Computing Behavioral Distances, Compositionally

Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, Radu Mardare

Dept. of Computer Science, Aalborg University

Quantitative Models

Expressiveness, Analysis, and New Applications
19-24 January 2013 - Dagstuhl, Germany

Motivations

Markov Decision Processes with Rewards

- external nondeterminism + probabilistic behavior
- many useful applications (A.I., planning, games, biology, ...)

Compositional Reasoning $\mathcal{M}=\mathcal{M}_{1} \otimes \mathcal{M}_{2} \otimes \cdots \otimes \mathcal{M}_{n}$
scalability and reusability of models
may suffer from an exponential growth of the state space (the parallel composition of n systems with m states has m^{n} states!)

Bisimilarity Distances ... to measure the degree of similarities
(bisimilarity is not robust: it only relates states with identical behaviors)
approximate reasoning on quantitative models
need of efficient methods for computing bisim. distances

Motivations

Markov Decision Processes with Rewards

- external nondeterminism + probabilistic behavior
- many useful applications (A.I., planning, games, biology, ...)

Compositional Reasoning $\mathcal{M}=\mathcal{M}_{1} \otimes \mathcal{M}_{2} \otimes \cdots \otimes \mathcal{M}_{n}$

- scalability and reusability of models
- may suffer from an exponential growth of the state space (the parallel composition of n systems with m states has m^{n} states!)

Bisimilarity Distances ... to measure the degree of similarities
(bisimilarity is not robust: it only relates states with identical behaviors)
approximate reasoning on quantitative models
need of efficient methods for computing bisim. distances

Motivations

Markov Decision Processes with Rewards

- external nondeterminism + probabilistic behavior
- many useful applications (A.I., planning, games, biology, ...)

Compositional Reasoning $\mathcal{M}=\mathcal{M}_{1} \otimes \mathcal{M}_{2} \otimes \cdots \otimes \mathcal{M}_{n}$

- scalability and reusability of models
- may suffer from an exponential growth of the state space (the parallel composition of n systems with m states has m^{n} states!)

Bisimilarity Distances ... to measure the degree of similarities (bisimilarity is not robust: it only relates states with identical behaviors)

- approximate reasoning on quantitative models
- need of efficient methods for computing bisim. distances

Markov Decision Processes with Rewards (MDPs)

$$
\mathcal{M}=(S, A, \tau, \rho)
$$

Markov Decision Processes with Rewards (MDPs)

$$
\mathcal{M}=(S, A, \tau, \rho)
$$

Markov Decision Processes with Rewards (MDPs)

$$
\mathcal{M}=(S, A, \tau, \rho)
$$

Markov Decision Processes with Rewards (MDPs)

Markov Decision Processes with Rewards (MDPs)

Markov Decision Processes with Rewards (MDPs)

S_{1}
S_{2}
S3

Markov Decision Processes with Rewards (MDPs)

Markov Decision Processes with Rewards (MDPs)

Markov Decision Processes with Rewards (MDPs)

Executions: $\omega=\left(s_{0}, a_{0}\right)\left(s_{1}, a_{1}\right) \ldots$

Markov Decision Processes with Rewards (MDPs)

Executions: $\omega=\left(s_{0}, a_{0}\right)\left(s_{1}, a_{1}\right) \ldots$
Discounted accumulated reward $\lambda \in(0,1)$

$$
R_{\lambda}(\omega)=\sum_{i \in \mathbb{N}} \lambda^{i} \cdot \rho\left(s_{i}, a_{i}\right)
$$

Markov Decision Processes with Rewards (MDPs)

Executions: $\omega=\left(s_{0}, a_{0}\right)\left(s_{1}, a_{1}\right) \ldots$
Discounted accumulated reward $\lambda \in(0,1)$

$$
R_{\lambda}(\omega)=\sum_{i \in \mathbb{N}} \lambda^{i} \cdot \rho\left(s_{i}, a_{i}\right)
$$

Goal: To find policies $\pi: S \rightarrow A$ that maximize the expected value of R_{λ} on probabilistic executions starting from a given state.

Algebraic Operators on MDPs

Complex systems can be conveniently represented as the algebraic composition of simpler sub-systems.

How to define generic operators on MDPs?

Algebraic Operators on MDPs

Complex systems can be conveniently represented as the algebraic composition of simpler sub-systems.

