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semi- Markov Processes
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semi-Markov Processes
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Given an initial state, SMPs can be interpreted as “machines”
that emit timed traces of states at a certain probability
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Timed paths & Events

[residence-time] Cylinder set
\/ (Si eS, tteRi and R Borel S€t)
Ch-1

to

— Vv

™ —— e € € (So,Rs, .. ,R1,S))

“probability that, starting from s,
P[s](€(So,Rq, ... ,R:1,S:)) =  the SMP emits a timed path
with prefix in SoxRox ... xR, xS,”
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Prob. Trace Equivalence
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Trace Pseudometric

(difference w.r.t. linear real-time behaviors)

d(s,s’) = sup_[P[s](E) - P[s’](E)]

Eco(9)
O-algebra generated from
Trace Cylinders
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Trace Pseudometric

(difference w.r.t. linear real-time behaviors)

d(s,;s)) = sup_[|P[s](E) - P[s'](E)|
Ec0(9)
O-algebra generated from
T Trace Cylinders }
— It’s a Behavioral Distance! —
d(s,s) =0 iff s=4§
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Trace Distance

VS.
Model Checking

(i.e., what do they have in common?)
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Model Checking SMPs

i.e., measuring the likelihood that a
a linear real-time property is satisfied by the SMP

SMP

= Linear Real-time Spec.
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Model Checking SMPs

i.e., measuring the likelihood that a
a linear real-time property is satisfied by the SMP

SMP

[ a proper measurable set! J

-

A

represented as
Metric Temporal Logic

formulas

= Linear Real-time Spec.

A\

-

... or languages
recognized
by Timed Automata
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Metric Temporal Logic

(Alur-Henzinger)
@=p|L]P=p[Xp|pUp

*¥) | CR closed interval with rational endpoints
»
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MTL distance

(difference w.r.t. MTL properties)

set of timed paths
that satisfy

MTL(s,s’) = sup |P[s]({TT
P eMTL

o)) - PIST(T

=p})|

12/24



MTL(s,s’) =

MTL(s,s’) < d(s,s) =

MTL distance

(difference w.r.t. MTL properties)

set of timed paths
that satlsfy P

sup |P[s]({TT
P eMTL

Relation with Trace Distance

sup_|P[s](E) - P[s'I(E)]

“p)) - P

Eco(9)
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Timed Automata
(Alur-Dill)

Clocks = {x,y}

( without invariants )

—— Clock Guards——

g=xXq | gng
for X e{<,<,>,2},qe@

\. J

[accepted’]
- pr |/2 112
B o @) e @) =
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TA distance

(difference w.r.t. regular TA properties)

set of timed paths
accepted by &

TA(s:S) = sup, PIsI(TreL(2))) - PIST((TTeL ()}
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TA distance

(difference w.r.t. regular TA properties)

m
L set of timed paths| - 2SUrabje
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The theorem behind...

For y,v: 2 — R finite measures on (X,2)
and FC2 field such that O(F)=2

Representation Theorem

| -V |[ = sup [U(E) - V(E)

EcF
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The theorem behind...

For y,v: 2 — R finite measures on (X,2)
and FC2 field such that O(F)=2

Representation Theorem 1
W= VI = sup [H(E) - VE)]
S
A J

F is much simpler than 2, nevertheless
it suffices to attain to the supremum!
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A series of characterizations
[ MTL(s,s) = MTLY(s,s)

d(s,s’) = < TA(s,s’) = DTAC(s,s’)

\ |-DTA(s,s’) = |-RDTA(s,s’)
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A series of characterizations

d(s,s’) = <

distance w.r.t. eMTL
[ without U(rr?til ]
[ ’ Y U ’
MTL(s,s’) = MTL" (s,s’)
=
V
TA(s,s’) = DTA(s,s)

distance w.r.t. only
Resetting |-DTAs

I-DTA(s,s') = I-RDTA(s;s')

distance w.r.t. only
single-clock DTAs

\
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Approximation
Algorithm for
the Trace Distance

(from below & from above)
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. Representation Theorem

| B -V | = sup [U(E) - V(E)|
\ beb<~
LF field that generates Z]

We need FoC Fi CF, C ... such that U; F, = F to define

= sup [M(E) - V(E)

EcF
so that Vi=0,li<li+1 & supili=||4 - V||
A

(increa/s\ing) C limiting )
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We need Fo CFi CF, C ... such that Ui Fi = F to define
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Approximation Algorithm
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Approximation Algorithm

C lower approximants ) ----- C upper approximants )
e ?r‘
V ’ E" “ \/
: : —— e — : :
lo ¥ T{ AI,' .. Ul uo
e uk

® Both i and u; are parametric in F;

® |f for all EeF; U(E) and V(E) are computable
then, so are |; and u..
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the Trace Distance
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Approxmatlng{
the Trace Distance
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the F’s

Approximating /s e

the Trace Distance

w.r.t. Trace of Cylinders

\_
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mj< nj =< i2

S(S [ i i D |’ i ] S|+I) S.C. — Uk
w.r.t. MTL properties |

m<n < i

—PlJ_l(p—’(plx |’|](P S.t.

mdepth(p) < i
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the Trace Distance
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Approximatin g Ius defne
the Trace Distance

)

w.r.t. Trace of Cylinders
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= Ui (]

\
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(

::Dl

w.r.t. MTL properties

|S‘:—>(p|X[| ’ |](P S.t.
able!

m<n < j?

mdepth(p) < 5

\

comput
Chen et al. [LICS 09]} w.r.t. Timed Languages

A el DTA .guards g=x=<

| X =
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Complexity Results

In terms of the complexity of approximating
the trace distance we have the following result

— NP-hardness [Lyngsg@-Pedersen JCSS'02] —

Approximating the trace distance

up to any €>0 whose size is polynomial
in the size of the SMP is NP-hard.
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— NP-hardness [Lyngsg@-Pedersen JCSS'02] —

Approximating the trace distance

up to any €>0 whose size is polynomial
in the size of the SMP is NP-hard.

\_ A Y,
7\

reduction from
the max-clique problem
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Concluding Remarks

® A truly genuine connection between trace
distance and the model checking problem

® General results for total variation distance:

® algebraic representation theorem
® approximation strategies (& algorithm)

® A polynomial upper-bound (not shown)

23/24



Thank you
for the attention
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