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Before to start...

|| μ - ν || = sup |μ(E) - ν(E)| 
E ∈ Σ

Given μ,ν: Σ → ℝ+ measures on (X,Σ)
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Given an initial state, SMPs can be interpreted as “machines”
that emit timed traces of states at a certain probability
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Timed paths & Events

𝕮(S0,R0, ... ,Rn-1,Sn)
s0 s1 sn-1 sn

t0 tn-1
...

∈π:

Cylinder set
 (si ∈Si, ti ∈Ri and Ri Borel set)

residence-time

P[s](𝕮(S0,R0, ... ,Rn-1,Sn)) =
“probability that, starting from s,

the SMP emits a timed path
with prefix in S0×R0× ... ×Rn-1×Sn”
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Trace Pseudometric

d(s,s’) = sup  |P[s](E) - P[s’](E)|
E ∈ σ(𝓣)

σ-algebra generated from
Trace Cylinders

(difference w.r.t. linear real-time behaviors)
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Trace Pseudometric

d(s,s’) = sup  |P[s](E) - P[s’](E)|
E ∈ σ(𝓣)

It’s a Behavioral Distance!
d(s,s’) = 0    iff    s≈ s’

σ-algebra generated from
Trace Cylinders

(difference w.r.t. linear real-time behaviors)

T
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Trace Distance
vs.

Model Checking 
(i.e., what do they have in common?)
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Model Checking SMPs

SMP  ⊨  Linear Real-time Spec.

i.e., measuring the likelihood that a
a linear real-time property is satisfied by the SMP
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Model Checking SMPs

SMP  ⊨  Linear Real-time Spec.

i.e., measuring the likelihood that a
a linear real-time property is satisfied by the SMP

a proper measurable set!

represented as 
Metric Temporal Logic 

formulas

... or languages 
recognized

by Timed Automata
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Metric Temporal Logic

φ ≔ p | ⊥ | φ→φ | X φ | φU φ I

Next

I

Until

(*)  I ⊆ ℝ closed interval with rational endpoints

(Alur-Henzinger)
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Metric Temporal Logic

φ ≔ p | ⊥ | φ→φ | X φ | φU φ I

I
φ φ φ ψ

t0 ti-1

... ⊨π:

Next

φU ψ

I

Until

(*)  I ⊆ ℝ closed interval with rational endpoints

+ + ∈ I...
ψ within time t ∈ I

(Alur-Henzinger)
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MTL distance

MTL(s,s’) = sup  |P[s]({π⊨φ}) - P[s’]({π⊨φ})|
φ ∈ MTL

set of timed paths
that satisfy φ

(difference w.r.t. MTL properties)
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Timed Automata
without invariants

ℓ1

ℓ2

ℓ0
p,r

x≤1/2

q

y≤1/2

p,r , x<3, {y}

p,r

x≥5, {x}

q

x≥1/4, {x}

g ≔ x ⋈ q  |  g ∧ g
for ⋈ ∈ {<,≤,>,≥}, q∈ℚ

(ℓ0,           ) x=0
y=0 (ℓ2,           ) x=2

y=0 (ℓ1,           ) x=2.5
y=0.5 ...

Clock Guards

p,r , 2 q , 1/2 q , 1/2

accepted!

(Alur-Dill)
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TA distance

TA(s,s’) = sup  |P[s]({π∈L(𝓐)}) - P[s’]({π∈L(𝓐)})|
𝓐 ∈ TA

set of timed paths
accepted by 𝓐

(difference w.r.t. regular TA properties)
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The theorem behind...

|| μ - ν || = sup |μ(E) - ν(E)| 
E ∈ F

For μ,ν: Σ → ℝ+ finite measures on (X,Σ)
and F⊆Σ field such that σ(F)=Σ  

Representation Theorem
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The theorem behind...

|| μ - ν || = sup |μ(E) - ν(E)| 
E ∈ F

F is much simpler than Σ, nevertheless 
it suffices to attain to the supremum!

For μ,ν: Σ → ℝ+ finite measures on (X,Σ)
and F⊆Σ field such that σ(F)=Σ  

Representation Theorem
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A series of characterizations

MTL(s,s’) = MTL  (s,s’)

TA(s,s’) = DTA(s,s’) 

1-DTA(s,s’) = 1-RDTA(s,s’)

d(s,s’) = 

¬U
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A series of characterizations

MTL(s,s’) = MTL  (s,s’)

TA(s,s’) = DTA(s,s’) 

1-DTA(s,s’) = 1-RDTA(s,s’)

d(s,s’) = 

¬U

distance w.r.t. φ∈MTL 
without Until

distance w.r.t. only
Deterministic TAs

distance w.r.t. only
single-clock DTAs

distance w.r.t. only
Resetting 1-DTAs
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Approximation 
Algorithm for 

the Trace Distance 
(from below & from above)
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field that generates Σ

Alternative Characterization

We need F0 ⊆ F1 ⊆ F2 ⊆ ...  such that  Ui Fi = F to define

ui = 1- sup {m(X) | m≤F μ & m≤F ν} 

so that   ∀i≥0, ui ≥ ui+1  &  infi ui = ||μ - ν||    
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Approximation Algorithm

• Both li and ui are parametric in Fi 

• If for all E∈Fi μ(E) and ν(E) are computable 
then, so are li and ui.

ε

lk uk

lower approximants upper approximants

l0 l1 ... u1 u0...
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i
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mj < nj ≤ i2

Sj = Uk Lk

w.r.t. MTL properties

w.r.t. Timed Languages
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i

n
i

m0

i
n0

i

just define 
the Fi’s

𝓐 ∈ 1-DTA  ...guards  g≔x≤   | x≥   | g∧g  (m≤i2)m
i

m
i

Lk

21/24



Approximating 
the Trace Distance

w.r.t. Trace of Cylinders

𝕮(S0, [   ,    ], ... , [   ,    ], Si+1)     s.t. mi

i
ni

i

mj < nj ≤ i2

Sj = Uk Lk

w.r.t. MTL properties

w.r.t. Timed Languages

φ ≔ p | ⊥ | φ→φ | X         φ  s.t.[   ,   ] m < n ≤ i2

mdepth(φ) ≤ i
m
i

n
i

m0

i
n0

i

just define 
the Fi’s

𝓐 ∈ 1-DTA  ...guards  g≔x≤   | x≥   | g∧g  (m≤i2)m
i

m
i

Lk

21/24

computable!
Chen et al. [LICS’09]



Complexity Results
In terms of the complexity of approximating

the trace distance we have the following result

NP-hardness  [Lyngsø-Pedersen JCSS’02]

Approximating the trace distance 
up to any ε>0 whose size is polynomial 

in the size of the SMP is NP-hard.
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Complexity Results
In terms of the complexity of approximating

the trace distance we have the following result

NP-hardness  [Lyngsø-Pedersen JCSS’02]

Approximating the trace distance 
up to any ε>0 whose size is polynomial 

in the size of the SMP is NP-hard.

reduction from 
the max-clique problem
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Concluding Remarks

• A truly genuine connection between trace 
distance and the model checking problem

• General results for total variation distance:

• algebraic representation theorem

• approximation strategies (& algorithm)

• A polynomial upper-bound (not shown)
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Thank you
for the attention
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