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Abstract. We propose a new logic designed for modelling and reasoning
about information flow and information exchange between spatially lo-
cated interconnected agents witnessing a distributed computation. The
intention is to trace the process of knowledge acquisition and its dy-
namics in the context of distributed systems. Underpinning on the dual
algebraical-coalgebraical characteristics of process calculi, we design a
decidable and completely axiomatized logic that combines the process-
algebraical/equational and the modal/coequational features and is de-
veloped for process-algebraical semantics.

1 Introduction

Observation is fast becoming an important topic in computer science. In which
manner can observation (in the broad sense of the word) be used for computing?
In which way can the partial information available to an external observer of a
computational system be used in deriving knowledge about the overall complete
system? We will approach these problems by developing a logic designed to
handle (partial) information flow and information exchange between external
observers (agents) of a distributed system.

In the context of (parallel) distributed computation, a concurrent computa-
tional system can be thought of as being composed of a number of modules, i.e.
spatially localized and independently observable units of behavior and compu-
tation (e.g. programs or processors running in parallel), organized in networks
of subsystems and being able to interact, collaborate, communicate and inter-
rupt each other. In this context we shall consider agents - external observers of
the modules. As an external observer, an agent witnesses the computation of
its module and interacts with the whole system only by means of it. Thus it
derives its knowledge about the overall system from the observed behavior of
its subsystem and from epistemic reasoning on the knowledge (and reactions) of
the other agents witnessing (different) parts of the same computational process.

In this context we are interested in specifying when agents can receive, com-
municate or protect truthful information, when they improve their knowledge,
when they are aware of the knowledge of the others and how they can con-
struct strategies for influencing the others knowledge. Hence, the problem is
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related to issues of privacy, trust, secured communications, authentication, etc.
covering many different areas, with potential applications: in Secure Communi-
cation (checking privacy and authentication for given communication protocols
by studying the knowledge acquisition strategies that an intruder might take),
in Debugging and Performance analysis (checking for the cause of errors or of
high computational costs in systems where only some modules are accessible),
in Artificial Intelligence (endowing artificial agents with good and flexible tools
to reason about their changing environment and about each other), in designing
and improving strategies for knowledge acquisition over complex networks (such
as the Internet), etc.

In approaching this problem we have chosen the process-algebraical represen-
tation of (mobile) distributed systems and we developed a logic of information
flow for process-algebraical semantics. Taking process calculi as semantics is the-
oretically challenging due to their dual algebraical/coalgebraical nature. While
the algebraical features of processes are naturally approached in equational fash-
ion (that reflects, on logical level, the program constructors), the coalgebraical
features (intrinsically related to transition systems via the denotational and the
operational semantics of process calculi) ask for a modal/coequational treatment.
The modal approach is also needed for the epistemic reasoning.

Consequently, our paper combines two logical paradigms to information flow
in distributed systems: dynamic-epistemic (and doxastic) logics [14,9,12], seman-
tically based on epistemic-doxastic Kripke models; and the spatial logics for con-
currency [6], for which the semantics is usually given in terms of process algebra.

Epistemic/doxastic logics [14,9] are multimodal logics that formalize the epis-
temic notions of knowledge, or belief, possessed by an agent, or a group of agents,
using modalities indexed by agents. We have modalities like KAφ (“A knows that
φ”) or �Aφ (“A justifiably believes that φ”) for any agent A. The models asso-
ciate to each basic modality a binary relation interpreted as “indistinguishability”
relation A−→ for each agent A. It expresses the agent’s uncertainty about the
current state of the system. The states s′ such that s

A−→ s′ are the epistemic
alternatives of s to agent A, i.e. if the current state is s, A thinks that any of
the alternatives s′ may be the current state.

Dynamic logics [12] are closer to process calculi as they have names for “pro-
grams”, or “actions”, and ways to combine them. In this case we have modalities
indexed on a signature A (the set of programs). A dynamic modality [π]φ cap-
tures the weakest precondition of such a program w.r.t. a given post-specification
φ, and the accessibility relations are interpreted as transitions induced by pro-
grams. These logics already combine the coalgebraical features (modalities) with
algebraical ones (the modalities have algebraic structures: programs are built us-
ing basic program constructors such as sequential composition or iteration).