How to define generic operators on MDPs?

Algebraic Operators on MDPs

Complex systems can be conveniently represented as the algebraic composition of simpler sub-systems.

How to define generic operators on MDPs?

Synch. parallel comp.
CCS-like parallel comp.

Metric analogue of congruence

Robust semantics for quantitative systems:

- Pseudometrics are the quantitative analogue equivalences
\Rightarrow Bisimilarity Pseudometrics: $\delta^{\mathcal{M}}(s, t)=0 \Longleftrightarrow s \sim_{\mathcal{M}} t$

Metric analogue of congruence

Robust semantics for quantitative systems:

- Pseudometrics are the quantitative analogue equivalences
\Rightarrow Bisimilarity Pseudometrics: $\delta^{\mathcal{M}}(s, t)=0 \Longleftrightarrow s \sim_{\mathcal{M}} t$

What is the quantitive analogue of congruence?

$$
s_{1} \sim \mathcal{M}_{1} t_{1} \text { and } s_{2} \sim_{\mathcal{M}_{2}} t_{2} \Longrightarrow s_{1} \otimes s_{2} \sim_{\mathcal{M}_{1} \otimes \mathcal{M}_{2}} t_{1} \otimes t_{2}
$$

Metric analogue of congruence

Robust semantics for quantitative systems:

- Pseudometrics are the quantitative analogue equivalences
\Rightarrow Bisimilarity Pseudometrics: $\delta^{\mathcal{M}}(s, t)=0 \Longleftrightarrow s \sim_{\mathcal{M}} t$

What is the quantitive analogue of congruence?

$$
s_{1} \sim \mathcal{M}_{1} t_{1} \text { and } s_{2} \sim_{\mathcal{M}_{2}} t_{2} \Longrightarrow s_{1} \otimes s_{2} \sim_{\mathcal{M}_{1} \otimes \mathcal{M}_{2}} t_{1} \otimes t_{2}
$$

Metric analogue of congruence

Robust semantics for quantitative systems:

- Pseudometrics are the quantitative analogue equivalences
\Rightarrow Bisimilarity Pseudometrics: $\delta^{\mathcal{M}}(s, t)=0 \Longleftrightarrow s \sim_{\mathcal{M}} t$

What is the quantitive analogue of congruence?

$$
\begin{aligned}
& s_{1} \sim_{\mathcal{M}_{1}} t_{1} \text { and } s_{2} \sim_{\mathcal{M}_{2}} t_{2} \Longrightarrow s_{1} \otimes s_{2} \sim_{\mathcal{M}_{1} \otimes \mathcal{M}_{2}} t_{1} \otimes t_{2} \\
> & \delta^{\mathcal{M}_{1}}\left(s_{1}, t_{1}\right)+\delta^{\mathcal{M}_{2}}\left(s_{2}, t_{2}\right) \geq \delta^{\mathcal{M}_{1} \otimes \mathcal{M}_{2}}\left(s_{1} \otimes s_{2}, t_{1} \otimes t_{2}\right)
\end{aligned}
$$

Metric analogue of congruence

Robust semantics for quantitative systems:

- Pseudometrics are the quantitative analogue equivalences
- Bisimilarity Pseudometrics: $\delta^{\mathcal{M}}(s, t)=0 \Longleftrightarrow s \sim_{\mathcal{M}} t$

What is the quantitive analogue of congruence?

$$
\begin{aligned}
& s_{1} \sim_{\mathcal{M}_{1}} t_{1} \text { and } s_{2} \sim_{\mathcal{M}_{2}} t_{2} \Longrightarrow s_{1} \otimes s_{2} \sim_{\mathcal{M}_{1} \otimes \mathcal{M}_{2}} t_{1} \otimes t_{2} \\
> & \delta^{\mathcal{M}_{1}}\left(s_{1}, t_{1}\right)+\delta^{\mathcal{M}_{2}}\left(s_{2}, t_{2}\right) \geq \delta^{\mathcal{M}_{1} \otimes \mathcal{M}_{2}}\left(s_{1} \otimes s_{2}, t_{1} \otimes t_{2}\right) \\
> & \left\|\delta^{\mathcal{M}_{1}}, \delta^{\mathcal{M}_{2}}\right\|_{1} \sqsupseteq \delta^{\mathcal{M}_{1} \otimes \mathcal{M}_{2}} \quad(\otimes \text { is non-extensive })
\end{aligned}
$$

