Converging from Branching to Linear Metrics on MCs

Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, Radu Mardare Aalborg University, Denmark

29 October 2015-Cali, Colombia ICTAC 2015

The focus of the talk

The focus of the talk

- We are interested in Quantitative Aspects

The focus of the talk

- We are interested in Quantitative Aspects
- Models - probabilistic, timed, weighted, etc.

The focus of the talk

- We are interested in Quantitative Aspects
- Models - probabilistic, timed, weighted, etc.
- Behavior - from equivalences to distances

The focus of the talk

- We are interested in Quantitative Aspects
- Models - probabilistic, timed, weighted, etc.
- Behavior - from equivalences to distances
- Formal Verification - quantitative Model Checking

The focus of the talk

- We are interested in Quantitative Aspects
- Models - probabilistic, timed, weighted, etc.
- Behavior - from equivalences to distances
- Formal Verification - quantitative Model Checking
- in particular: Linear-time Properties

The focus of the talk

- We are interested in Quantitative Aspects
- Models - probabilistic, timed, weighted, etc.
- Behavior - from equivalences to distances
- Formal Verification - quantitative Model Checking
- in particular: Linear-time Properties
- observables are execution runs (no internal access!)

The focus of the talk

- We are interested in Quantitative Aspects
- Models - probabilistic, timed, weighted, etc.
- Behavior - from equivalences to distances
- Formal Verification - quantitative Model Checking
- in particular: Linear-time Properties
- observables are execution runs (no internal access!)
- Why? --systems biology, machine learning, artificial intelligence, security, etc.

Markov Chains

Markov Chains

Markov Chains

Given an initial state, MCs can be interpreted as "machines" that emit infinite traces of states with a certain probability

Measurable Events

Measurable Events

Measurable Events

$$
P(s)\left(\mathbb{C}\left(S_{0} \ldots S_{n}\right)\right)=\begin{aligned}
& \text { "probability that, starting from } s, \\
& \text { the MC emits a path } \\
& \text { with prefix in } S_{0} \ldots S_{n} "
\end{aligned}
$$

Measurable Events

Cylinder set (or cone) (with prefix $\mathrm{s}_{0} . . . \mathrm{s}_{\mathrm{n}} \in \mathrm{S}_{0} \ldots . . \mathrm{S}_{\mathrm{n}}$)
"probability that, starting from s, the MC emits a path with prefix in $\mathrm{S}_{0} . . . \mathrm{S}_{\mathrm{n}}$ "

Linear Temporal Logic

Linear Temporal Logic

$$
\begin{aligned}
& \text { Semantics of a formula } \\
& {[\varphi]=\{\pi \mid \pi \models \varphi\}}
\end{aligned}
$$

Linear Temporal Logic

Linear Temporal Logic

Probabilistic Model Checking

Probabilistic Model Checking

On probabilistic systems we cannot verify strong assertions such as "the system will never fail"...

Probabilistic Model Checking

On probabilistic systems we cannot verify strong assertions such as "the system will never fail"...

$\mathrm{P}(\mathrm{s})([\varphi])=$?

What is the probabability that the MC with initial state s satisfies the formula φ ?

Approximate verification

Approximate verification

- Model Checking does not scale to large systems (even after model reduction, symbolic tecn., partial-order reduction, etc.)

Approximate verification

- Model Checking does not scale to large systems (even after model reduction, symbolic tecn., partial-order reduction, etc.)
- One should reduce the accuracy of the model, ...hence introduce an error

Approximate verification

- Model Checking does not scale to large systems (even after model reduction, symbolic tecn., partial-order reduction, etc.)
- One should reduce the accuracy of the model, ...hence introduce an error
- Proposed solution:

Behavioral metrics to quatify the error

A distance for approx. Model Checking

A distance for approx. Model Checking

A distance for approx. Model Checking

$$
\left|P\left(M_{0}\right)([\varphi])-P\left(M_{1}\right)([\varphi])\right|
$$

A distance for approx. Model Checking

$$
\left|P\left(M_{0}\right)([\varphi])-P\left(M_{1}\right)([\varphi])\right|
$$

A distance for approx. Model Checking

A distance for

approx. Model Checking

Two logical distances

Two logical distances

 the LTL distance$\operatorname{LTL}(\mathrm{s}, \mathrm{t})=\sup _{\varphi \in \operatorname{LTL}}|\mathrm{P}(\mathrm{s})([\varphi])-\mathrm{P}(\mathrm{t})([\varphi])|$