Dynamic Epistemic Logics [1,2,11,3,8] are a class of logics that combine the
dynamic and epistemic formalisms for specifying properties of evolving knowl-
edge and beliefs in dynamic systems. The high level of expressivity reaches here
a low complexity (decidability and complete axiomatizations).
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Spatial Logics. Process semantics for modal logics can be considered as a special
case of Kripke semantics, since, via transition systems, we can structure a class
of processes as a Kripke model, by endowing it with accessibility relations in-
duced by action transitions. Further we can use the standard clauses of Kripke
semantics (e.g. Hennessy-Milner logic [13]). In addition, temporal, mobile and
concurrent features have been added [22,7,20]. Spatial Logics [6] are the most
expressive logics in this class containing equational operators to express spatial
properties, such as the parallel operator φ|ψ and the guarantee operator φ � ψ
(the adjoint of parallel), or operators for expressing the “fresh name features”
inspired by the Gabbay-Pitts quantifier [10], etc.

The intention of this paper is to develop and study a logic that combines these
two paradigms proposing a unified one. The new logic combines well with the
process algebraical modelling of information flow and can directly express agent-
dependent partial information features and their dynamics. We give a spatial in-
terpretation of epistemic modalities in CCS. The intuition is to associate to each
“agent” A the process P that describes the behavior of the module observed by
A. The agent observing a process (possibly running in parallel with many other
processes) “knows” only the activity and actions of its own process. “Knowledge”
is thus defined as “information (about the overall, global process) that is locally
available (to an agent)”. In effect, this organizes any class M of processes (thought
of as “states”) as an epistemic Kripke model, with indistinguishability relations

A−→ for each agent A. Thus, if A observes the subprocess P then P |P ′ A−→ P |P ′′

for any P ′, P ′′. Since these are equivalence relations, we obtain a notion of “(truth-
ful) knowledge”. The resulting Kripke modality, KAφ, read “agent A knows φ”,
holds at a given state (process) R iff the process P is active (as a subprocess) at
R and property φ holds in any context in which P is active.

The resulting logic is completely axiomatizable and decidable. The Hilbert-
style axiomatics we propose for it presents this logic as an authentic dynamic-
epistemic logic. The classical axioms of knowledge will be present in our system
together with spatial-like axioms.

1.1 Case Study: A Security Attack

For illustrating the problem we approach in this paper, we propose a toy example:
a simplified “Man-in-the-Middle” type of cryptographic attack. Alice wants to
communicate to Bob a secret over some communication channel. More concrete,
she wants to inform Bob that a certain event p happened. Before receiving the
message from Alice, Bob considers both alternatives, p and ¬p equally possible.
For communicating, Alice uses a key k to encrypt her messages while Bob (and
only Bob) knows how to decrypt them (k)1. But the communication channel is
not secure: an evil outsider, Eve, has also access and her purpose is to make

1 In a public-key cryptographic implementation, one could think of k as being Bob’s
public key, while k is Bob’s private key (for decryption). In a different context, k
might be Alice’s password for communicating with Bob, which can only be authen-
ticated by Bob using k.
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Bob believe ¬p. Suppose that Eve is also in possession of k (either because k
was Bob’s public key, or because Eve has somehow succeeded to steal Alice’s
password). Hence, she can present herself as Alice and is trying to convince Bob
that ¬p. The communication of the secret event fails if Bob believes that the
received message was from Alice and consequently ¬p happened. In fact Eve
manipulated Bob.

We are not concerned here primarily with the cryptographic details of the
encryption method, but with the informational, “epistemic” features of this pro-
tocol. The main goal of it is to understand the epistemic status of the agents
involved. What does Alice know? What does Bob know? What does Alice think
that Bob knows? Does Alice know that her communication was unsuccessful?
Does Eve know that her attack was successful? In which way the evolution of
the system (of the processes involved) influences the information state of the
agents? For proving the success or the failure of the protocol one has to show
how Bob’s knowledge can be influenced by Eve’s actions and what can be done
in order to avoid this.

One can use process algebras to describe such a scenario and logics for processes
to specify properties of this protocol. But for answering to the previous questions,
a way of arguing directly on the epistemic status of the agents is needed. We will
prove further that despite of the apparent complexity of the epistemic reasoning
on such frameworks there is a general approach that can formalize in a decidable
manner the agents’ reasoning in the above situation.

2 On Processes

In this section we introduce a fragment of CCS [19] calculus, that is “the core” of
process calculi and will be used for defining the process-algebraical semantics for
the logic. For the proofs of the results presented in this section and for additional
results on this subject, the reader is referred to [16,18].

2.1 CCS Processes

Definition 1. Let A be a denumerable signature. The syntax of the calculus is
given by a grammar with one non-terminal symbol P and the productions P :=
0 | α.P | P |P , where α ∈ A. We denote by P the language generated by this gram-
mar. We call the elements of A (basic) actions and the objects in P processes.

Definition 2. Let ≡⊆ P × P be the smallest equivalence relation on P s.t.
• (P, |, 0) is a commutative monoid with respect to ≡;
• if P ′ ≡ P ′′ then α.P ′ ≡ α.P ′′ and P ′|P ≡ P ′′|P , for any α ∈ A and P ∈ P.
We call ≡ structural congruence.