Metric analogue of congruence

Robust semantics for quantitative systems:

- Pseudometrics are the quantitative analogue equivalences
- Bisimilarity Pseudometrics: $\delta^{\mathcal{M}}(s, t)=0 \Longleftrightarrow s \sim_{\mathcal{M}} t$

What is the quantitive analogue of congruence?

$$
\begin{aligned}
& s_{1} \sim_{\mathcal{M}_{1}} t_{1} \text { and } s_{2} \sim_{\mathcal{M}_{2}} t_{2} \Longrightarrow s_{1} \otimes s_{2} \sim_{\mathcal{M}_{1} \otimes \mathcal{M}_{2}} t_{1} \otimes t_{2} \\
> & \delta^{\mathcal{M}_{1}}\left(s_{1}, t_{1}\right)+\delta^{\mathcal{M}_{2}}\left(s_{2}, t_{2}\right) \geq \delta^{\mathcal{M}_{1} \otimes \mathcal{M}_{2}}\left(s_{1} \otimes s_{2}, t_{1} \otimes t_{2}\right) \\
\nabla & \left\|\delta^{\mathcal{M}_{1}}, \delta^{\mathcal{M}_{2}}\right\|_{p} \sqsupseteq \delta^{\mathcal{M}_{1} \otimes \mathcal{M}_{2}} \quad(\otimes \text { is } p-\text { non-extensive })
\end{aligned}
$$

A Bisimilarity Pseudometric on MDPs

We consider the λ-discounted bisimilarity distances proposed by Ferns et al. [UAI'04]:
$\delta_{\lambda}^{\mathcal{M}}: S \times S \rightarrow \mathbb{R}_{\geq 0}$ is the least fixed point of
$F_{\lambda}^{\mathcal{M}}(d)(s, t)=\max _{a \in A}\left\{|\rho(s, a)-\rho(t, a)|+\lambda \cdot \mathcal{T}_{d}(\tau(s, a), \tau(t, a))\right\}$

A Bisimilarity Pseudometric on MDPs

We consider the λ-discounted bisimilarity distances proposed by Ferns et al. [UAI'04]:
$\delta_{\lambda}^{\mathcal{M}}: S \times S \rightarrow \mathbb{R}_{\geq 0}$ is the least fixed point of
$\begin{aligned} & F_{\lambda}^{\mathcal{M}}(d)(s, t)=\max _{a \in A}\left\{|\rho(s, a)-\rho(t, a)|+\lambda \cdot \mathcal{T}_{d}(\tau(s, a), \tau(t, a))\right\} \\ & \text { distance between rewards }\end{aligned}$

A Bisimilarity Pseudometric on MDPs

We consider the λ-discounted bisimilarity distances proposed by Ferns et al. [UAI'04]:
$\delta_{\lambda}^{\mathcal{M}}: S \times S \rightarrow \mathbb{R}_{\geq 0}$ is the least fixed point of
$F_{\lambda}^{\mathcal{M}}(d)(s, t)=\max _{a \in A}\left\{|\rho(s, a)-\rho(t, a)|+\lambda \cdot \mathcal{T}_{d}(\tau(s, a), \tau(t, a))\right\}$
distance between rewards
and recursively...
distance between transition probabilities

A Bisimilarity Pseudometric on MDPs

We consider the λ-discounted bisimilarity distances proposed by Ferns et al. [UAI'04]:

$$
\delta_{\lambda}^{\mathcal{M}}: S \times S \rightarrow \mathbb{R}_{\geq 0} \text { is the least fixed point of }
$$

$$
F_{\lambda}^{\mathcal{M}}(d)(s, t)=\max _{a \in A}\left\{|\rho(s, a)-\rho(t, a)|+\lambda \cdot \mathcal{T}_{d}(\tau(s, a), \tau(t, a))\right\}
$$

Remarkable property
Upper-bound of expected accumulated rewards w.r.t. optimal policies

$$
\left|V_{\lambda}^{\mathcal{M}}(s)-V_{\lambda}^{\mathcal{M}}(t)\right| \leq d_{\lambda}^{\mathcal{M}}(s, t)
$$

Kantorovich Metric: $\mathcal{T}_{d}: \Delta(S) \times \Delta(S) \rightarrow \mathbb{R}_{\geq 0}$

The distance between $\tau(s, a)$ and $\tau(t, a)$ is the optimal value of a Transportation Problem
ω can be understood as transportation of $\tau(s, a)$ to $\tau(t, a)$.

