Measurable Stochastics for Brane Calculus

Giorgio Bacci Marino Miculan
Department of Mathematics and Computer Science University of Udine, Italy

MeCBIC 2010

23rd August 2010, Jena

Stochastic process algebras

The semantics of process algebras is classically described by means of Labelled Transition Systems (LTSs)

$$
P \xrightarrow{a} Q
$$

The semantics of stochastic process algebras is classically defined by means of Continuous Time Markov Chains (CTMCs)

Problems with a point-wise stochastic semantics

Typically, process algebras are endowed with a structural equivalence relation \equiv equating processes with the same behaviour

Example: modeling the parallel operator we expect no differences between $Q|R, R| Q$, and $R|Q| \mathbf{0}$.

Problems with a point-wise stochastic semantics

Typically, process algebras are endowed with a structural equivalence relation \equiv equating processes with the same behaviour

Example: modeling the parallel operator we expect no differences between $Q|R, R| Q$, and $R|Q| \mathbf{0}$.

$$
P \xrightarrow{a, r} Q \mid R
$$

Problems with a point-wise stochastic semantics

Typically, process algebras are endowed with a structural equivalence relation \equiv equating processes with the same behaviour

Example: modeling the parallel operator we expect no differences between $Q|R, R| Q$, and $R|Q| \mathbf{0}$.

$$
\begin{aligned}
& P \xrightarrow{a, r} Q \mid R \\
& P \xrightarrow{a, r} R \mid Q
\end{aligned}
$$

Problems with a point-wise stochastic semantics

Typically, process algebras are endowed with a structural equivalence relation \equiv equating processes with the same behaviour

Example: modeling the parallel operator we expect no differences between $Q|R, R| Q$, and $R|Q| \mathbf{0}$.
$P \xrightarrow{a, r} Q \mid R$
$P \xrightarrow{a, r} R \mid Q$
$P \xrightarrow{a, r} R|Q| \mathbf{0}$

Problems with a point-wise stochastic semantics

Typically, process algebras are endowed with a structural equivalence relation \equiv equating processes with the same behaviour

Example: modeling the parallel operator we expect no differences between $Q|R, R| Q$, and $R|Q| \mathbf{0}$.
$P \xrightarrow{a, r} Q \mid R$

$$
P \xrightarrow{a, r} R \mid Q
$$

by additivity
$P \xrightarrow{a, r} R|Q| \mathbf{0}$

$$
P \xrightarrow{a, 3 r}\{Q|R, R| Q, R|Q| \mathbf{0}\}
$$

A-Markov kernel

[Mardare-Cardelli‘10]

Mardare and Cardelli generalized the concept of CTMC to generic measurable spaces (M, Σ) :
A-Markov kernel: (M, Σ, θ)
where

A-Markov kernel

[Mardare-Cardelli‘10]

Mardare and Cardelli generalized the concept of CTMC to generic measurable spaces (M, Σ) :
A-Markov kernel: (M, Σ, θ)
where

$\theta(\alpha)(m)$ is a measure on (M, Σ)

A-Markov kernel

[Mardare-Cardelli‘10]

Mardare and Cardelli generalized the concept of CTMC to generic measurable spaces (M, Σ) :
A-Markov kernel: (M, Σ, θ)
where

$\theta(\alpha)(m)$ is a measure on (M, Σ)
$\theta(\alpha)(m)(\mathcal{N}) \in \mathbb{R}^{+}$is the rate of $m \xrightarrow{\alpha} \mathcal{N}$

Stochastic bisimulation

The definition of Markov kernel induces a new definition of stochastic bisimulation

Stochastic bisimulation:

A rate-bisimulation relation $\mathcal{R} \subseteq M \times M$ is an equivalence relation such that for all $\alpha \in A$ and \mathcal{R}-closed measurable sets $\mathcal{C} \in \Sigma$.

$$
(m, n) \in \mathcal{R} \quad \text { iff } \quad \theta(\alpha)(m)(\mathcal{C})=\theta(\alpha)(n)(\mathcal{C})
$$

Stochastic bisimulation

The definition of Markov kernel induces a new definition of stochastic bisimulation

Stochastic bisimulation:

A rate-bisimulation relation $\mathcal{R} \subseteq M \times M$ is an equivalence relation such that for all $\alpha \in A$ and \mathcal{R}-closed measurable sets $\mathcal{C} \in \Sigma$.

$$
(m, n) \in \mathcal{R} \quad \text { iff } \quad \theta(\alpha)(m)(\mathcal{C})=\theta(\alpha)(n)(\mathcal{C})
$$

we say m and n are stochastic bisimilar, written $m \sim_{(M, \Sigma, \theta)} n$, if they are related by a stochastic bisimulation.

