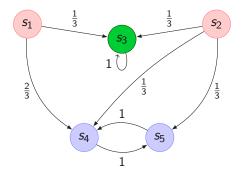
The **BISIMDIST** Library

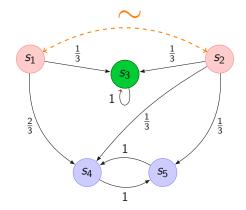
Efficient Computation of Bisimilarity Distances for Markovian Models

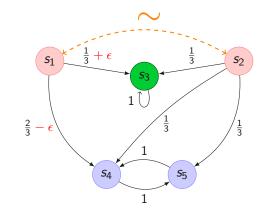
Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, Radu Mardare

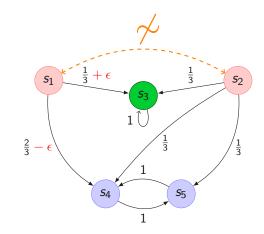
Dept. of Computer Science, Aalborg University

QEST 2013 27-30 August, Buenos Aires - Argentina









From equivalences to distances [Giacalone-Jou-Smolka'90]

Pseudometrics $d\colon S\times S\to \mathbb{R}_{\geq 0}$ are the quantitative analogue of an equivalence relation

equivalence	pseudometric		
$s \equiv s$	$\sim \rightarrow$	d(s,s) = 0	
$s\equiv t\implies t\equiv s$	\rightsquigarrow	d(s,t) = d(t,s)	
$s\cong u\wedge u\cong t\implies s\cong t$	\rightsquigarrow	$d(s, u) + d(u, t) \geq d(s, t)$	

From equivalences to distances [Giacalone-Jou-Smolka'90]

Pseudometrics $d\colon S\times S\to \mathbb{R}_{\geq 0}$ are the quantitative analogue of an equivalence relation

equivalence	pseudometric		
$s \equiv s$	$\sim \rightarrow$	d(s,s)=0	
$s\equiv t\implies t\equiv s$	\rightsquigarrow	d(s,t)=d(t,s)	
$s \cong u \wedge u \cong t \implies s \cong t$	\rightsquigarrow	$d(s, u) + d(u, t) \geq d(s, t)$	

Bisimilarity Pseudometrics $d(s,t) = 0 \iff s \sim t$

Markov Chains:

- + pseudometrics of Desharnais et al. [TCS'04]
- + fixed point def. by van Breugel and Worrell [LMCS'08]

Remarkable properties

Chen et al. [FoSSaCS'12]

$$\sup_{\varphi \in \mathsf{LTL}} |\Pr(s \vDash \varphi) - \Pr(t \vDash \varphi)| \le d^{\mathsf{MC}}(s, t)$$

Markov Decision Processes:

+ pseudometrics of Ferns et al. [UAI'04] (fixed point def.)

Remarkable properties

Ferns et al. [UAI'04]

$$|V^*(s)-V^*(t)|\leq d^{\mathsf{MDP}}(s,t)$$

Markov Chains:

- + pseudometrics of Desharnais et al. [TCS'04]
- + fixed point def. by van Breugel and Worrell [LMCS'08]

Remarkable properties

Chen et al. [FoSSaCS'12]

$$\sup_{\varphi \in \mathsf{LTL}} |\Pr(s \vDash \varphi) - \Pr(t \vDash \varphi)| \le d^{\mathsf{MC}}(s, t)$$

Markov Decision Processes:

+ pseudometrics of Ferns et al. [UAI'04] (fixed point def.)

Remarkable properties

Ferns et al. [UAI'04]

$$|V^*(s)-V^*(t)|\leq d^{\mathsf{MDP}}(s,t)$$

Applications of the pseudometrics

Model Reduction: clustering states which are close enough

Abstraction Testing: analytical testing of model abstractions Parameters Extimation: baricentrum as the optimal

Model Prediction: closest to the 'optimal' (usually, not sound)

- + Policy tranfer Castro, Precup [AAAI'10]
- + Basis function discovery Comanici, Precup [AAAI'11]
- + Automatic inference of temporally extended actions — Castro, Precup [RL'11]

- + Policy tranfer Castro, Precup [AAAI'10]
- + Basis function discovery Comanici, Precup [AAAI'11]
- + Automatic inference of temporally extended actions — Castro, Precup [RL'11]

- + Policy tranfer Castro, Precup [AAAI'10]
- + Basis function discovery Comanici, Precup [AAAI'11]
- + Automatic inference of temporally extended actions — Castro, Precup [RL'11]

- + Policy tranfer Castro, Precup [AAAI'10]
- + Basis function discovery Comanici, Precup [AAAI'11]
- + Automatic inference of temporally extended actions — Castro, Precup [RL'11]

- + Policy tranfer Castro, Precup [AAAI'10]
- + Basis function discovery Comanici, Precup [AAAI'11]
- + Automatic inference of temporally extended actions — Castro, Precup [RL'11]