Kantorovich Metric: $\mathcal{T}_{d}: \Delta(S) \times \Delta(S) \rightarrow \mathbb{R}_{\geq 0}$

The distance between $\tau(s, a)$ and $\tau(t, a)$ is the optimal value of a Transportation Problem

$$
\begin{gathered}
\mathcal{T}_{d}(\tau(s, a), \tau(t, a))=\min \left\{\sum_{u, v \in S} d(u, v) \cdot \omega(u, v) \left\lvert\, \begin{array}{l}
\forall u \in S \sum_{v \in S} \omega(u, v)=\tau(s, a)(u) \\
\forall v \in S \sum_{u \in S} \omega(u, v)=\tau(t, a)(v)
\end{array}\right.\right\} \\
\text { matching } \quad \omega \in \Pi(\tau(s, a), \tau(t, a))
\end{gathered}
$$

ω can be understood as transportation of $\tau(s, a)$ to $\tau(t, a)$.

Kantorovich Metric: $\mathcal{T}_{d}: \Delta(S) \times \Delta(S) \rightarrow \mathbb{R}_{\geq 0}$

The distance between $\tau(s, a)$ and $\tau(t, a)$ is the optimal value of a Transportation Problem

$$
\begin{gathered}
\mathcal{T}_{d}(\tau(s, a), \tau(t, a))=\min \left\{\sum_{u, v \in S} d(u, v) \cdot \omega(u, v) \left\lvert\, \begin{array}{l}
\forall u \in S \sum_{v \in S} \omega(u, v)=\tau(s, a)(u) \\
\forall v \in S \sum_{u \in S} \omega(u, v)=\tau(t, a)(v)
\end{array}\right.\right\} \\
\text { matching } \quad \omega \in \Pi(\tau(s, a), \tau(t, a))
\end{gathered}
$$

ω can be understood as transportation of $\tau(s, a)$ to $\tau(t, a)$.

Safe algebraic operators on MDPs

Proving non-extensiveness for \otimes may lead to rather involved proofs ($\delta_{\lambda}^{\mathcal{M}}$ is defined as the least fixed point of $F_{\lambda}^{\mathcal{M}}$)

Safe algebraic operators on MDPs

Proving non-extensiveness for \otimes may lead to rather involved proofs ($\delta_{\lambda}^{\mathcal{M}}$ is defined as the least fixed point of $F_{\lambda}^{\mathcal{M}}$)
... we characterized a class of operators on MDPs

p-Safe operators

$$
F_{\lambda}^{\mathcal{M}_{1} \otimes \mathcal{M}_{2}}\left(\left\|d_{1}, d_{2}\right\|_{p}\right) \sqsubseteq\left\|F_{\lambda}^{\mathcal{M}_{1}}\left(d_{1}\right), F_{\lambda}^{\mathcal{M}_{2}}\left(d_{2}\right)\right\|_{p}
$$

Theorem: p-Safeness \Longrightarrow non-extensiveness

Safe algebraic operators on MDPs

Proving non-extensiveness for \otimes may lead to rather involved proofs ($\delta_{\lambda}^{\mathcal{M}}$ is defined as the least fixed point of $F_{\lambda}^{\mathcal{M}}$)
... we characterized a class of operators on MDPs

p-Safe operators

$$
F_{\lambda}^{\mathcal{M}_{1} \otimes \mathcal{M}_{2}}\left(\left\|d_{1}, d_{2}\right\|_{p}\right) \sqsubseteq\left\|F_{\lambda}^{\mathcal{M}_{1}}\left(d_{1}\right), F_{\lambda}^{\mathcal{M}_{2}}\left(d_{2}\right)\right\|_{p}
$$

Theorem: p-Safeness \Longrightarrow non-extensiveness

Synch. parallel comp.
CCS-like parallel comp.