Definition 3. We call a process P guarded if P ≡ α.Q for some α ∈ A. We
denote P 0 def= 0 and P k def= P |...|P

︸ ︷︷ ︸

k

.



Observing Distributed Computation a Dynamic-Epistemic Approach 383

Definition 4. We consider, on P, the labelled transition system defined by the

rules in Table 1. We denote P −→ Q if P
α−→ Q or P

(α,α)−→ Q for some α ∈ A.

Table 1. The transition system

α.P
α−→ P

P ≡ Q P
α−→ P ′

Q
α−→ P ′

P
α−→ P ′

P |Q α−→ P ′|Q
P

α−→ P ′ Q
α−→ Q′

P |Q (α,α)−→ P ′|Q

We write P
Q:α−→ P ′ whenever P ≡ Q|R, P ′ ≡ Q′|R and Q

α−→ Q′. We write

P |Q P :α,Q:α−→ P ′|Q′ to denote the case when P
P :α−→ P ′ and Q

Q:α−→ Q′. We call
(Q : α) and (P : α, Q : α) composed actions.

Definition 5. We define for any process P , its set of actions Act(P ) ⊂ A:

1.Act(0)
def
= ∅ 2.Act(α.P )

def
= {α} ∪ Act(P ) 3.Act(P |Q)

def
= Act(P ) ∪ Act(Q)

For M ⊂ P we define Act(M)
def
=

⋃

P∈M Act(P ).

Definition 6. We call action substitution any mapping σ : A −→ A. We extend
it, syntactically, to processes, σ : P −→ P, by

1. σ(0)
def
= 0 2. σ(P |Q)

def
= σ(P )|σ(Q) 3. σ(α.P )

def
= σ(α).σ(P )

Let act(σ)
def
= {α, β ∈ A | α 	= β, σ(α) = β} and for M ⊂ P, σ(M)

def
=

{σ(P ) | P ∈ M}.

We will also use Mσ, P σ for denoting σ(M) and σ(P ).

2.2 Size of a Process

Definition 7. The size �P � = (h, w) of a process P ∈ P is given by:

1. �0�
def
= (0, 0)

2. �P �
def
= (h, w) iff P ≡ (α1.Q1)k1 |...|(αj .Qj)kj with αi.Qi 	≡ αj .Qj for i 	= j,

where h = 1 + max(h1, .., hk), w = max(k1, .., kj , w1, .., wj) for �Qi� = (hi, wi).
We write (h1, w1) ≤ (h2, w2) for h1 ≤ h2 and w1 ≤ w2 and (h1, w1) < (h2, w2)
for h1 < h2 and w1 < w2.

The intuition is that the size (h, w) of a process is given by the depth of its
syntactic tree (height h) and by the maximum number of bisimilar processes
that can be found in a node of the syntactic tree (width w). By construction,
the size of a process is unique up to structural congruence.

Definition 8. For a set M ⊂ P we define2 �M�
def
= max{�P � | P ∈ M}.

2 The size of a set of processes is not always well-defined. An infinite set, for example,
might not have the maximum required. However we will use this definition only
where it is well-defined.
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2.3 Structural Bisimulation

We introduce the structural bisimulation, a relation on processes that is an ap-
proximation of the structural congruence defined on size. It analyzes the behavior
of a process focusing on a boundary of its syntactic tree. This relation is similar
with the pruning relation proposed in [4].

Definition 9. Let P, Q ∈ P. We define P ≈w
h Q inductivelly by:

P ≈w
0 Q always

P ≈w
h+1 Q iff ∀i ∈ 1..w and ∀α ∈ A we have

• if P ≡ α.P1|...|α.Pi|P ′ then Q ≡ α.Q1|...|α.Qi|Q′ with Pj ≈w
h Qj, j = 1..i

• if Q ≡ α.Q1|...|α.Qi|Q′ then P ≡ α.P1|...|α.Pi|P ′ with Qj ≈w
h Pj, j = 1..i

We call ≈w
h structural bisimulation on dimension (h, w).

Proposition 1. ≈w
h is a congruence relation on processes having the properties:

1.(Antimonotonicity) if P ≈w
h Q and (h′, w′) ≤ (h, w) then P ≈w′

h′ Q.
2.(Inversion) if P ′|P ′′ ≈w1+w2

h Q then Q ≡ Q′|Q′′ and P ′ ≈w1
h Q′, P ′′ ≈w2

h Q′′.

Proposition 2. 1. If �P � ≤ (h, w) and �P ′� ≤ (h, w) then P ≈w
h P ′ iff P ≡ P ′.