- + Policy tranfer Castro, Precup [AAAI'10]
- + Basis function discovery Comanici, Precup [AAAI'11]
- + Automatic inference of temporally extended actions — Castro, Precup [RL'11]

Iterative Methods

(approximated)

- + based on a fixed point characterization of the pseudometric
- + Markov Chains van Breugel, Worrell [LMCS'08]
- + Markov Decision Processes Ferns et al. [UAI'04]

Iterative + Heuristics — Comanici et al. [QEST'12] (approximated)

- + focus on states where the impact is expected to be greater
- + (similar to asynchronous dynamic programming)

Linear Programming — Chen et al. [FoSSaCS'12] (exact)

- + solution of a linear program with exponentially many constraints
- + ellipsoid method \implies polynomial

Iterative Methods

(approximated)

- + based on a fixed point characterization of the pseudometric
- + Markov Chains van Breugel, Worrell [LMCS'08]
- + Markov Decision Processes Ferns et al. [UAI'04]

Iterative + Heuristics — Comanici et al. [QEST'12] (approximated)

- + focus on states where the impact is expected to be greater
- + (similar to asynchronous dynamic programming)

Linear Programming — Chen et al. [FoSSaCS'12] (exact)

- + solution of a linear program with exponentially many constraints
- + ellipsoid method \implies polynomial

Iterative Methods

(approximated)

- + based on a fixed point characterization of the pseudometric
- + Markov Chains van Breugel, Worrell [LMCS'08]
- + Markov Decision Processes Ferns et al. [UAI'04]

Iterative + Heuristics — Comanici et al. [QEST'12] (approximated)

- + focus on states where the impact is expected to be greater
- + (similar to asynchronous dynamic programming)

Linear Programming — Chen et al. [FoSSaCS'12] (exact)

- + solution of a linear program with exponentially many constraints
- + ellipsoid method \implies polynomial

All existing methods require to explore the entire state space

What if we only need d(s, t)? (can we avoid computation of d on all pairs of states?)

All existing methods require to explore the entire state space

What if we only need d(s, t)? (can we avoid computation of *d* on all pairs of states?)

- we proposed an **on-the-fly** algorithm:
 - + lazy exploration of ${\cal M}$ (only where and when is needed)
 - + save computational cost (time & space)

All existing methods require to explore the entire state space

What if we only need d(s, t)? (can we avoid computation of d on all pairs of states?)

- we proposed an **on-the-fly** algorithm:
 - + lazy exploration of $\mathcal M$ (only where and when is needed)
 - + save computational cost (time & space)

Markov Chains [TACAS'13] Markov Decision Processes [MFCS'13]

Empirical Results

(а	I	_	р	а	i	r	S)
١	-			r	-	1	Ξ.	~	1

# States	On-the-Fl	y (exact)	lterat	Approx.		
# States	Time (s)	# TPs	Time (s)	# Iterations	# TPs	Error*
5	0.019	1.191	0.0389	1.733	26.733	0.139
6	0.059	3.046	0.092	1.826	38.133	0.146
7	0.138	6.011	0.204	2.194	61.728	0.122
8	0.255	8.561	0.364	2.304	83.028	0.117
9	0.499	12.042	0.673	2.579	114.729	0.111
10	1.003	18.733	1.272	3.111	174.363	0.094
11	2.159	25.973	2.661	3.556	239.557	0.096
12	4.642	34.797	5.522	4.042	318.606	0.086
13	6.735	39.958	8.061	4.633	421.675	0.097
14	6.336	38.005	7.188	4.914	593.981	0.118
17	11.261	47.014	12.805	5.885	908.61	0.132
19	26.635	61.171	29.654	6.961	1328.60	0.140
20	34.379	66.457	38.206	7.538	1597.92	0.142

(*) $\epsilon = \max_{s,t\in S} \delta_{\lambda}(s,t) - d(s,t)$

# States	out-degr	ee = 3	$2 \leq \text{out-degree} \leq \# \text{ States}$		
# States	Time (s)	# TPs	Time (s)	# TPs	
5	0.006	0.273	0.012	0.657	
6	0.012	0.549	0.031	1.667	
7	0.017	0.981	0.088	3.677	
8	0.025	1.346	0.164	5.301	
9	0.026	1.291	0.394	8.169	
10	0.058	2.038	1.112	13.096	
11	0.077	1.827	2.220	18.723	
12	0.043	1.620	4.940	26.096	
13	0.060	1.882	10.360	35.174	
14	0.089	2.794	20.123	46.077	

 $\operatorname{BISIMDIST}$ is a Mathematica $^{\mathbb{R}}$ library that provides two packages:

MCDIST MDPDIST

- + Data structures (model definition)
- + Data structure manipulators & visualizers
- + Procedure for computing bisimilarity distances (on-the-fly!)
 - + approximated methods (from known upper-bounds)
 - + future-discount
- + bisimilarity classes / quotient by bisimilarity

Library + Tutorials

http://people.cs.aau.dk/giovbacci/tools.html