Outline of the construction

Problem: the definition of a Markov kernel needs a structural presentation of the semantics (SOS).

+ Brane Calculus
+ SOS for Brane Calculus
+ Markov kernel for Brane Calculus

(Finite state) Brane calculus

Systems $\mathbb{P}: \quad P, Q::=\diamond|\sigma \boxtimes P D| P \circ Q \quad$ nests of membranes Membranes $\mathbb{M}: \quad \sigma, \tau::=\mathbf{0}|\sigma| \tau \mid$ a. $\sigma \quad$ combinations of actions Actions: $\quad a, b::=\ldots$ (not now)

Brane Calculus Reactions

Actions: $\ldots \searrow_{n}\left|\cup_{n}^{\perp}(\sigma)\right| \mho_{n}\left|৩_{n}^{\perp}\right| \odot(\sigma)$ phago シ, exo ৩, pino ๑

Reduction Semantics for Brane Calculus

Reduction relation ("reaction"): $\quad \boldsymbol{\square} \subseteq \mathbb{P} \times \mathbb{P}$

$$
\begin{aligned}
& \overline{\mho_{n}^{1}(\rho) . \tau\left|\tau_{0} \Omega Q D \circ \mho_{n} . \sigma\right| \sigma_{0} \Omega P D \rightarrow \tau\left|\tau_{0} \oslash \rho \Omega \sigma\right| \sigma_{0} \Omega P D D \circ Q D}{ }^{\text {(red-phago) }} \\
& \overline{\circlearrowleft_{n}^{\perp} \cdot \tau\left|\tau_{0} \Theta_{n} . \sigma\right| \sigma_{0} Q P D \circ Q D \rightarrow \sigma\left|\sigma_{0}\right| \tau \mid \tau_{0} \oslash Q D \circ P}{ }^{(\text {red-exo })} \\
& \overline{\odot(\rho) . \sigma \mid \sigma_{0} \subseteq P D} \boldsymbol{\rightarrow} \sigma \mid \sigma_{0} \oslash \rho \Omega \diamond D \circ P D{ }^{(r e d-\text { pino) }} \\
& \frac{P \rightarrow Q}{\sigma(P D \rightarrow \sigma Q Q D}{ }^{\text {(red-loc) }} \quad \frac{P \boldsymbol{\rightarrow})}{P \circ R \boldsymbol{A} Q R}{ }^{\text {(red-comp) }} \\
& \frac{P \equiv P^{\prime} \quad P^{\prime} \Rightarrow Q^{\prime} \quad Q^{\prime} \equiv Q}{P \rightarrow Q} \text { (red-equiv) }
\end{aligned}
$$

Reduction Semantics for Brane Calculus

Reduction relation ("reaction"): $\quad \boldsymbol{\square} \subseteq \mathbb{P} \times \mathbb{P}$

$$
\begin{aligned}
& \overline{\bigcup_{n}^{1}(\rho) . \tau\left|\tau_{0} \oslash Q D \circ v_{n} . \sigma\right| \sigma_{0} \Omega P D \rightarrow \tau\left|\tau_{0} \oslash \rho \Omega \sigma\right| \sigma_{0} \Omega P D D \circ Q D}{ }^{\text {(red-phago })} \\
& \overline{\circlearrowleft_{n}^{\perp} \cdot \tau\left|\tau_{0} \Theta_{n} . \sigma\right| \sigma_{0} Q P D \circ Q D \rightarrow \sigma\left|\sigma_{0}\right| \tau \mid \tau_{0} \oslash Q D \circ P}{ }^{(\text {red-exo })} \\
& \overline{\odot(\rho) . \sigma \mid \sigma_{0} \triangle P D} \boldsymbol{\rightarrow} \mid \sigma_{0} \oslash \rho \Omega \odot D \circ P D{ }^{(\text {red-pino })} \\
& \frac{P \rightarrow Q}{\sigma \Omega P D \rightarrow \sigma Q Q D}{ }^{\text {(red-loc) }} \quad \frac{P \boldsymbol{\rightarrow})}{P \circ R \boldsymbol{G} Q \circ R} \text { (red-comp) } \\
& \frac{P \equiv P^{\prime} \quad P^{\prime} \Rightarrow Q^{\prime} \quad Q^{\prime} \equiv Q}{P \rightarrow Q} \text { (red-equiv) }
\end{aligned}
$$