2. If P ≈w
h Q and �P � < (h, w) then P ≡ Q.

Hence, for a well-chosen size which depends on the processes involved, the struc-
tural bisimulation guarantees the structural congruence. Reverse, the structural
congruence implies the structural bisimulation.

Proposition 3 (Behavioral simulation). Let P ≈w
h Q.

1. If P
α−→ P ′ then there exists a transition Q

α−→ Q′ s.t. P ′ ≈w−1
h−1 Q′.

2. If �R� < (h, w) and P
R:α−→ P ′ then Q

R:α−→ Q′ and P ′ ≈w−1
h−1 Q′.

This states that the structural bisimulation is preserved by transitions with the
price of decreasing the size.

2.4 Bound Pruning Processes

In this subsection we prove that for a given process P and a given size (h, w)
we can always find a process Q, having the size at most equal with (h, w), such
that P ≈w

h Q. We will present a method for constructing Q from P , by pruning
the syntactic tree of P to the given size.

Theorem 1 (Bound pruning theorem). For any process P ∈ P and any size
(h, w) there exists a process Q ∈ P with P ≈w

h Q and �Q� ≤ (h, w).

Proof. We construct 3 Q inductively on h.
Case h = 0: we take Q ≡ 0, as P ≈w

0 Q and �0� = (0, 0).
Case h + 1: suppose P ≡ α1.P1|...|αn.Pn.

Let P ′
i be the result of pruning Pi by (h, w) (the inductive step of construction)

3 This construction is not necessarily unique.
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and P ′ ≡ α1.P
′
1|...|αn.P ′

n. As for any i = 1..n we have Pi ≈w
h P ′

i (by the induc-
tive hypothesis), we obtain, using Proposition 1, that αi.Pi ≈w

h+1 αi.P
′
i , hence

P ≈w
h+1 P ′. Consider now P ′ ≡ (β1.Q1)k1 |...|(βm.Qm)km . Let li = min(ki, w) for

i = 1..m. Further we define Q ≡ (β1.Q1)l1 |...|(βm.Qm)lm . Obviously Q ≈w
h+1 P ′

and as P ≈w
h+1 P ′, we obtain P ≈w

h+1 Q. By construction, �Q� ≤ (h + 1, w).

Definition 10. For a process P and a tuple (h, w) we denote by P(h,w) the
process obtained by pruning P to the size (h, w) by the method described in the
proof of Theorem 1.

3 Sets of processes

In this section we study the closed sets of processes that will play an essential role
in proving the finite model property for the logic we will introduce. Intuitively,
a closed set of processes is a set that whenever contains a process contains also
any future “state” of that process and any “observable” subpart of it (what an
observer might see from it). Syntactically this means that whenever we have a
process in a closed set, we will also have all the processes that can be obtained
by arbitrarily pruning the syntactic tree of our process. For the proofs of the
results presented in this section the reader is referred to [18].

Definition 11. For M, N ⊂ P and α ∈ A we define:
α.M

def
= {α.P | P ∈ M} M |N def

= {P |Q | P ∈ M, Q ∈ N}.

Definition 12. For P ∈ P we define π(P ) ⊂ P inductively by:

1. π(0)
def
= {0} 2. π(α.P )

def
= {0} ∪ α.π(P ) 3. π(P |Q)

def
= π(P )|π(Q)

We extend the definition of π to sets of processes M ⊂ P by π(M)
def
=

⋃

P∈M π(P ).

Thus, we associate to each process P the set π(P ) of all processes obtained by
arbitrarily pruning the syntactic tree of P .

Definition 13. A set of processes M ⊆ P is closed if it satisfies the conditions
1. if P ∈ M and P −→ P ′ then P ′ ∈ M 2. if P ∈ M then π(P ) ⊂ M.
We say that M is the closure of M ⊂ P if M is the smallest closed set of
processes that contains M . We write M = M.
For any closed set M and any (h, w) we define M(h,w)

def
= {P(h,w) | P ∈ M}.

For A ⊂ A we define MA
(h,w)

def
= {M ⊂ P | Act(M) ⊆ A, �M� ≤ (h, w)}.

Lemma 1. If A ⊂ A is a finite set of actions, then the following hold:
1. If M ∈ MA

(h,w) then M is a finite closed set of processes.
2. MA

(h,w) is finite.

The previous result shows that the set of closed sets of processes with actions
from a given finite signature A and dimension not bigger than (h, w) is finite.
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Definition 14. Let M, N ⊂ P be closed sets. We write M ≈w
h N iff

1. for any P ∈ M there exists Q ∈ N with P ≈w
h Q

2. for any Q ∈ N there exists P ∈ M with P ≈w
h Q

We write (M, P ) ≈w
h (N , Q) when P ∈ M, Q ∈ N , P ≈w

h Q and M ≈w
h N .

