A bigraph-based framework for protein and cell interactions

Giorgio Bacci Davide Grohmann Marino Miculan

Department of Mathematics and Computer Science University of Udine, Italy

MeCBIC 2009

5th September 2009, Bologna

(Cardelli 08)

(Cardelli 08)

(Cardelli 08)

gene regulatory networks, stochastic π -calculus, Hybrid Systems, ...

regulation

 κ -calculus, β Binders, π -calculus, Bio-PEPA, LCLS, ... In this talk: bigraphs as a formal framework theory for integrating and comparing models

implements fusion/fission

signal processing,

holds receptors/reactions

PQ

Membranes

confinements, storage, transport

gene regulatory networks, stochastic π -calculus, Hybrid Systems, ...

R

κ-calculus.

 β Binders, π -calculus.

Bio-PEPA.

LCLS, ...

In this talk: bigraphs as a formal framework theory for integrating and comparing models

we focus on these levels

implements fusion/fission

signal processing, metabolism regulation

Proteins

holds receptors/reactions

Brane Calculus, BioAmbients, CLS+, ...

(Cardelli 08)

confinements, storage, transport

Let take as example the vesicle formation process:

Let take as example the vesicle formation process:

protein interactions (complexations (de-complexations

Let take as example the vesicle formation process:

protein interactions (complexations (de-complexations

membrane reconfigurations

(fissions and fusions)

Let take as example the vesicle formation process:

protein interactions complexations de-complexations protein-membrane interactions protein configurations that trigger a membrane reconfiguration

membrane reconfigurations

(fissions and fusions)

0. Introduction to Bigraphs

- 1. Biological Bigraphs and $\mathsf{Bio}\beta$ framework
 - + syntax
 - + well-formedness
 - + semantics
- 2. Example: vesicle formation
- 3. Formal comparison results

A (very short) introduction to Bigraphs

bigraph y_0 $G: \langle m, X \rangle \rightarrow \langle n, Y \rangle$ γ^{v_2} 1 v_3 place graph link graph x_0 x_1 $G^{\mathrm{P}}: m \to n$ $G^{L}: X \to Y$ roots outer names 0 y_0 y_1 v_0 v_2 v_0 v_3 v_1 sites ... 0 ... inner names 2 1 x_0 x_1

(Milner 01)

... bigraphs continued

(basic notation)

place = root or node or site

link = edge or outer name point = port or inner name

(definition)

... we take advantage of the variant of (Bundgaard-Sassone 06) where edges have type.

Signature: $\langle \mathcal{K}, ar, \mathcal{E} \rangle$

Bigraphs:

$$G^{P} = (V, ctrl, prnt): m \to n$$
 (place graph)

$$G^{L} = (V, E, ctrl, edge, link): X \to Y$$
 (link graph)

$$G = (V, E, ctrl, edge, prnt, link): \langle m, X \rangle \to \langle n, Y \rangle$$
 (bigraph)

$$= (G^{P}, G^{L})$$

Using bigraphs is convenient for many reasons:

- + connectivity together with locality
- + lots of successful encodings
 - (CCS, π -calculus, Ambient Calculus, Petri nets, ...)
- + local reaction rules
- + construction of compositional bisimilarities for **observational equivalences**
- + general tools (see BPL project)

0. Introduction to Bigraphs

- 1. Biological Bigraphs and $\operatorname{Bio}\beta$ framework
 - + syntax
 - + well-formedness
 - + semantics
- 2. Example: vesicle formation
- 3. Formal comparison results

Proteins and bonds in bigraphs: intuition

Protein signature: $\langle \mathcal{P}, ar, \{v, h\} \rangle$

Sites can be visible, hidden, or free, determining the protein interface status

(*) Edge types could be extended to capture phosphorilated states (and more)

$\mathbf{Bio}\beta$ syntax and bigraphical meaning

Systems
$$P, Q ::= \diamond | A_p(\rho) | \langle S \rangle P \rangle | P * Q | \nu n.P$$
$$p_n \circ P | f_n \circ \langle S \rangle P \rangle \quad (pinch and fuse)$$

Membranes
$$S, T ::= \mathbf{0} | A_{ap}(\rho) | S \star T$$

 $p_n^{\perp} \operatorname{\stackrel{\circ}{,}} S | f_n^{\perp}$ (co-pinch and co-fuse)

Well-formedness conditions

The syntax is too general: many syntactically correct terms do not have a clear biological meaning.

Definition (Well-formedness)

Graph-likeness: free names occurs at most twice + only binary bonds Impermebility: protein bonds cannot cross the double layer Action pairing: actions and co-actions have to be well paired Action prefix: no occurrences of action terms within an action prefix

hyper edges \neq bonds

impermeability violated!

Well-formedness conditions

The syntax is too general: many syntactically correct terms do not have a clear biological meaning.