Computing the behavioral distance

```
given s,t\inS, to compute }\mp@subsup{\delta}{\lambda}{\mathcal{M}}(s,t
```

On-the-fly algorithm
[Bacci ${ }^{2}$,Larsen,Mardare TACAS'13]

- lazy exploration of \mathcal{M}
- save comput. time + space

Compositional strategy

- exploit the compositional structure of $\mathcal{M}_{1} \otimes \mathcal{M}_{2}$

Alternative characterization of $\delta_{\lambda}^{\mathcal{M}}$

Coupling for $\mathcal{M}: \quad \mathcal{C}=\left(\omega_{s, t}^{a} \in \Pi(\tau(s, a), \tau(t, a))\right)_{s, t \in S}^{a \in A}$
(to be thought of as a "probabilistic pairing of \mathcal{M})

$$
\Gamma_{\lambda}^{\mathcal{C}}(d)(s, t)=\max _{a \in A}\left\{|\rho(s, a)-\rho(t, a)|+\lambda \sum_{u, v \in S} d(u, v) \cdot \omega_{s, t}^{a}(u, v)\right\}
$$

\ldots. and we call discrepancy, $\gamma_{\lambda}^{\mathcal{C}}$, the least fixed point of $\Gamma_{\lambda}^{\mathcal{C}}$

Theorem (Minimal Coupling)

$$
\delta_{\lambda}^{\mathcal{M}}=\min \left\{\gamma_{\lambda}^{\mathcal{C}} \mid \mathcal{C} \text { counling for } \mathcal{M}\right\}
$$

Alternative characterization of $\delta_{\lambda}^{\mathcal{M}}$

Coupling for $\mathcal{M}: \quad \mathcal{C}=\left(\omega_{s, t}^{a} \in \Pi(\tau(s, a), \tau(t, a))\right)_{s, t \in S}^{a \in A}$
(to be thought of as a "probabilistic pairing of \mathcal{M})

$$
\Gamma_{\lambda}^{\mathcal{C}}(d)(s, t)=\max _{a \in A}\left\{|\rho(s, a)-\rho(t, a)|+\lambda \sum_{u, v \in S} d(u, v) \cdot \omega_{s, t}^{a}(u, v)\right\}
$$

\ldots..and we call discrepancy, $\gamma_{\lambda}^{\mathcal{C}}$, the least fixed point of $\Gamma_{\lambda}^{\mathcal{C}}$

Theorem (Minimal Coupling)

$$
\delta_{\lambda}^{\mathcal{M}}=\min \left\{\gamma_{\lambda}^{\mathcal{C}} \mid \mathcal{C} \text { coupling for } \mathcal{M}\right\}, \quad \text { for all } \lambda \in(0,1)
$$

On-the-fly strategy

$$
\mathcal{C}_{1} \unlhd_{\lambda} \mathcal{C}_{2} \Longleftrightarrow \gamma_{\lambda}^{\mathcal{C}_{1}} \sqsubseteq \gamma_{\lambda}^{\mathcal{C}_{2}}
$$

Greedy strategy

Moving Criterion: $\mathcal{C}_{i}=\left\{\ldots, \omega_{\mu, v}^{a}, \ldots\right\}$ $\omega_{\mu, v}^{a}$ not opt. w.r.t. $\operatorname{TP}\left(\gamma_{\lambda}^{c_{i}}, \tau(u, a), \tau(v, a)\right)$

Improvement: $\mathcal{C}_{i+1}=\left\{\ldots, \omega^{*}, \ldots\right\}$
ω^{*} optimal sol. for $\operatorname{TP}\left(\gamma_{\lambda}^{c_{i}}, \tau(u, a), \tau(v, a)\right)$

Theorem

each step ensures $\mathcal{C}_{i+1} \triangleleft_{\lambda} \mathcal{C}_{i}$
$>$ moving criterion holds until $\gamma_{\lambda}^{\mathcal{C}_{i}} \neq \delta_{\lambda}$

- the method always terminates

On-the-fly strategy

$$
\mathcal{C}_{1} \unlhd_{\lambda} \mathcal{C}_{2} \Longleftrightarrow \gamma_{\lambda}^{\mathcal{C}_{1}} \sqsubseteq \gamma_{\lambda}^{\mathcal{C}_{2}}
$$

Greedy strategy

Moving Criterion: $\mathcal{C}_{i}=\left\{\ldots, \omega_{\mu, v}^{a}, \ldots\right\}$ $\omega_{\mu, v}^{a}$ not opt. w.r.t. $\operatorname{TP}\left(\gamma_{\lambda}^{\mathcal{C}_{i}}, \tau(u, a), \tau(v, a)\right)$