Further we state that having a closed set M with actions from A and a dimension
(h, w) we can always find, in the finite set MA

(h,w), a closed set N structural
bisimilar with M at the dimension (h, w).

Proposition 4. For any closed set of processes M, and any size (h, w) we have
M(h,w) ≈h

w M.

Theorem 2 (Bound pruning theorem). Let M be a closed set of processes.
Then for any (h, w) there is a closed set N ∈ M

Act(M)
(h,w) such that M ≈w

h N .

4 The Logic LA
A

In this section we introduce the logic LA
A

with multimodal operators indexed
by “epistemic agents” from a signature A and by “transition actions” from a
signature A. The proofs of the results presented further can be consulted in [18].

4.1 Syntax of LA
A

Definition 15. Consider a set A and its extension A+ generated, for arbitrary
α ∈ A and e ∈ A, by E := e | α.E | E|E. In addition, on A+ it is defined the
smallest congruence relation ≡ for which | is commutative and associative. We
call the ≡-equivalence classes of A+ epistemic agents and we call atomic agents
the classes corresponding to elements of A. For E ∈ A+ we denote by E its
≡-equivalence class.
A society of agents is a set A of epistemic agents satisfying the conditions

1. if E1|E2 ∈ A then E1, E2 ∈ A 2. if α.E ∈ A then E ∈ A
Hereafter we denote by A, A′, A1, ... arbitrary epistemic agents and we consider
the canonical extension of the operators | and α. from A+ to the epistemic agents.

Definition 16. Let A be a society of epistemic agents defined for the set A of
actions. We define the language FA

A
of LA

A
, for A, A′ ∈ A and α ∈ A by:

φ := 0 | 
 | ¬φ | φ ∧ φ | φ|φ | 〈a〉φ | KAφ, where
〈a〉 := 〈α〉 | 〈α, α〉 | 〈A : α〉 | 〈A, A′ : α〉.

4.2 Process Semantics

A formula of FA
A

will be evaluated to processes in a given closed set of processes,
by using the satisfaction relation M, P |= φ.
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Definition 17. A model of LA
A

is a pair (M, I) where M is a closed set of
processes and I : (A, |, α.) −→ (M, |, α.) a homomorphism4 of structures such
that I(A) = 0 iff A = e for some e ∈ A.

We denote P
I(A):α−→ Q by P

A:α−→ Q and P
(I(A):α,I(B):α)−→ Q by P

A,B:α−→ Q. Let
A

A = A∪{(α, α) | α ∈ A}∪{(A : α), (A, A′ : α) | α ∈ A, A, A′ ∈ A} and a ∈ A
A

an arbitrary element. For P ∈ M and φ ∈ FA
A

we define M, P |= φ by:
M, P |= 
 always.
M, P |= 0 iff P ≡ 0.
M, P |= ¬φ iff M, P � φ.
M, P |= φ ∧ ψ iff M, P |= φ and M, P |= ψ.
M, P |= φ|ψ iff P ≡ Q|R and M, Q |= φ, M, R |= ψ.
M, P |= 〈a〉φ iff there exists a transition P

a−→ P ′ such that M, P ′ |= φ.
M, P |= KAφ iff P ≡ I(A)|R and for all I(A)|R′ ∈ M we have M, I(A)|R′ |= φ.

Definition 18 (Derived operators). In addition to the classical boolean op-
erators, we introduce other derived operators:

1
def
= ¬((¬0) | (¬0)) α.ψ

def
= (〈α〉ψ) ∧ 1

[a]φ
def
= ¬(〈a〉(¬φ))

∼
KAφ

def
= ¬KA¬φ.

We use the precedence order ¬, KA, 〈a〉, |, ∧ , ∨ , → for the operators, where ¬
has precedence over all.

The semantics of the derived operators will be:
M, P |= [a]φ iff for any transition P

a−→ P ′ (if any) we have M, P ′ |= φ
M, P |= 1 iff P ≡ 0 or P ≡ α.Q
M, P |= α.φ iff P ≡ α.Q and M, Q |= φ

M, P |=
∼
KAφ iff either P 	≡ I(A)|R for any R, or ∃I(A)|S ∈ M such that

M, I(A)|S |= φ

Remark the interesting semantics of the operators KA and
∼
KA for A ∈ I−1(0):

M, P |= KAφ iff ∀Q ∈ M we have M, Q |= φ

M, P |=
∼
KAφ iff ∃Q ∈ M such that M, Q |= φ

Hence KAφ and
∼
KAφ for an atomic agent A encode, in syntax, the validity and

the satisfiability with respect to a given model.