Two logical distances

 the LTL distance$$
\operatorname{LTL}(\mathrm{s}, \mathrm{t})=\sup \varphi \in \operatorname{LTL}|\mathrm{P}(\mathrm{~s})([\varphi])-\mathrm{P}(\mathrm{t})([\varphi])|
$$

$$
\begin{aligned}
& \text { the LTL-× distance } \\
& \operatorname{LTL}^{-x}(\mathrm{~s}, \mathrm{t})=\sup \varphi \in \operatorname{LTL} \times P(\mathrm{~s})([\varphi])-\mathrm{P}(\mathrm{t})([\varphi]) \mid
\end{aligned}
$$

Two logical distances

 the LTL distance$$
\operatorname{LTL}(\mathrm{s}, \mathrm{t})=\sup \varphi \in \operatorname{LTL}|\mathrm{P}(\mathrm{~s})([\varphi])-\mathrm{P}(\mathrm{t})([\varphi])|
$$

Two logical distances

Three natural questions

QI: Can we compute the two metrics?
Q2: Can we compute them exactly? If not, can we approximate them to any arbitrary precision?

Q3: What about complexity?

Characterizations

Trace distance

$$
\mathrm{T}(\mathrm{~s}, \mathrm{t})=\sup _{\mathrm{E} \in \sigma(\mathcal{T})}|\mathrm{P}(\mathrm{~s})(\mathrm{E})-\mathrm{P}(\mathrm{t})(\mathrm{E})|
$$

Stutter-trace distance $\mathrm{ST}(\mathrm{s}, \mathrm{t})=\sup _{\mathrm{E} \in \sigma(S T)}|\mathrm{P}(\mathrm{s})(\mathrm{E})-\mathrm{P}(\mathrm{t})(\mathrm{E})|$

Characterizations

Trace distance

$$
\mathrm{T}(\mathrm{~s}, \mathrm{t})=\sup _{\mathrm{E} \in \sigma(\mathcal{T})}|\mathrm{P}(\mathrm{~s})(\mathrm{E})-\mathrm{P}(\mathrm{t})(\mathrm{E})|
$$

Events up-to trace equivalence
$\mathrm{ST}(\mathrm{s}, \mathrm{t})=\sup _{\mathrm{E} \in \sigma(\boldsymbol{s t})}|\mathrm{P}(\mathrm{s})(\mathrm{E})-\mathrm{P}(\mathrm{t})(\mathrm{E})|$

Characterizations

Trace distance

$$
\mathrm{T}(\mathrm{~s}, \mathrm{t})=\sup _{\mathrm{E} \in \sigma(\mathcal{T})}|\mathrm{P}(\mathrm{~s})(\mathrm{E})-\mathrm{P}(\mathrm{t})(\mathrm{E})|
$$

Stutter-trace distance

$$
\mathrm{ST}(\mathrm{~s}, \mathrm{t})=\sup _{\mathrm{E} \in \sigma(S \mathcal{T})}|\mathrm{P}(\mathrm{~s})(\mathrm{E})-\mathrm{P}(\mathrm{t})(\mathrm{E})|
$$

Events up-to stutter trace equivalence

Characterizations

Trace distance

$$
\mathrm{T}(\mathrm{~s}, \mathrm{t})=\sup _{\mathrm{E} \in \sigma(\mathcal{T})}|\mathrm{P}(\mathrm{~s})(\mathrm{E})-\mathrm{P}(\mathrm{t})(\mathrm{E})|
$$

Stutter-trace distance

$$
\left.\mathrm{ST}(\mathrm{~s}, \mathrm{t})=\sup _{\mathrm{E} \in \sigma(S J}\right)|\mathrm{P}(\mathrm{~s})(\mathrm{E})-\mathrm{P}(\mathrm{t})(\mathrm{E})|
$$

Characterization Theorem
$\operatorname{LTL}(\mathrm{s}, \mathrm{t})=\mathrm{T}(\mathrm{s}, \mathrm{t}) \quad$ and $\quad \operatorname{LTL}^{-\mathrm{x}}(\mathrm{s}, \mathrm{t})=\mathrm{ST}(\mathrm{s}, \mathrm{t})$

A tiny yet tricky example

(from Chen-Kiefer LICS’I4)

A tiny yet tricky example

(from Chen-Kiefer LICS'I4)

A tiny yet tricky example

(from Chen-Kiefer LICS'I4)

A tiny yet tricky example

(from Chen-Kiefer LICS'I4)
maximizing event is not ω-regular!
irrational number

Direct Consequences

Direct Consequences

- There is no maximizing formula

Direct Consequences

- There is no maximizing formula
- Decidability is still an open problem

Direct Consequences

- There is no maximizing formula
- Decidability is still an open problem
- The threshold problem is NP-hard (i.e., whether the distance exceeds a given threshold - Lyngsø-Pedersen JCSS’02)

Direct Consequences

- There is no maximizing formula
- Decidability is still an open problem
- The threshold problem is NP-hard (i.e., whether the distance exceeds a given threshold - Lyngsø-Pedersen JCSS’02)

Q: Can we approximate the logical/trace distances up to any arbitrary precision?