Improvement: $\mathcal{C}_{i+1}=\left\{\ldots, \omega^{*}, \ldots\right\}$ ω^{*} optimal sol. for $\operatorname{TP}\left(\gamma_{\lambda}^{c_{i}}, \tau(u, a), \tau(v, a)\right)$

Theorem

each step ensures $\mathcal{C}_{i+1} \triangleleft_{\lambda} \mathcal{C}_{i}$
$>$ moving criterion holds until $\gamma_{\lambda}^{\mathcal{C}_{i}} \neq \delta_{\lambda}$
$>$ the method always terminates

A Compositional Heuristic

Let $\mathcal{M}=\mathcal{M}_{2} \otimes \mathcal{M}_{2}$ and \otimes be non-extensive, than

$$
\delta_{\lambda}^{\mathcal{M}} \sqsubseteq\left\|\delta_{\lambda}^{\mathcal{M}_{1}}, \delta_{\lambda}^{\mathcal{M}_{2}}\right\|_{p}
$$

A Compositional Heuristic

Let $\mathcal{M}=\mathcal{M}_{2} \otimes \mathcal{M}_{2}$ and \otimes be non-extensive, than

$$
\begin{aligned}
& \delta_{\lambda}^{\mathcal{M}} \sqsubseteq\left\|\delta_{\lambda}^{\mathcal{M}_{1}}, \delta_{\lambda}^{\mathcal{M}_{2}}\right\|_{p} \\
& \text { // } \ \backslash \quad\binom{\text { Min. Coupling }}{\text { Theorem }} \\
& \gamma_{\lambda}^{\mathcal{D}} \quad\left\|\gamma_{\lambda}^{\mathcal{D}_{1}}, \gamma_{\lambda}^{\mathcal{D}_{2}}\right\|_{p}
\end{aligned}
$$

A Compositional Heuristic

Let $\mathcal{M}=\mathcal{M}_{2} \otimes \mathcal{M}_{2}$ and \otimes be non-extensive, than

$$
\begin{gathered}
\delta_{\lambda}^{\mathcal{M}} \sqsubseteq\left\|\delta_{\lambda}^{\mathcal{M}_{1}}, \delta_{\lambda}^{\mathcal{M}_{2}}\right\|_{p} \\
/ / \\
\gamma_{\lambda}^{\mathcal{D}} \sqsubseteq \gamma_{\lambda}^{\mathcal{D}^{*}} \sqsubseteq\left\|\gamma_{\lambda}^{\mathcal{D}_{1}}, \gamma_{\lambda}^{\mathcal{D}_{2}}\right\|_{p}
\end{gathered}
$$

A good starting coupling should not exceed the upper-bound given by non-extensiveness!

A Compositional Heuristic

Let $\mathcal{M}=\mathcal{M}_{2} \otimes \mathcal{M}_{2}$ and \otimes be non-extensive, than

$$
\begin{gathered}
\delta_{\lambda}^{\mathcal{M}} \sqsubseteq\left\|\delta_{\lambda}^{\mathcal{M}_{1}}, \delta_{\lambda}^{\mathcal{M}_{2}}\right\|_{p} \\
\| / / \\
\gamma_{\lambda}^{\mathcal{D}} \sqsubseteq \gamma_{\lambda}^{\mathcal{D}^{*}} \sqsubseteq\left\|\gamma_{\lambda}^{\mathcal{D}_{1}}, \gamma_{\lambda}^{\mathcal{D}_{2}}\right\|_{p}
\end{gathered}
$$

A good starting coupling should not exceed the upper-bound given by non-extensiveness!

Remark: \mathcal{D}^{*} should be obtained from \mathcal{D}_{1} and \mathcal{D}_{2}

Lifting algebraic operators on Couplings

Lifting operator

$$
\begin{array}{cc}
\mathcal{M}_{1}, & \mathcal{M}_{2} \mapsto \mathcal{M}_{1} \otimes \mathcal{M}_{2} \\
& \\
\mathcal{C}_{1}, & \mathcal{C}_{2} \longmapsto \mathcal{C}_{1} \otimes^{*} \mathcal{C}_{2}
\end{array}
$$