4.3 Bounded Finite Model Property

Definition 19. The sizes of a formula (height and width) �φ� = (h, w) w.r.t.
the homomorphism I is given inductively in Table 2.

Lemma 2. If �φ� = (h, w), M, P |= φ and (M, P ) ≈w
h (N , Q) then N , Q |= φ.

Hence φ is “sensitive” via satisfaction only up to size �φ�. In other words, the
relation M, P |= φ is conserved by substituting the pair (M, P ) with any other
4 The function I associates to each agent the process it observes. An atomic agent

sees always the process 0.
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Table 2. Sizes of formulas

Suppose �φ� = (h, w), �ψ� = (h′, w′), �I(A)� = (hA, wA) and �I(A, )� = (hA′ , wA′),
then
1.�0� = ���

def
= (0, 0) 2.�¬φ�

def
= �φ� 3.�φ ∧ ψ�

def
= (max(h, h′), max(w,w′))

4.�φ|ψ�
def
= (max(h, h′), w + w′) 5.�〈α〉φ� = �〈α, α〉φ�

def
= (1 + h, 1 + w)

6.�〈A : α〉φ�
def
= (1 + max(h, hA), 1 + max(w,wA))

7.�KAφ�
def
= (1 + max(h, hA), 1 + max(w,wA))

8.�〈A, A′ : α〉φ�
def= (1 + max(h, hA, hA′), 1 + max(w,wA, wA′))

pair (N, P ) structurally bisimilar to it at the size �φ�. Using this result, we con-
clude that if a process satisfies φ w.r.t. a given closed set of processes, then
by pruning the process and the closed set on the size �φ�, we preserve the sat-
isfiability for φ. Indeed the theorems 1 and 4 prove that if �φ� = (h, w) then
(M, P ) ≈h

w (M�φ�, P�φ�). Hence M, P |= φ implies M�φ�, P�φ� |= φ.

Definition 20. The set of actions of a formula φ is defined in Table 3.

Table 3. The set of actions of a formula

1. act(0) = act(�)
def
= ∅ 5. act(φ ∧ ψ) = act(φ|ψ)

def
= act(φ) ∪ act(ψ)

2. act(〈α〉φ)
def
= {α} ∪ act(φ) 6. act(〈A : α〉φ) = act(KAφ)

def
= Act(I(A)) ∪ act(φ)

3. act(¬φ) = act(φ) 7. act(〈A, A′ : α〉φ)
def
= Act(I(A)) ∪ Act(I(A′)) ∪ act(φ)

4. act(〈α, α〉φ)
def
= {α, α} ∪ act(φ)

The next result states that a formula φ does not reflect properties that involve
more then the actions in its syntax. Thus if M, P |= φ then any substitution σ
having the elements of act(φ) as fix points preserves the satisfaction relation.

Lemma 3. If M, P |= φ and σ a substitution with act(σ)
⋂

act(φ) = ∅ then
Mσ, P σ |= φ.

Consider a lexicographical order � on A. For a finite set B ⊂ A there exists a
unique maximal element. We denote by B+ the set obtained by adding to B the
successor, w.r.t. �, of its maximal element.

Lemma 4 (Finite model property). If M, P |= φ then ∃N ∈ M
act(φ)+
�φ� and

Q ∈ N such that N , Q |= φ.

Because act(φ) is finite, Theorem 1 states that M
act(φ)+
�φ� is finite and any closed

set M ∈ M
act(φ)+
�φ� is finite as well. Thus we obtain the finite model property

for our logic. A consequence of theorem 4 is the decidability for satisfiability,
validity and model checking against the process semantics.
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Theorem 3 (Decidability). For LA
A

validity, satisfiability and model checking
are decidable against process semantics.

4.4 Characteristic Formulas

In this subsection we use the peculiarities of the dynamic and epistemic operators
to define characteristic formulas for processes and for finite closed sets of processes.

Definition 21. Consider the class of logical formulas indexed by (≡-equivalence
classes of) processes FP = {(fP ) | P ∈ P} defined as follows5:

1. f0
def
= 0 2. fP |Q

def
= fP |fQ 3. fα.P

def
= α.fP

Proposition 5. fP is a characteristic formula for P , i.e. M, P |= fQ iff P ≡ Q.

Definition 22. Consider the class of logical formulas indexed by epistemic agents
FA defined as follows6: Similarly we introduce a class of logical formulas (fA)A∈A,
on epistemic agents

1. fA
def
= 0 if A is atomic agent 2. fA1|A2

def
= fA1 |fA2 3. fα.A

def
= α.fA

Proposition 6. M, P |= fA iff P ≡ I(A).