Towards a Structural Operational Semantics

We give a LTS for the Brane Calculus (along [Rathke-Sobocinski'08])

Meta-syntax**

(typed λ-calculus)

$$
\begin{aligned}
& \text { Terms } \quad M::=\mathbf{0}|\diamond| \alpha . M|M| M|M \circ M| M(M D \\
& X \\
& \text { (variable) } \\
& \lambda X \text { :t. M (lambda abstraction) } \\
& M(M) \quad \text { (application) } \\
& \alpha::=\mho_{n}\left|\vartheta_{n}^{\perp}(M)\right| \vartheta_{n}\left|\vartheta_{n}^{\perp}\right| \odot_{n}(M) \\
& \text { Types } \quad t::=\text { sys } \mid \text { mem } \mid \text { act } \mid t \rightarrow t
\end{aligned}
$$

${ }^{(* *)}$ It is not a language extension, λ-terms are introduced only for a structural definition of the LTS.

Typing System for Brane Calculus

$$
\begin{aligned}
& \frac{\Gamma(X)=t}{\Gamma \vdash X: t}{ }_{(\text {var })} \\
& \frac{\Gamma, X: t \vdash M: t^{\prime}}{\Gamma \vdash \lambda X: t . M: t \rightarrow t^{\prime}} \text { (lambda) } \quad \frac{\Gamma \vdash M: t \rightarrow t^{\prime} \quad \Gamma \vdash N: t}{\Gamma \vdash M(N): t^{\prime}}{ }_{\text {(app) }}
\end{aligned}
$$

Typing System for Brane Calculus

$$
\frac{a \in\left\{\nu_{n}, \nu_{n}, ৩_{n}^{\perp}\right\}}{\Gamma \vdash a: \text { act }} \text { (act) } \quad \frac{a \in\left\{\nu_{n}^{\perp}, \odot_{n}\right\} \quad \Gamma \vdash M: \text { mem }}{\Gamma \vdash a(M): \text { act }} \text { (act-arg) }
$$

Typing System for Brane Calculus

(Judgement)

$$
\frac{\Gamma_{1} \vdash \alpha: \text { act } \quad \Gamma_{2} \vdash M: \mathrm{mem}}{\Gamma_{1}, \Gamma_{2} \vdash \alpha \cdot M: \text { mem }}(\alpha-\text { pref })
$$

$$
\frac{\Gamma_{1} \vdash M: \text { mem } \quad \Gamma_{2} \vdash N: \mathrm{mem}}{\Gamma_{1}, \Gamma_{2} \vdash M \mid N: \text { mem }}(\text { par })
$$

union of environments
supposed to be disjoint

Typing System for Brane Calculus

$$
\begin{aligned}
& \overline{\Gamma \vdash \diamond: \text { sys }} \text { (void) } \quad \frac{\Gamma_{1} \vdash M: \text { mem } \Gamma_{2} \vdash N: \text { sys }}{\Gamma_{1}, \Gamma_{2} \vdash M \mathbb{N D}: \text { sys }} \text { (loc) } \\
& \frac{\Gamma_{1} \vdash M: \text { sys } \Gamma_{2} \vdash N: \text { sys }}{\Gamma_{1}, \Gamma_{2} \vdash M \circ N: \text { sys }} \text { (comp) } \\
& \text { union of environments } \\
& \text { supposed to be disjoint }
\end{aligned}
$$

