A Coinductive Topology for Reasoning about Markov Processes

Giorgio Bacci Aalborg University

based on joint work with Giovanni Bacci, Kim G. Larsen, Radu Mardare, Prakash Panangaden and Daniele Toller

OPCT 2023 - June 27th 2023

Motivations

- Many models of computations deal with numerical values
- Reasoning about equivalence of systems is not enough
- We would like to quantify the differences and/or tell which behaviour is closest to a given one

Approximate behavioural reasoning

- A necessity: inherent errors in measurements, partial knowledge of the models, imprecise specifications, etc...
- An opportunity: faster approximate solutions, enhanced model reductions, data extrapolation, working simpler approximations, etc...

Good Behavioural distances

• They should differentiate processes only on their **behaviour**

$$d(p,q) = 0 \quad \text{iff} \quad p \sim q$$

• They should differentiate on logical properties

$$d(p,q) = \sup_{\phi \in \mathscr{L}} \phi(p) - \phi(q) \overset{\text{typically, fuzzy-logics}}{\underbrace{\phi \colon X \to [0,1]}}$$

- It should come with **algorithms** to compute *d*(*p*, *q*) (ideally, with low time-complexity)
- small differences in the processes = small variation in the distances

An extensive literature on the topic, especially on probabilistic systems

The probabilistic bisimilarity distances

Converging Behaviours

"processes that are close should have probability that are close" (Giacalone, Jou, Smolka '90)

... the (undiscounted) probabilistic bisimilarity distance does not make this sequence of behaviours converge

 $\forall n \, . \, \mathbf{d}_1(m_n, m) = 1$

Toward a notion of approximation

- It's a topological concept (not necessary a metric one) Indeed, many natural notions of convergence are non metrizable (e.g., point-wise convergence)
- To define a notion of approximation is to give a neighbourhood system (the neighbourhood filters of each point)
- Should be driven by a notion of observation

a set \mathscr{F} of observations $f: X \to O$

"processes that are close should have probability that are close" domain of observed properties (may be a metric space)

we require that $all f \in \mathcal{F}$ are continuous (i.e., preserve similarity)

Our case study: Markov Processes

generic measurable space

with Σ a σ -algebra on X

— Definition

A Markov process on (X, Σ) is $\theta \colon X \times \Sigma \to [0, 1]$ such that

- for all $x \in X$, $\theta(x, _)$ is a sub-probability distribution on (X, Σ)
- for all $E \in \Sigma$, $\theta(_, E)$ is a measurable function

sub-probabilistic Giry functor

• Equivalent to the coalgebras of $\Delta X < \Delta(X) = \{\mu \mid \mu \text{ sub-probability on } X\}$

$X \rightarrow \Delta X$ in **Meas**

- Markov chains are a special case (with discrete-state)
- we don't assume (X, Σ) comes from a topological space

The formal Markov process

Let $M = \{m_n \mid n \in \mathbb{N}\} \cup \{m\}$ and $\theta: M \times \mathscr{P}(M) \to [0,1]$ the Markov process where $\theta(m_n, E) = \begin{cases} 1 - \frac{1}{2^n} & m_n \in E\\ 0 & \text{otherwise} \end{cases} \text{ and } \theta(m, E) = \begin{cases} 1 & m \in E\\ 0 & \text{otherwise} \end{cases}$

Bisimulation Topology

The type of observations that we are interested in are of the form

$$\mathbb{E}_{\theta}[f]: X \to [0,1] \quad \text{with euclidean metric}$$
A random variable
$$f: (X, \Sigma) \to [0,1] \quad \mathbb{E}_{\theta}[f](x) \stackrel{\text{def}}{=} \int f \, d\theta(x, _)$$

Definition (bisimulation topology)

Let $\theta: X \times \Sigma \rightarrow [0,1]$ be a Markov process. A topology τ on *X* is a **bisimulation topology** if the following implication holds

$$f \in \mathscr{C}_{\Sigma}(X) \quad \Longrightarrow \quad \mathbb{E}_{\theta}[f] \in \mathscr{C}_{\Sigma}(X)$$

 τ -continuous random variables

Let $f: (M, \mathscr{P}(M)) \to [0,1]$ a random variable (any function!), then

$$\forall n \in M. \mathbb{E}_{\theta}[f](n) = f(n) \cdot \theta(n, M)$$

If we force $\theta(_, X)$ to be continuous then, f continuous iff $\mathbb{E}_{\theta}[f]$ continuous

A coinductive proof principle

Smallest bisimulation topology

Let $\theta: X \times \Sigma \to [0,1]$ be a Markov process, and \mathcal{T} a family of bisimulation topologies on *X*, then $\bigcap \mathcal{T}$ is bisimulation topology.

Then, the smallest bisimilarity topology is

bisimilarity topology

 $\hat{\tau} = \bigcap \{ \tau \mid \tau \text{ bisimulation topology} \}$

$$\underbrace{(x_t)_{t\in T} \xrightarrow{\tau} x}_{\text{net convergence}} \tau \text{ bisimulation topology}$$

It's a behavioural topology!

Corollary

$$\exists (z_t)_{t \in T} . \left((z_t)_{t \in T} \xrightarrow{\hat{\tau}} x \text{ and } (z_t)_{t \in T} \xrightarrow{\hat{\tau}} y \right) \quad \text{iff} \quad x \sim_e y$$

a net of approximants that witnesses the similarity in the behaviours

...some more on behaviours

(*) σ -algebras $\Lambda \subseteq \Sigma$ such that $E \in \Lambda \Rightarrow \forall r . \{x \mid \theta(x, E) \ge r\} \in \Lambda$

Attacking $\mathscr{C} = \text{Baire}(\hat{\tau})$

Let \mathscr{G} be the family of functions from *X* to [0,1] generated by grammar

 $g, f ::= \mathbf{1} \mid r \cdot g \mid g \oplus f \mid 1 - g \mid \min(g, f) \mid \max(g, f) \mid \mathbb{E}_{\theta}[g]$

On pseudometrizability

Not all topologies come from (pseudo)metric, i.e., are the open ball topologies of some (pseudo)metric

Propositiona transfinite
constructionBase case: $d_0 = \sqcap \{d \in \operatorname{Pmet}(X) \mid \mathscr{G} \subseteq \mathscr{C}(X, d)\}$ a transfinite
constructionInductive step: $d_{n+1} = \sqcap \{d \in \operatorname{Pmet}(X) \mid \mathscr{C}(X, d_n) \cup \mathbb{E}_{\theta}(\mathscr{C}(X, d_n)) \subseteq \mathscr{C}(X, d)\}$ Limit step (α limit ordinal): $d_{\alpha} = \sqcap \{d_{\beta} \mid \beta < \alpha\}$

If $d_{\kappa} = d_{\kappa+1}$, then $\tau_{d_{\kappa}}$ is a bisimulation topology

Approximations & Logical properties

— Theorem (Mardare et al. '12) —

If d is a dynamically continuous bisimulation pseudometric,

$$(m_n)_{n \in \mathbb{N}} \xrightarrow{d} m \land (\phi_n)_{n \in \mathbb{N}} \xrightarrow{H(d)} \phi \land (\forall n \, . \, m_n \models \phi_n) \Longrightarrow m \models \phi$$

positive logical formulas in \mathcal{L}^+

Conclusions

- We proposed a **coinductive topology** for reasoning about approximations of behaviours of Markov processes
- Still an **ongoing work** with lots of unresolved problems

- Our way of investigating the limits of behavioural distances
- The same approach can be **relevant for other types of models** (we played already bit with stream systems)