Definition (Well-formedness)

Graph-likeness: free names occurs at most twice + only binary bonds Impermebility: protein bonds cannot cross the double layer Action pairing: actions and co-actions have to be well paired Action prefix: no occurrences of action terms within an action prefix

Well-formedness is ensured by a type system

Type system

Proposition (Unicity of type)

Let K a Bio β term. If $\Gamma_1; \Gamma_2 \vdash K : \tau$ and $\Delta_1; \Delta_2 \vdash K : \sigma$, then $\Gamma_1 = \Delta_1, \Gamma_2 = \Delta_2$ and $\tau = \sigma$

Theorem (Well-formedness)

A Bio β system *P* is well-formed if and only if Γ_1 ; $\Gamma_2 \vdash P : \tau$

... later subject reduction

A Bio β reactive system ($\Pi, \rightarrow)$ is parametrized over two reaction rule specifications:

+ Protein reactions: similar to chemical reaction rules, but with (essential) spatial informations

+ **Mobility configurations:** protein configurations that trigger membrane re-modeling

Reactions for Membrane transport are fixed (indeed, biological membrane modifications are very limited: only pinching and fuse)

Membrane transport: pinch

 $\mathsf{p}_n \, \mathring{}\, P * \langle \mathsf{p}_n^{\perp} \, \mathring{}\, S \star T \, \langle Q \rangle \to \langle T \, \rangle \, \langle S \, \langle P \rangle * Q \rangle$

Membrane transport: fuse

$$f_n \mathrel{\ress}{(S \wr P)} * \mathrel{(} f_n^{\perp} \star T \mathrel{(} Q) \mathrel{) \to } \mathrel{(S \star T \wr P * Q)}$$

 $\{f_n^{\perp} \star T \mid f_n \ (S \mid P) > P * (S \star T \mid Q)\}$

Mobility configurations

Membrane transport must be justified by protein interactions.

This is formalized by means of **membrane reactions configurations**

fusing (P, S, R, T, Q)

Mobility configurations

Membrane transport must be justified by protein interactions.

This is formalized by means of **membrane reactions configurations**

Protein reactions are endowed with spatial information

Theorem (Subject reduction)

Let P, Q be $Bio\beta$ systems.

If $\Gamma_1; \Gamma_2 \vdash P : \tau$ and $P \rightarrow Q$, then $\Gamma_1; \Delta_2 \vdash Q : \sigma$

where either $\Gamma_2 = \Delta_2$ and $\tau = \sigma$,

or
$$\Gamma_2 = \Delta_2$$
, *n* and $\tau = \sigma + \{t_n, t_n^{\perp}\}$ $(t \in \{p, f\})$

Note:

Free names of P and Q can differ only for one occurrence of an action name 0. Introduction to Bigraphs
1. Biological Bigraphs and Bioβ framework
+ syntax
+ well-formedness
+ semantics

Example: vesicle formation Formal comparison results

We formalize the above vesicle formation pathway showing the ${\rm Bio}\beta$ specification needed to define the ${\rm Bio}\beta$ reactive system

 $\langle C(1) * R_{e}(1+2^{x}), R_{c}(1^{y}+\bar{2}) \mid R_{m}(1^{x}+2^{y}) \rangle \xrightarrow{\text{rec}} \nu z. \\ \langle C(1^{z}) * R_{e}(1^{z}+2^{x}), R_{c}(1^{y}+2) \mid R_{m}(1^{x}+2^{y}) \rangle \xrightarrow{\text{rec}} \nu z. \\ \langle C(1^{z}) * R_{e}(1^{z}+2^{x}), R_{c}(1^{y}+\bar{2}) \mid R_{m}(1^{x}+2^{y}) \rangle \xrightarrow{\text{rec}} \nu z. \\ \langle C(1^{z}) * R_{e}(1^{z}+2^{x}), R_{c}(1^{y}+2) \mid R_{m}(1^{x}+2^{y}) \rangle \xrightarrow{\text{rec}} \nu z. \\ \langle C(1^{z}) * R_{e}(1^{z}+2^{x}), R_{c}(1^{y}+2) \mid R_{m}(1^{x}+2^{y}) \rangle \xrightarrow{\text{rec}} \nu z. \\ \langle C(1^{z}) * R_{e}(1^{z}+2^{x}), R_{c}(1^{y}+2) \mid R_{m}(1^{x}+2^{y}) \rangle \xrightarrow{\text{rec}} \nu z. \\ \langle C(1^{z}) * R_{e}(1^{z}+2^{x}), R_{c}(1^{y}+2) \mid R_{m}(1^{x}+2^{y}) \rangle \xrightarrow{\text{rec}} \nu z. \\ \langle C(1^{z}) * R_{e}(1^{z}+2^{x}), R_{c}(1^{y}+2) \mid R_{m}(1^{x}+2^{y}) \rangle \xrightarrow{\text{rec}} \nu z. \\ \langle C(1^{z}) * R_{e}(1^{z}+2^{x}), R_{c}(1^{y}+2) \mid R_{m}(1^{x}+2^{y}) \rangle \xrightarrow{\text{rec}} \nu z.$

