SL.
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Table 2. The axiomatic system of SL

Spatial axioms Spatial rules

(S1): = (o) ]p — ¢l(¥]p)

(S2): F ¢|0 < ¢

Egi;tﬁﬁzwﬁ (SR1): If F ¢ — 4 then + ¢lp — ¥|p
(85): = @l(¥ v p) — (9l9) V (¢]p)

(86): = (f A@lw) = NV pry o (F A" A)

Dynamic axioms Dynamic rules
(D1): F (@)l — {a)(Blv) (DR1): If F ¢ then F [o]¢

(D2): - [0](6 — ¥) — (a6 — [a) , , ,
(D3): F 0V a.T — 3L, for a # 3 (DR2)-IF 1 61 = [aldh and b 62 = [ads

(D4): F a.¢p — [ then b= ¢1|d2 — [a](¢;|¢2 Vv ¢1‘¢l2)
Guarantee axiom Guarantee rules
(G1): Fo(f — ¢) — e (GRL): F 1 — (¢2 > ¢) iff F nfdo — ¢

(GR2): = 1 — (2> ) iff F o(d1|pp2 A 1)

Induction rule

(Ind): If for any a.f, f|f' € fqa(;;(d)ﬁ
FO—¢
Fo(f — ¢) — ola.f — @)
F(o(f = @) Ao(f — 8)) = o(fIf — ¢)
then F ¢

All the axioms and the rules of our axiomatic system depict true facts about
processes. This is proved by the next soundness theorem.

Theorem 3 (Soundness). The aziomatic system of SL is sound with respect
to the process semantics, i.e. if b ¢ then = ¢.

Before continuing with the completeness proof, we list some theorems of SL that
will be useful further. Recall that, in what follows, we denote by fp € F any
proper formula that characterizes the process P.

Lemma 10 (Spatial corollaries). The next assertions are theorems of SL.

1.+ ¢l A p) = (8Y) A (¢lp)
2. Ift ¢ — p and E 1 — 0, then b ¢ — plb.

3. If P £Q, then - fp — —fo.
4. If forany Q,R s.t. P = Q|R, F fo — —¢ ort fr — =, thent fp — —(¢[1)).

Lemma 11 (Dynamic corollaries). The next assertions are theorems of SL.
1. IfE ¢ — 9, then b (a)d — ().

2. If H ¢ — 1, then & [a] 0 — [a]—¢.

3.+ fr =[] V{fq | P — Q}.

4. [fF\/{fQ | P Q} — ¢, then + fp — [oz]gb
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Lemma 12 (Guarantee corollary). The next assertions are SL-theorems.
1. Ifl_ erfal(;:[‘)t((b)+ f — ¢, then - ¢
2. If - ¢, then = og.

Now we approach the completeness problem. We begin with the next lemma
stating that a process P satisfies a property ¢ iff its characteristic formula fp
implies the property ¢ and this implication is a theorem in SL system.

Lemma 13. If P € P and fp € F characterizes P, then P |= ¢ iff - fp — ¢.

Proof. (=) It P = ¢, then F fp — ¢. We prove it by induction on the
syntactical structure of ¢. We show here only the cases that require a more
complex analysis.

The case ¢ = ¢1|p2: P = ¢ iff P = Q|R, Q = ¢1 and R = ¢2. Using the
inductive hypothesis, = fgo — ¢1 and = fr — ¢2. The case 2 of Lemma
implies further - fo|fr — ¢1]¢2), i.e. F fp — ¢.