Definition 23. Let Φ ⊂ FA be a finite set of formulas and A ∈ A an atomic

agent. Let ΔΦ
def
= KA(

∨

φ∈Φ φ) ∧ (
∧

φ∈Φ

∼
KAφ).

Observe that M, P |= ΔΦ iff for any Q ∈ M there exists φ ∈ Φ such that
M, Q |= φ and for any φ ∈ Φ there exists Q ∈ M such that M, Q |= φ. Observe
also that it is irrelevant which atomic agent A we choose to define Δ, as the
epistemic operators of any atomic agent can encode validity and satisfiability.

Further we exploit the semantics of this operator for defining characteristic
formulas for finite closed sets of processes.

Definition 24. For a finite closed set of processes M let fM = Δ{fP | P ∈ M}.

Proposition 7. If M, N are finite closed sets of processes and P ∈ M then
M, P |= fN iff N = M.

4.5 Axiomatic System

Consider the subset of logical formulas given by f := α.0 | α.f | f |f for α ∈ A.
We denote the class of these formulas by F7. Hereafter we use f, g, h for denoting
arbitrary formulas from F , while φ, ψ, ρ will be used for formulas in FA

A
.

Proposition 8. F ∪ {0} = FP.

In table 4 is proposed a Hilbert-style axiomatic system for LA
A
. We assume the ax-

ioms and the rules of propositional logic. In addition we have a set of spatial axioms
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Table 4. The axiomatic system LA
A

Spatial axioms
S1: 
 �|⊥ → ⊥
S2: 
 (φ|ψ)|ρ → φ|(ψ|ρ)
S3: 
 φ|0 ↔ φ

S4: 
 φ|(ψ ∨ ρ) → (φ|ψ) ∨ (φ|ρ)
S5: 
 φ|ψ → ψ|φ
S6: 
 (f ∧ φ|ψ) →

∨

f↔g|h(g ∧ φ)|(h ∧ ψ)
Spatial rules
SR1: If 
 φ → ψ then 
 φ|ρ → ψ|ρ
Dynamic axioms
D1: 
 〈a〉φ|ψ → 〈a〉(φ|ψ)
D2: 
 [a](φ → ψ) → ([a]φ → [a]ψ)

D3: 
 0 ∨ 〈!α〉� → [β]⊥, for α �= β
D4: 
 〈!α〉φ → [α]φ

Dynamic rules

DR1: If 
 φ then 
 [a]φ
DR2: If 
 φ1 → [a]φ′

1 and 
 φ2 → [a]φ′
2

then 
 φ1|φ2 → [a](φ′
1|φ2 ∨ φ1|φ′

2)
Epistemic axioms
E1: 
 KAφ ∧ KA(φ → ψ) → KAψ
E2: 
 KAφ → φ
E3: 
 KAφ → KAKAφ

E4: 
 KA� → (¬KAφ → KA¬KAφ)
E5: 
 KA� ↔ fA|�

Axioms involving atomic agents A0 ∈ A
E6: 
 KAφ ↔ (KA� ∧ KA0(KA� → φ))
E7: 
 KA0φ ∧ ψ|ρ → (KA0φ ∧ ψ)|(KA0φ ∧ ρ)

E8: 
 KA0φ → [a]KA0φ
E9: 
 KA0φ → (KA� → KAKA0φ)

Epistemic rules
ER1: If 
 φ then 
 KA� → KAφ
Mixed axioms
M1: 
 〈A : α〉� → KA�
M2: 
 fA → (〈α〉φ ↔ 〈A : α〉φ)

M3: 
 〈A : α〉φ ∧ 〈A|A′ : α〉� → 〈A|A′ : α〉φ
M4: 
 〈A : α〉φ|〈A′ : α〉ψ → 〈A, A′ : α〉(φ|ψ)

Mixed rules
MR1: If 
 (

∨

M∈M
act(φ)+
�φ�

fM) → φ then 
 φ

and rules, of dynamic axioms and rules and of epistemic axioms and rules. We will
also have a class of mixed axioms and rules that combine different operators.

Observe that the disjunctions in axiom S6 and in the rule MR1 are finitary.

Definition 25. We say that a formula φ ∈ FA is provable in LA
A

if φ can be
derived, as a theorem, using the axioms and the rules of LA

A
. We denote this by

� φ. We say that a formula φ ∈ FA
A

is consistent in LA
A

if ¬φ is not LA
A
-provable.

We call a formula φ ∈ FA
A

satisfiable if there exists a context M and a process
P ∈ M such that M, P |= φ. We call a formula φ ∈ FA

A
validity if for any

context M and any process P ∈ M we have M, P |= φ. In such a situation we
write |= φ.