 $\langle R_c(1^x + 2) * Ad(1 + \overline{2}) \mid \rangle \xrightarrow{adpt} \nu y. \langle R_c(1^x + 2^y) * Ad(1^y + 2) \mid \rangle$

 $\langle Ad(1^{\times}+2) * Cl(1) \mid \rangle \xrightarrow{\text{coat}} \nu y. \langle Ad(1^{\times}+2^{y}) * Cl(1^{y}) \mid \rangle$

$$\{(P, P', S, S', Q)\}$$

$$P = \sum_{i=1}^{6} (C(1^{x}) * R_{e}(1^{x} + 2^{y})) \quad P' = \diamond$$

$$S = \sum_{i=1}^{6} (R_{m}(1^{y} + 2^{w})) \quad S' = \mathbf{0}$$

$$Q = \sum_{i=1}^{6} (R_{c}(1^{w} + 2^{a}) * Ad(1^{a} + 2^{b}) * Cl(1^{b}))$$

Another example: Fc receptor-mediated phagocytosis

Even more complex biological pathways can be specified...

0. Introduction to Bigraphs
1. Biological Bigraphs and Bioβ framework
+ syntax

- + well-formedness
- + semantics
- 2. Example: vesicle formation
- 3. Formal comparison results

A **formal** connection between the protein-only and membrane mobility-only models can be established:

Theorem

Each transition in biological bigraphs corresponds to either a protein-only transition or to a mobility-only transition

protein only bigraphs

A **formal** connection between the protein-only and membrane mobility-only models can be established:

(κ -calculus syntax) $S, T ::= \mathbf{0} \mid A(\rho) \mid S, T \mid (x)(S)$

Using the "projective approach" we can formalize the connection between Bio β framework and κ -calculus:

$$\begin{aligned} (\diamond) &= \mathbf{0} & (A_{\rho}(\rho)) = A_{\rho}(\rho) & (P * Q) = (P), (Q) \\ (\mathbf{0}) &= \mathbf{0} & (A_{a\rho}(\rho)) = A_{a\rho}(\rho) & (S \star T) = (S), (T) \\ ((\zeta S \downarrow P \int)) &= (S), (P) & (\nu n. P) = (n)((P)) \\ (p_n ° P) &= (P) & (p_n^{\perp} ° S) = (S) \\ (f_n ° P) &= (P) & (f_n^{\perp}) = \mathbf{0} \end{aligned}$$

Theorem (Semantics)

 $\langle \vec{P} \mid \vec{S} \rangle \rightarrow_{\textit{bio}\beta} \nu \vec{x}. \langle \vec{P'} \mid \vec{S'} \rangle \quad \textit{iff} \quad (\!(\mathbb{C}[\vec{P}, \vec{S}])\!) \rightarrow_{\kappa} (\!(\nu \vec{x}. \mathbb{C}[\vec{P'}, \vec{S'}])\!)$

Type system for κ -calculus

The previous encoding induces a type system for graph-likeness

$$(\text{zero}) \frac{A \in \mathcal{P} \quad \forall x \in fn(\rho) . |\rho, x| < 2}{\{x \in fn(\rho) \mid |\rho, x| = 1\}; \{x \in fn(\rho) \mid |\rho, x| = 2\} \vdash A(\rho)} \text{ (prot)}$$

$$(\text{res}) \frac{\Gamma_1; \Gamma_2 \vdash S \quad x \notin \Gamma_1}{\Gamma_1; \Gamma_2 \setminus \{x\} \vdash (x)S} \qquad \frac{\Gamma_1, \Gamma; \Gamma_2 \vdash S \quad \Delta_1, \Gamma; \Delta_2 \vdash T}{(\Gamma_1 \cup \Gamma_2) \cap (\Delta_1 \cup \Delta_2) = \emptyset} \text{ (par)}$$

Theorems

- 1. a κ solution S is graph-like iff Γ_1 ; $\Gamma_2 \vdash S$
- 2. for a Bio β system *P*, if Γ_1 ; $\Gamma_2 \vdash P : \tau$ then Γ_1 ; $\Gamma_2 \vdash (P)$
- 3. S, T κ solutions, if $\Gamma_1; \Gamma_2 \vdash S$ and $S \rightarrow_{\beta} T$, then $\Gamma_1; \Gamma_2 \vdash T$

Done:

- + a bigraphical model for protein-membrane interactions
- + a model-driven (and user-friendly) framework
- + formalization of causality among mobility and protein interaction
- + a formal type system for well-formedness

To do:

- + stochastic refinement of reactions (stochastic bigraphs)
- + adding molecular transporters/channels
- + refinements on fluidity and distances
- + tools (modeling and simulation)

Thanks :)