The case ¢ = Y>p: P = ¢>p iff for any process @, Q = ¢ implies P|Q = p. The
inductive hypothesis gives that for any @, - fo — ¢ implies - fp|fg — p. But
Rule (GR1) gives the equivalence of - fp|fg — p and - fg — (fp > p). Hence,

: act(p— +
for any Q, - fo — (¢ — fp > p). Then, for any Q with fo € ]:(]¢t—(>(;p>fp$>p) 7

Ffo — (¢ — fp>p). Hence, - \/fefactmwfp»pw f— (¢ — fpv p) where from,
(¢— fprp)

using Lemma[I2] - ¢ — fp > p that is quivalent with F fp — ¢ p.
The case ¢ = —(¢1|th2): P = —(1)1|1)2) means that for any parallel decompo-
sition of P = Q|R, Q = -1 or R = —wo, e, F fo — =1 or - fr — —hs.
Then, the case 4 of Lemmdl{ gives - fp — —).
The case ¢ = —(¢1 > ¢p2): P |E —(¢1 > ¢2) is equivalent with P £ ¢y > da.
Hence, there exists Q@ = ¢1 such that P|Q | —¢o, ie., b fo — ¢1 and F
felfo — —¢s. Hence, F fp|fo — (fplé1 A —p2). Further, Lemma [I2] implies
Fo(frlfq — (frl¢r A —¢2)), Axiom (G1), - e(fp|p1 A —¢2) and Rule (GR2),
Efp — (g1 > d2).

(<) Let b fp — ¢. Suppose that P [~ ¢. Then, P = —¢. Using the reversed
implication we obtain b fp — —¢, thus, F fp — L. But P | fp which, using
the soundness, gives P = L impossible! Hence, P = ¢.

Using the result of the previous lemma we can prove that consistency implies
satisfiability, as stated in the next lemma.

Lemma 14. If ¢ is SL-consistent then there exists a process P € P such that
P E¢.

Proof. Suppose that for any process P we do not have P | ¢, i.e., P E —¢.
Using Lemma[I3] we obtain - fp — —¢, i.e. - o(fp — —¢). as this is happening
for all processes, implies that for any f € F we have - f — —¢, i.e. b f — —¢.
But then -0 — —¢, - o(f — —=¢) — o(a.f — —¢) and F (o(f — —¢) Ao(f' —
—¢)) — o(f|f" — —¢). Further, the rule (Ind) gives F —¢ wich contradicts the
consistency of ¢.
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At this point we have all the results needed to prove the completeness of our
axiomatic system.

Theorem 4 (Completeness). The azxiomatic system of SL is complete with
respect to process semantics, i.e. if |= ¢ then F ¢.

Proof. Suppose that ¢ is a valid formula with respect to our semantics, but
¢ is not provable from our the axiomatic system. Then neither is =—¢, so, by
definition, —¢ is S L-consistent. It follows, from Lemma [I4] that —¢ is satisfiable
with respect to process semantics, contradicting the validity of ¢.

Consequently, the axiomatic system of SL proposed in Tabld2 is sound and
complete with respect to process semantics. This means that any fact about
CCS processes that can be expressed in £ has the properties:

— if it is true, then either it is stated in the axioms or it can be proved from
the axioms;

— if it is stated in the axioms or if it can be proved from the axioms, then it
true about processes.

These two characteristics of the axiomatic system, the soundness and complete-
ness, present SL as a powerful tool for expressing and analysing properties of
CCS processes.

7 Conclusion and Future Works

The achievements of this paper can be summarized as follows. We identified an
interesting multi-modal logic, SL, with semantics on CCS calculus able to ex-
press dynamic and concurrent properties of distributed systems. The language
of SL is expressive enough to characterize the CCS processes up to structural
congruence, quality that reveal for SL an expressivity comparable with the ex-
pressivity of hybrid logics. In SL we can also define universal modalities that
allow us to express meta properties such as validity and satisfiability. In spite of
this level of expressivity, we proved the bounded model property for SL against
a fragment of CCS for which other spatial logics are undecidable. The bounded
model property entails decidability for satisfiability, validity, and model checking.

The main result of the paper is the sound-complete axiomatic system that
we propose for SL. Some of the axioms and rules are similar with axioms and
rules known from other modal logics, and this peculiarity can help in better
understanding the modal face of the concurrency and in placing spatial logics in
the general context of modal logics.
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