Labelled Transition System

Labels for mem-transitions: $\mathbb{A}_{\text {mem }}=\left\{\searrow_{n}, \searrow_{n}^{\perp}(\rho), \searrow_{n}, \searrow_{n}^{\perp}, ๑_{n}(\rho)\right\}$

$$
\begin{aligned}
& {๑_{n}(\rho) \cdot \sigma \xrightarrow{๑_{n}(\rho)} \sigma}^{(\text {(--pref) }} \\
& \frac{\sigma \xrightarrow{\alpha} \sigma^{\prime}}{\sigma\left|\tau \xrightarrow{\alpha} \sigma^{\prime}\right| \tau}(\text { L-par }) \quad \frac{\sigma \xrightarrow{\alpha} \sigma^{\prime}}{\tau|\sigma \xrightarrow{\alpha} \tau| \sigma^{\prime}} \text { (R-par) }
\end{aligned}
$$

Labelled Transition System

Labels for sys-transitions: $\mathbb{A}_{\text {sys }}^{+}=\left\{\right.$phago $_{n},{\overline{\operatorname{phago}_{n}}}_{n}$, exo $\left._{n}\right\} \cup\{i d\}$
Phago fragment**

$$
\xrightarrow{P \xrightarrow{\text { phago }_{n}} F \quad Q \xrightarrow{\overline{\text { phago }}_{n}} A} \underset{P \circ Q \xrightarrow{\text { id }} F(A)}{(L-i d \vartheta)}
$$

(**) Right-symmetric rules are omitted

Labels for sys-transitions: $\mathbb{A}_{\text {sys }}^{+}=\left\{\right.$phago $_{n},{\overline{\operatorname{phago}_{n}}}_{n}$, exo $\left._{n}\right\} \cup\{i d\}$
Phago fragment**

has type sys \rightarrow sys

Labelled Transition System

Labels for sys-transitions: $\mathbb{A}_{\text {sys }}^{+}=\left\{\right.$phago $_{n},{\overline{\text { phago }_{n}}}_{n}$, exo $\left._{n}\right\} \cup\{i d\}$
Exo fragment**

$$
\begin{aligned}
& \frac{\sigma \xrightarrow{\vartheta_{n}} \sigma^{\prime}}{\sigma \Omega P D \xrightarrow{\text { exo }} \lambda X y \cdot \sigma^{\prime} \mid y \Omega X D \circ P}{ }^{(0)} \\
& \left.\xrightarrow\left[{P \circ Q \xrightarrow{P \xrightarrow{\text { exo }_{n}} S} \lambda X X . S(X \circ Q)(y}\right)\right]{(L \circ v)} \\
& \left.\xrightarrow\left[{\sigma \Omega P D \xrightarrow{\text { id }} S(\diamond)\left(\sigma^{\prime}\right.}\right)\right]{\stackrel{\text { exo }_{n}}{ } S}{ }^{\stackrel{{ }^{\perp}}{n}} \sigma^{\prime}(\mathrm{id}-\mathrm{v})
\end{aligned}
$$

(**) Right-symmetric rules are omitted

Labelled Transition System

Labels for sys-transitions: $\mathbb{A}_{\text {sys }}^{+}=\left\{\right.$phago $_{n},{\overline{\operatorname{phago}_{n}}}_{n}$, exo $\left._{n}\right\} \cup\{i d\}$
Pino fragment

$$
\frac{\sigma \xrightarrow{\oplus_{n}(\rho)} \sigma^{\prime}}{\sigma \llbracket P D \xrightarrow{i d} \sigma^{\prime} \llbracket \rho \llbracket \diamond D \circ P D}(\mathrm{id}-\odot)
$$

Cong-closures**

$$
\begin{equation*}
\frac{P \xrightarrow{i d} P^{\prime}}{\sigma \varangle P D \xrightarrow{i d} \sigma \varangle P^{\prime} D} \text { (id-loc) } \quad \frac{P \xrightarrow{i d} P^{\prime}}{P \circ Q \xrightarrow{i d} P^{\prime} \circ Q} \tag{Loid}
\end{equation*}
$$

(**) Right-symmetric rules are omitted

Labelled Transition System

LTS compatible with reduction semantics:
Proposition

+ If $P \xrightarrow{\text { id }} Q$ then $P \rightarrow Q$
+ If $P \rightarrow Q$ then $P \xrightarrow{\text { id }} Q^{\prime}$ for some $Q^{\prime} \equiv Q$

LTS compatible with structural congruence:

Lemma

If $P \xrightarrow{\alpha} P^{\prime}$ and $P \equiv Q$ then $\exists . Q^{\prime}$ such that $Q^{\prime} \equiv P^{\prime}$ and $Q \xrightarrow{\alpha} Q^{\prime}$.