Lifting algebraic operators on Couplings

Lifting operator

$$
\begin{array}{ccc}
\mathcal{M}_{1}, & \mathcal{M}_{2} \mapsto \mathcal{M}_{1} \otimes \mathcal{M}_{2} \\
\vdots & \vdots \\
\mathcal{C}_{1}, & \mathcal{C}_{2} \longmapsto \mathcal{C}_{1} \otimes^{*} \mathcal{C}_{2}
\end{array}
$$

p-Safe lifting operator

$$
\Gamma_{\lambda}^{\mathcal{C}_{1} \otimes^{*} \mathcal{C}_{2}}\left(\left\|d_{1}, d_{2}\right\|_{p}\right) \sqsubseteq\left\|\Gamma_{\lambda}^{\mathcal{C}_{1}}\left(d_{1}\right), \Gamma_{\lambda}^{\mathcal{C}_{1}}\left(d_{2}\right)\right\|_{p}
$$

Lifting algebraic operators on Couplings

Lifting operator

$$
\begin{array}{cc}
\mathcal{M}_{1}, & \mathcal{M}_{2} \mapsto \mathcal{M}_{1} \otimes \mathcal{M}_{2} \\
\\
\mathcal{C}_{1}, & \mathcal{C}_{2} \longmapsto \mathcal{C}_{1} \otimes^{*} \mathcal{C}_{2}
\end{array}
$$

p-Safe lifting operator

$$
\Gamma_{\lambda}^{\mathcal{C}_{1} \otimes^{*} \mathcal{C}_{2}}\left(\left\|d_{1}, d_{2}\right\|_{p}\right) \sqsubseteq\left\|\Gamma_{\lambda}^{\mathcal{C}_{1}}\left(d_{1}\right), \Gamma_{\lambda}^{\mathcal{C}_{1}}\left(d_{2}\right)\right\|_{p}
$$

$$
\delta_{\lambda}^{\mathcal{M}_{1} \otimes \mathcal{M}_{2}} \sqsubseteq \gamma_{\lambda}^{\mathcal{D}_{1} \otimes^{*} \mathcal{D}_{2}} \sqsubseteq\left\|\delta_{\lambda}^{\mathcal{M}_{1}}, \delta_{\lambda}^{\mathcal{M}_{2}}\right\|_{p}
$$

where \mathcal{D}_{i} is a coupling for \mathcal{M}_{i} minimal w.r.t. \unlhd_{λ}

The Pipeline Example

The Pipeline Example

Experimental Results

Query	Instance	OTF	COTF	\# States					
All pairs	$E_{0} \\| E_{1}$	0.654791	0.97248	9					
	$E_{1} \\| E_{2}$	0.702105	0.801121	9					
	$E_{0}\left\\|E_{0}\right\\| E_{1}$	48.5982	13.5731	27					
	$E_{0}\left\\|E_{1}\right\\| E_{2}$	23.1984	19.9137	27					
	$E_{0}\left\\|E_{1}\right\\| E_{1}$	126.335	13.6483	27					
	$E_{0}\left\\|E_{0}\right\\| E_{0}$	49.1167	14.1075	27					
	$E_{0}\left\\|E_{0}\right\\| E_{0}\left\\|E_{1}\right\\| E_{1}$	16.7027	11.6919	243					
	$E_{0}\left\\|E_{1}\right\\| E_{0}\left\\|E_{1}\right\\| E_{1}$	20.2666	16.6274	243					
	$E_{2}\left\\|E_{1}\right\\| E_{0}\left\\|E_{1}\right\\| E_{1}$	22.8357	10.4844	243					
	$E_{1}\left\\|E_{2}\right\\| E_{0}\left\\|E_{0}\right\\| E_{2}$	11.7968	6.76188	243					
	$E_{1}\left\\|E_{2}\right\\| E_{0}\left\\|E_{0}\right\\| E_{2} \\| E_{2}$	Time-out	79.902	729					

Conclusion and Future Work

Results

\Rightarrow generic definition of algebraic operators on MDPs

- characterized a well-behaved class of operators (p-Safeness)
- on-the-fly algorithm for behavioral pseudometrics
- avoids entire exploration of the state space
- exploit compositional structure of the model (first proposal!)
- developed a proof of concept prototype [http://people.cs.aau.dk/giovbacci/tools.html]

Future work

- expressiveness (probabilistic choice, co-recursive def., etc.)
- beyond non-extensiveness (continuous operators)
- apply similar techniques on CTMCs, CTMDPs, etc...

