An Algebraic Theory of Markov Processes

Giorgio Bacci, Radu Mardare, Prakash Panangaden and Gordon Plotkin

LICS'18

9th July 2018, Oxford

Historical Perspective

- Moggi'88: How to incorporate effects into denotational semantics? -Monads as notions of computations
- Plotkin \& Power'01: (most of the) Monads are given by operations and equations -Algebraic Effects
- Hyland, Plotkin, Power'06: sum and tensor of theories Combining Algebraic Effects
- Mardare, Panangaden, Plotkin (LICS'16): Theory of effects in a metric setting -Quantitative Algebraic Effects (operations \& quantitative equations give monads on Met)

$$
s=t \quad \Longleftrightarrow \quad s={ }_{\varepsilon} t
$$

Quantitative Equations

$$
S={ }_{\varepsilon} t
$$

" S is approximately equal to t up to an error ε "

What have we done

- Shown how to combine -by disjoint union- different theories to produce new interesting examples
- Specifically, equational axiomatization of Markov processes obtained by combining equations for transition systems and equations for probability distributions
- The equations are in the generalized quantitative sense of Mardare et al. LICS'16
- We have characterized the final coalgebra of Markov processes algebraically

Quantitative Equational Theory

Mardare, Panangaden, Plotkin (LICS'16)
A quantitative equational theory \mathscr{U} of type Σ is a set of

$$
\left\{t_{i}={ }_{\varepsilon_{i}} s_{i} \mid i \in I\right\} \stackrel{\text { conditional quantitative equations }}{\vdash} t={ }_{\varepsilon} s
$$

closed under the following "meta axioms"
(Refl) $\vdash x={ }_{0} x$
(Symm) $x={ }_{\varepsilon} y \vdash y={ }_{\varepsilon} x$
(Triang) $x={ }_{\varepsilon} y, y={ }_{\delta} z \vdash x==_{\varepsilon+\delta} y$
(NExp) $x_{1}=_{\varepsilon} y_{1}, \ldots, y_{n}=_{\varepsilon} y_{n} \vdash f\left(x_{1}, \ldots, x_{n}\right)={ }_{\varepsilon} f\left(y_{1}, \ldots, y_{n}\right)-$ for $f \in \Sigma$
(Max) $x={ }_{\varepsilon} y \vdash x={ }_{\varepsilon+\delta} y-$ for $\delta>0$
(Inf) $\left\{x={ }_{\varepsilon} y \mid \delta>\varepsilon\right\} \vdash x={ }_{\varepsilon} y$
(1-Bdd*) $\vdash x={ }_{1} y$

Quantitative Algebras
 Mardare, Panangaden, Plotkin (LICS'16)

The models of a quantitative equational theory \mathscr{U} of type Σ are

Quantitative Σ-Algebras:

$\mathscr{A}=(A, \alpha: \Sigma A \rightarrow A)$-Universal Σ-algebras on Met
Satisfying the all the quantitative equations in \mathscr{U}

We denote the category of models of \mathscr{U} by

$$
\mathbb{K}(\Sigma, \mathscr{U})
$$

Standard picture

Our picture

\mathscr{U} Models are $T_{\mathscr{U}}$-Algebras

$$
\left\{x_{i}={ }_{\varepsilon_{i}} y_{i} \mid i \in I\right\} \vdash t={ }_{\varepsilon} S
$$

A quantitative equational theory U is basic if it can be axiomatised by a set of basic conditional quantitative equations

Theorem

For any basic quantitative equational theory \mathscr{U} of type Σ

$$
\mathbb{K}(\Sigma, \mathscr{U}) \cong T_{\mathscr{U}} \underbrace{-\mathrm{Alg}}
$$

Free Monads on CMet

A quantitative equational theory is continuous if it can be axiomatised by a collection of continuous schemata of quantitative equations

$$
x_{1}={ }_{\varepsilon_{1}} y_{1}, \ldots, x_{n}={ }_{\varepsilon_{n}} y_{n} \vdash t={ }_{\varepsilon} s \quad-\text { for } \varepsilon \geq \underbrace{f\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)}_{\text {continuous real-valued function }}
$$

Theory of Contractive Operators

The theory $\mathcal{O}(\Sigma)$ induced by the axioms above is called quantitative equational theory of contractive operators over Σ

Theory of Contractive Operators

$\left(f\right.$-Lip) $\left\{x_{1}={ }_{\varepsilon} y_{1}, \ldots, y_{n}={ }_{\varepsilon} y_{n}\right\} \vdash f\left(x_{1}, \ldots, x_{n}\right)={ }_{\delta} f\left(y_{1}, \ldots, y_{n}\right)-$ for $\delta \geq c \varepsilon$
The theory $\mathcal{O}(\Sigma)$ induced by the axioms above is called quantitative equational theory of contractive operators over Σ