Stochatic Model for the Brane Calculus

Action Labels: $\quad \mathbb{A}^{+}=\mathbb{A}_{\text {mem }} \cup \mathbb{A}_{\text {sys }}^{+}$

Markov kernel: $(\mathbb{T}, \Sigma, \theta)$

$$
\theta: \mathbb{A}^{+} \rightarrow \llbracket \mathbb{T} \rightarrow \Delta(\mathbb{T}, \Sigma) \rrbracket
$$

Stochatic Model for the Brane Calculus

Action Labels: $\mathbb{A}^{+}=\mathbb{A}_{\text {mem }} \cup \mathbb{A}_{\text {sys }}^{+}$
the same used by the LTS

Markov kernel: $(\mathbb{T}, \Sigma, \theta)$

$$
\theta: \mathbb{A}^{+} \rightarrow \llbracket \mathbb{T} \rightarrow \Delta(\mathbb{T}, \Sigma) \rrbracket
$$

Stochatic Model for the Brane Calculus

Action Labels: $\quad \mathbb{A}^{+}=\mathbb{A}_{\text {mem }} \cup \mathbb{A}_{\text {sys }}^{+}$
the same used by the LTS

Markov kernel: $(\mathbb{T}, \Sigma, \theta)$
$\frac{\theta: \mathbb{A}^{+} \rightarrow \llbracket \mathbb{T} \rightarrow \Delta(\mathbb{T}, \Sigma) \rrbracket}{} \begin{array}{r}\begin{array}{l}\text { expected to be } \\ \text { adequate }\end{array} \\ \text { w.r.t. the LTS }\end{array}$
$M \xrightarrow{\alpha} M^{\prime} \Longleftrightarrow \theta(\alpha)(M)\left(\left[M^{\prime}\right]_{\equiv}\right)>0$

Markov kernel from SOS

The structural representation of the semantics makes possible the definition of θ by induction on the structure of processes.

$$
\begin{equation*}
\theta\left(\text { phago }_{n}\right)(P \circ Q)(\mathcal{T})= \tag{L০凶}
\end{equation*}
$$

$$
\frac{P \xrightarrow{\text { phago }_{n}} F}{P \circ Q \xrightarrow{\text { phago }_{n}} \lambda Z .(F(Z) \circ Q)}(\text { L०凶 })
$$

Markov kernel from SOS

The structural representation of the semantics makes possible the definition of θ by induction on the structure of processes.

$$
\begin{equation*}
\theta\left(\text { phago }_{n}\right)(P \circ Q)(\mathcal{T})=\theta\left(\text { phago }_{n}\right)(P)\left(\mathcal{F}_{Q}\right) \tag{L०凶}
\end{equation*}
$$

where $\mathcal{F}_{Q}=\{F:($ sys \rightarrow sys $) \rightarrow$ sys $\left.\mid \lambda Z .(F(Z) \circ Q) \in \mathcal{T})\right\} / \equiv$

$$
\frac{P \xrightarrow{\text { phago }_{n}} F}{P \circ Q \xrightarrow{\text { phago }_{n}} \lambda Z .(F(Z) \circ Q)}(\text { L०凶 })
$$

Markov kernel from SOS

The structural representation of the semantics makes possible the definition of θ by induction on the structure of processes.

$$
\begin{align*}
\theta\left(\operatorname{phago}_{n}\right)(P \circ Q)(\mathcal{T})= & \theta\left(\operatorname{phago}_{n}\right)(P)\left(\mathcal{F}_{Q}\right)+ \tag{L०凶}\\
& \theta\left(\operatorname{phago}_{n}\right)(Q)\left(\mathcal{F}_{P}\right) \tag{R०v}
\end{align*}
$$

where $\quad \mathcal{F}_{P}=\{F:($ sys \rightarrow sys $) \rightarrow$ sys $\left.\mid \lambda Z .(P \circ F(Z)) \in \mathcal{T})\right\} / \equiv$

$$
\frac{Q \xrightarrow{\text { phago }_{n}} F}{P \circ Q \xrightarrow{\text { phago }_{n}} \lambda Z .(P \circ F(Z))}(\text { R॰» })
$$