Theorem 4 (Soundness). The system LA
A

is sound w.r.t. process semantics,
i.e. if � φ then |= φ.

Theorem 5 (Completeness). The axiomatic system of LA
A

is complete w.r.t.
process semantics, i.e. if |= φ then � φ.
5 Note that FP ⊂ FA

A .
6 Note that FA ⊂ FA

A .
7 By construction, F ⊂ FA

A .
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The proof of this theorem uses the characteristic formulas for processes and
finite closed sets and consists in proving the equivalence equivalence between
M, P |= φ and � fM ∧ fP → φ.

5 Formalizing the Security Scenario

We return to the security scenario proposed in subsection 1.1 and we will use
CCS to encode the process and the logic to analyze it. The entire process can
be represented as the process P ≡ k.α.A | k.(α.P ′|β.P ′′) | k.β.E, where P ′ is
interpreted as “event p happened” while P ′′ as “event ¬p happened”. k.α.A is
the process of Alice, k(α.P ′|β.P ′′) is Bob’s and k.β.E is the process of Eve. We
associate to Alice three epistemic agents, A1, A2, A3 that represent the three
successive states of Alice in our scenario. Similarly E1, E2, E3 are the agents
representing different instances of Eve, while B1, B2, B3, B4 represent instances
of Bob. The model is given by M = {P} and the interpretation I in Table 5.

Table 5. The interpretation of epistemic agents

Alice Bob Eve

I(A1) = k.α.A I(B1) = k.(α.P ′|β.P ′′).β.E I(E1) = k.β.E

I(A2) = α.A I(B2) = α.P ′|β.P ′′ I(E2) = β.E

I(A3) = A I(B3) = P ′|β.P ′′ I(E3) = E
I(B4) = α.P ′|P ′′

Now we can express that Alice and Bob can recognize each other and that
Alice can inform Bob about p by M, P |= 〈A1, B1 : k〉〈A2, B2 : α〉(P ′|
).

But Bob can also communicate with Eve, as Eve has the encryption key:
M, P |= 〈A1, E1 : k〉〈A2, E2 : α〉(P ′′|
).

Alice knows that she can communicate with Bob, using the key k, and as a
result Bob will be informed about the event p: M, P |= KA1〈k〉〈α〉(P ′|
). But
if Alice is aware of the possibility of an attack she cannot be sure that, after
she sent the messages to Bob, Bob does know that p happened; it might be the
case that Bob did not receive Alice’s message and that he communicated instead
with the impersonator:
M, P |= ¬[k][α]KA3(P ′|
) or M, P |= 〈k〉〈α〉¬KA3KB3(P ′|
).

Alice knows that Bob knows that p happened only if Bob did the two com-
munications with her: M, P |= KA1〈A1, B1 : k〉〈A2, B2 : α〉KB3(P ′|
).

Before communication Bob knows only that whatever Alice will say it will be
true: M, P |= KB1 [A1, B1 : k][A2, B2 : α]
.

Eve knows that she can present herself as Alice (i.e. can send k) but she can
be sure that will communicate with Bob:
M, P |= KE1〈E1 : k〉
 and M, P |= ¬KE1〈E1, B1〉


In the same way we can express many complex properties. Further we can use
model checking or theorem proving to play with such properties.
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6 Concluding Remarks and Future Works

In this paper we introduced a new dynamic-epistemic logic, LA
A
, with a process-

algebraical semantics that combines well with process algebraical modelling of in-
formation flow, but that can also directly express agent-dependent partial infor-
mation features and their dynamics. This logic is meant to be used for expressing
properties of multiagent distributed systems. In this respect the society of agents
A came with an algebraical structure that depicts the distribution of the mod-
ules which are observed by the agents. In expressing this we used operators from
spatial logics together with operators characteristic for dynamic-epistemic logics.

The logic is presented with a complete and decidable axiomatic system con-
taining similar axioms with the logics it combines.

With respect to dynamic-epistemic logics, the novelty of our logic consists in
assuming an algebraical structure on the class of agents. Thus, we can speak
about the knowledge of agents A′, A′′ but also about the knowledge of the agent
A′|A′′ which subsumes the knowledge of A′, of A′′, and the knowledge derived
from the fact that what A′ and A′′ see are modules running in parallel as parts
of the same system.

With respect to logics for processes (spatial logics), our logic focuses on agents
and their knowledge proposing a direct way of encoding epistemic properties that
are relevant for many applications and which, using the logics of processes only
can be encoded in a difficult or unnatural way. Thus we can trace the evolution of
the agent’s knowledge and we can express properties concerning their dynamics.
Such properties are important e.g. in analyzing communication protocols where
the success of a protocol depends on the knowledge of the agents involved.
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