Interpolative Barycentric Theory
 Mardare, Panangaden, Plotkin (LICS'16)

$$
\begin{aligned}
& \qquad \sum_{\mathscr{B}}=\left\{+_{e}: 2 \mid e \in[0,1]\right\} \\
& \text { (B1) } \vdash x+{ }_{1} y={ }_{0} x \\
& \text { (B2) } \vdash x+_{e} x==_{0} x \\
& \text { (SC) } \vdash x+_{e} y={ }_{0} y+_{1-e} x \\
& \text { (SA) } \vdash\left(x+_{e} y\right)+_{d} z={ }_{0} x+_{e d}\left(y+_{\frac{d-e d}{1-e d}} z\right) \quad-\text { for } e, d \in[0,1) \\
& \text { (IB) } x={ }_{\varepsilon} y, x^{\prime}=_{\varepsilon^{\prime}} y^{\prime} \vdash x+_{e} x^{\prime}=_{\delta} y+_{e} y^{\prime} \quad-\text { for } \delta \geq e \varepsilon+(1-e) \varepsilon^{\prime}
\end{aligned}
$$

The quantitative theory \mathscr{B} induced by the axioms above is called interpolative barycentric quantitative equational theory

Interpolative Barycentric Theory

Mardare, Panangaden, Plotkin (LICS'16)

$$
\begin{aligned}
& \qquad \sum_{\mathscr{B}}=\left\{+_{e}: 2 \mid e \in[0,1]\right\} \\
& \text { (B1) } \vdash x+{ }_{1} y={ }_{0} x \\
& \text { (B2) } \vdash x+{ }_{e} x==_{0} x \\
& \text { (SC) } \vdash x+_{e} y={ }_{0} y+_{1-e} x \\
& \text { (SA) } \vdash\left(x+_{e} y\right)+_{d} z={ }_{0} x+_{e d}\left(y+_{\frac{d-e d}{}}^{1-e d} z\right) \\
& \text { (IB) } x={ }_{\varepsilon} y, x^{\prime}=_{\varepsilon^{\prime}} y^{\prime} \vdash x+_{e} x^{\prime}=_{\delta} y+_{e} y^{\prime} \quad-\text { for } \delta \geq e \varepsilon+(1-e) \varepsilon^{\prime}
\end{aligned}
$$

The quantitative theory \mathscr{B} induced by the axioms above is called interpolative barycentric quantitative equational theory

Disjoint Union of Theories

The disjoint union $\mathscr{U}+\mathscr{U}^{\prime}$ of two quantitative theories with disjoint signatures is the smallest quantitative theory containing \mathscr{U} and \mathscr{U}^{\prime}

Disjoint Union of Theories

The disjoint union $\mathscr{U}+\mathscr{U}^{\prime}$ of two quantitative theories with disjoint signatures is the smallest quantitative theory containing \mathscr{U} and \mathscr{U}^{\prime}

Disjoint Union of Theories

The disjoint union $\mathscr{U}+\mathscr{U}^{\prime}$ of two quantitative theories with disjoint signatures is the smallest quantitative theory containing \mathscr{U} and \mathscr{U}^{\prime}

Disjoint Union of Theories

The answer is positive for basic quantitative theories

$$
T_{\mathscr{U}}+T_{\mathscr{U}^{\prime}} \cong T_{\mathscr{U}+\mathscr{U}^{\prime}}
$$

The proof follows standard techniques (Kelly'80) Theorem

For basic quantitative equational theories $\mathscr{U}, \mathscr{U}^{\prime}$ of type Σ, Σ^{\prime}

$$
\mathbb{K}^{\mathbb{K}\left(\Sigma+\Sigma^{\prime}, \mathscr{U}+\mathscr{U}^{\prime}\right) \cong} \underset{\left(T_{\mathscr{U}}, T_{\mathscr{U}^{\prime}}\right\rangle-\mathbf{A l g} \cong\left(T_{\mathscr{U}}+T_{\mathcal{U}^{\prime}}\right)-\mathbf{A l g}}{\binom{\text { EM-bialgebras for the }}{\text { monads } T_{\mathscr{U}}, T_{\mathscr{U}^{\prime}}}}
$$