Markov kernel from SOS

The structural representation of the semantics makes possible the definition of θ by induction on the structure of processes.

$$
\begin{equation*}
\theta(i d)(P \circ Q)(\mathcal{T})=\theta(i d)(P)\left(\mathcal{T}_{\circ Q}\right)+\theta(i d)(Q)\left(\mathcal{T}_{\circ P}\right)+ \tag{Loid}
\end{equation*}
$$

$$
\frac{P \xrightarrow{i d} P^{\prime}}{P \circ Q \xrightarrow{i d} P^{\prime} \circ Q} \text { (Loid) }
$$

$$
\frac{Q \xrightarrow{i d} Q^{\prime}}{P \circ Q \xrightarrow{i d} P \circ Q^{\prime}}(\mathrm{R} \mathrm{\circ id})
$$

Markov kernel from SOS

The structural representation of the semantics makes possible the definition of θ by induction on the structure of processes.

$$
\begin{align*}
& \theta(i d)(P \circ Q)(\mathcal{T})=\theta(i d)(P)\left(\mathcal{T}_{\circ Q}\right)+\theta(i d)(Q)\left(\mathcal{T}_{\circ P}\right) \tag{Loid}\\
& \sum_{\mathcal{F}(\mathcal{A}) \subseteq \mathcal{T}}^{n \in \Lambda} \frac{\theta\left(\text { phago }_{n}\right)(P)(\mathcal{F}) \cdot \theta\left(\overline{\text { phago }}_{n}\right)(Q)(\mathcal{A})}{\iota\left(\mho_{n}\right)}+(\text { L-idə }) \\
& \begin{array}{|c|}
\hline \begin{array}{c}
\text { law of } \\
\text { mass action }
\end{array}
\end{array} \sum_{\mathcal{F}(\mathcal{A}) \subseteq \mathcal{T}}^{n \in \Lambda} \frac{\theta\left(\text { phago }_{n}\right)(Q)(\mathcal{F}) \cdot \theta\left(\overline{\mathrm{phago}}_{n}\right)(P)(\mathcal{A})}{\iota\left(\vartheta_{n}\right)} \text { (R-idə) }
\end{align*}
$$

$$
\begin{aligned}
& \xrightarrow{Q \xrightarrow{\text { phago }_{n}} F \quad P \xrightarrow{\overline{\text { phago }}_{n}} A} \text { (R-idฆ) }
\end{aligned}
$$

Markov kernel and adequacy w.r.t. LTS

The Markov kernel is adequate w.r.t. the LTS
Proposition

1. if $\theta(\alpha)(M)(\mathcal{T})>0$ then $\exists . M^{\prime} \in \mathcal{T}$ s.t. $M \xrightarrow{\alpha} M^{\prime}$
2. if $M \xrightarrow{\alpha} M^{\prime}$ then \exists. $\mathcal{M} \in \Pi$ s.t. $M^{\prime} \in \mathcal{T}$ and $\theta(\alpha)(M)(\mathcal{T})>0$

Corollary

$$
M \xrightarrow{\alpha} M^{\prime} \text { iff } \theta(\alpha)(M)\left(\left[M^{\prime}\right]_{\equiv}\right)>0
$$