Interpolative Barycentric Theory with Contractive Operators

$$
\Sigma_{\mathscr{B}}+\Sigma=\left\{+_{e}: 2 \mid e \in[0,1]\right\} \cup \Sigma
$$

$$
\text { (B1) } \vdash x++_{1} y={ }_{0} x
$$

$$
\text { (B2) } \vdash x+{ }_{e} x={ }_{0} x
$$

$$
(\mathrm{SC}) \vdash x+{ }_{e} y==_{0} y+_{1-e} x
$$

$$
\text { (SA) } \vdash\left(x+_{e} y\right)+_{d} z=_{0} x+_{e d}\left(y+\frac{d-e d}{1-e d} z\right) \quad-\text { for } e, d \in[0,1)
$$

$$
\text { (IB) } x={ }_{\varepsilon} y, x^{\prime}={ }_{\varepsilon^{\prime}} y^{\prime} \vdash x+_{e} x^{\prime}={ }_{\delta} y+_{e} y^{\prime} \quad \text { for } \delta \geq e \varepsilon+(1-e) \varepsilon^{\prime}
$$

$\mathcal{O}(\Sigma)(f$-Lip $) x_{1}={ }_{\varepsilon} y_{1}, \ldots, y_{n}={ }_{\varepsilon} y_{n} \vdash f\left(x_{1}, \ldots, x_{n}\right)={ }_{\delta} f\left(y_{1}, \ldots, y_{n}\right)-$ for $\delta \geq c \varepsilon$

Monads

$$
\begin{aligned}
& T_{\mathscr{B}+\mathcal{O}(\Sigma)} \cong \Pi+\tilde{\Sigma}^{*} \\
& \text { (on Met) } \\
& \mathbb{C} T_{\mathscr{B}+\mathcal{O}(\Sigma)} \cong \Delta+\tilde{\Sigma}^{*} \\
& \text { (on CSMet) }
\end{aligned}
$$

Sum with Free Monad

Hyland, Plotkin, Power (TCS 2016)

Theorem

For a functor F and a monad T, if the free monads F^{*} and $(F T)^{*}$ exist, then the sum of monads $T+F^{*}$ exists and is given by a canonical monad structure on the composite $T(F T)^{*}$

Corollary

Under same assumptions as above, the sum of monads $T+F^{*}$ is given by a canonical monad structure on $\mu y . T(F y+-)$

Sum with Free Monad

Hyland, Plotkin, Power (TCS 2016)

Theorem

For a functor F and a monad T, if the free monads F^{*} and $(F T)^{*}$ exist, then the sum of monads $T+F^{*}$ exists and is given by a canonical monad structure on the composite $T(F T)^{*}$

Corollary

Under same assumptions as above, the sum of monads $T+F^{*}$ is given by a canonical monad structure on $\mu y . T(F y+-)$

Markov Process Monads

We can recover a quantitative theory of Markov Processes as an interpolative barycentric theory with the following signature of operators

Markov Process Monads

We can recover a quantitative theory of Markov Processes as an interpolative barycentric theory with the following signature of operators

Final Coalgebra of MPs

$$
\mathbb{C} T_{\mathscr{B}+\mathcal{O}\left(\mu_{c}\right)} \cong \mu y \cdot \Delta(1+c \cdot y+-)
$$

assigns to any $A \in \mathbf{C S M e t}$ the initial solution of the equation

$$
M P_{A} \cong \Delta\left(1+c \cdot M P_{A}+A\right)
$$

Final Coalgebra of MPs

$$
\mathbb{C} T_{\mathscr{B}+\mathscr{O}\left(\mu_{c}\right)} \cong \mu y . \Delta(1+c \cdot y+-)
$$

assigns to any $A \in \mathbf{C S M e t}$ the initial solution of the equation

$$
M P_{A} \cong \Delta\left(1+c \cdot M P_{A}+A\right)
$$

Theorem (Turi, Rutten'98)

Every locally contractive functor H on CMet has a unique fixed point, which is both an initial algebra and a final coalgebra for H

Final Coalgebra of MPs

$$
\mathbb{C} T_{\mathscr{B}+\mathcal{O}\left(\mu_{c}\right)} \cong \mu y \cdot \Delta(1+c \cdot y+-)
$$

assigns to any $A \in \mathbf{C S M e t}$ the initial solution of the equation

$$
M P_{A} \cong \Delta\left(1+c \cdot M P_{A}+A\right)
$$

Theorem (Turi, Rutten'98)

Every locally contractive functor H on CMet has a unique fixed point, which is both an initial algebra and a final coalgebra for H

In particular, when $A \in \mathbf{0}$ (the empty metric space)

$$
M P_{\mathbf{0}} \rightarrow \Delta\left(1+c \cdot M P_{\mathbf{0}}\right)\left\{\begin{array}{c}
\text { final coalgebra of } \\
\text { Markov processes }
\end{array}\right.
$$

Conclusions

- Sum of quantitative theories (this opens the way to developing combinations of quantitative effects)
- Unifying algebraic and coalgebraic presentation of Markov processes (coincidence with initial and final coalgebra)
- Tensor product of quantitative theories?