Stochastic Structural Operational Semantics

$$
\begin{aligned}
& M \rightarrow \mu^{\mathbb{A}^{+} \text {-indexed measure }} \\
& \mu: \mathbb{A}^{+} \rightarrow \Delta(\mathbb{T}, \Sigma) \\
& \overline{\mathbf{0} \rightarrow \omega^{\text {mem }}} \text { (zero) } \frac{\epsilon \in\left\{\cup_{n}, \cup_{n}, \cup_{n}^{\perp}\right\}}{\epsilon . \sigma \rightarrow[\epsilon]_{\sigma}} \text { (pref) } \\
& \frac{\epsilon \in\left\{\text { ๖i }_{n}^{\perp}, \odot_{n}\right\}}{\epsilon(\rho) . \sigma \rightarrow[\epsilon(\rho)]_{\sigma}} \text { (pref-arg) } \quad \frac{\sigma \rightarrow \mu^{\prime} \quad \tau \rightarrow \mu^{\prime \prime}}{\sigma \mid \tau \rightarrow \mu_{\sigma}^{\prime}{ }_{\sigma} \oplus_{\tau} \mu^{\prime \prime}}(\text { par }) \\
& \overline{\diamond \rightarrow \omega^{\text {sys }}} \text { (void) } \frac{\sigma \rightarrow \nu \quad P \rightarrow \mu}{\sigma @ P D \rightarrow \mu @_{P}^{\sigma} \nu} \text { (loc) } \frac{P \rightarrow \mu^{\prime} \quad Q \rightarrow \mu^{\prime \prime}}{P \circ Q \rightarrow \mu^{\prime} P \otimes_{Q} \mu^{\prime \prime}} \text { (comp) }
\end{aligned}
$$

Stochastic Bisimulation (on systems)

Adequacy w.r.t. Markov kernel

$$
P \rightarrow \mu \quad \text { iff } \quad \theta_{\text {sys }}(P)(\alpha)(\mathcal{P})=\mu(\alpha)(\mathcal{P})
$$

This lead us to define:

Definition (Stochastic bisimulation on systems)

A rate-bisimulation relation is an equivalence relation $\mathcal{R} \subseteq \mathbb{P} \times \mathbb{P}$ such that for arbitrary $P, Q \in \mathbb{P}$ with $P \rightarrow \mu$ and $Q \rightarrow \mu^{\prime}$,

$$
(P, Q) \in \mathcal{R} \text { iff } \mu(\alpha)(C)=\mu^{\prime}(\alpha)(C) \quad \forall . C \in \Pi(\mathcal{R}) \text { and } \alpha \in \mathbb{A}_{\text {sys }}^{+}
$$

Two systems $P, Q \in \mathbb{P}$ are stochastic bisimilar, written $P \approx Q$, iff there exists a rate bisimulation relation \mathcal{R} such that $(P, Q) \in \mathcal{R}$.

Stochastic bisimulation

Theorem (\approx smallest stochastic bisimulation)

The stochastic bisimulation relation \approx is the smallest equivalence such that for arbitrary $P, Q \in \mathbb{P}$ with $P \rightarrow \mu$ and $Q \rightarrow \mu^{\prime}$,

$$
P \approx Q \text { iff } \mu(\alpha)(C)=\mu^{\prime}(\alpha)(C) \quad \forall . C \in \Pi(\approx) \text { and } \alpha \in \mathbb{A}_{\text {sys }}^{+} .
$$

$$
\begin{aligned}
& \text { Theorem }(\equiv \subsetneq \approx) \\
& +I f P \equiv Q \text { then } P \approx Q \\
& +\mathbf{0} \varangle \sigma(D D \approx \diamond \quad \text { and } \quad 0 \rrbracket \sigma \Omega D D \not \equiv \diamond
\end{aligned}
$$

Conclusions \& Future Work

Done:

+ Structural Stochastic Semantics for the Brane Calculus
+ Labelled Transition System for the Brane Calculus (SOS)
+ Proved the generality of the approach of [Mardare-Cardelli'10]
To do:
$+\mathrm{ls} \approx$ a congruence?
+ metrics for stochastic Brane processes
+ refinements (volume, temperature, pressure)
+ Full Brane Calculus (with bind\&release)
+ comparing the approach with Gillespie algorithm

Thanks :)

Example: phago derivation

$\xrightarrow[{\searrow_{n} . \sigma \xrightarrow{\vartheta_{n}}} \sigma]{(\searrow-\text {-pref })}$

$$
\overline{\searrow_{n}^{\perp}(\rho) \cdot \tau \xrightarrow{\searrow_{n}^{\perp}(\rho)} \tau}\left(\mho^{\perp} \text {-pref }\right)
$$

Example: phago derivation

Example: phago derivation