Approximation Algorithm

(in the slides only for the Trace Distance)

(in the slides only for the Trace Distance)

(general idea)
 Approximation Schema

14/25

(general idea)
 Approximation Schema

(general idea)
 Approximation Schema

Approximation Schema

Approximation Schema

Approximation Schema

What about the sequence of upper-approximants?

Coupling Characterization
 (as total variation distance)

$T(s, t)=\min \{w(\neq) \mid w \in \Omega(P(s), P(t))\}$

Coupling Characterization
 (as total variation distance)

$\mathrm{T}(\mathrm{s}, \mathrm{t})=\min \{\mathrm{w}(\nexists) \mid \mathrm{w} \in \Omega(\mathrm{P}(\mathrm{s}), \mathrm{P}(\mathrm{t}))\}$

Coupling as a transportation schedule...

Coupling Characterization
 (as total variation distance)

$\mathrm{T}(\mathrm{s}, \mathrm{t})=\min \{\mathrm{w}(\nexists) \mid \mathrm{w} \in \Omega(\mathrm{P}(\mathrm{s}), \mathrm{P}(\mathrm{t}))\}$

Coupling as a transportation schedule...

Coupling Characterization
 (as total variation distance)

$\mathrm{T}(\mathrm{s}, \mathrm{t})=\min \{\mathrm{w}(\nexists) \mid \mathrm{w} \in \Omega(\mathrm{P}(\mathrm{s}), \mathrm{P}(\mathrm{t}))\}$

Coupling as a transportation schedule...

Coupling Characterization (actotal variation distance) trace inequivalence

$T(s, t)=\min \{w(\neq) \mid w \in \Omega(P(s), P(t))\}$

Coupling as a transportation schedule...

Approximation Schema

Approximation Schema

Coupling Structure

Coupling Structure

Coupling Structure of rank k $\mathcal{C}: S \times S \rightarrow \Delta\left(S^{k} \times S^{k}\right)$
 such that $\mathcal{C}(s, t) \in \Omega\left(P(s)^{k}, P(t)^{k}\right)$

Stochastic process generating pairs of paths divided in multisteps of length k

Probability induced by \mathcal{C} starting from (s, t)
$\mathrm{P}_{\boldsymbol{c}}(\mathrm{s}, \mathrm{t})$

Coupling Structure

Coupling Structure of rank k $\mathcal{C}: S \times S \rightarrow \Delta\left(S^{k} \times S^{k}\right)$
 such that $\mathcal{C}(s, t) \in \Omega\left(P(s)^{k}, P(t)^{k}\right)$

Stochastic process generating pairs of paths divided in multisteps of length k

$$
\Omega_{k}=\left\{P_{\mathcal{C}(s, t) \mid \mathcal{C} \text { of rank } k\}}^{\text {Probability induced by } \mathcal{C} \text { starting from }(s, t)}\right.
$$

Coupling Structure

Coupling Structure of rank k $\mathcal{C}: S \times S \rightarrow \Delta\left(S^{k} \times S^{k}\right)$ such that $\mathcal{C}(s, t) \in \Omega\left(P(s)^{k}, P(t)^{k}\right)$

$$
\Omega_{\mathrm{k}}=\{\underbrace{\text { Probability induced by } \mathcal{C} \text { starting from }(\mathrm{t}) \text {) }}_{\mathcal{C}(\mathrm{s}, \mathrm{t}) \mid \mathcal{C} \text { of } \text { rank } \mathrm{k}\}}
$$

Lemma

$$
\begin{gathered}
\text { (i) } \Omega_{\mathrm{k}} \subseteq \Omega(\mathrm{P}(\mathrm{~s}), \mathrm{P}(\mathrm{t})), \quad \text { (ii) } \Omega_{\mathrm{k}} \subseteq \Omega_{\mathrm{hk}} \quad(\text { for all } \mathrm{k}, \mathrm{~h}>0) \\
\text { (iii) } U_{\mathrm{k}} \Omega_{\mathrm{k}} \text { is dense in } \Omega(\mathrm{P}(\mathrm{~s}), \mathrm{P}(\mathrm{t}))
\end{gathered}
$$

Computing the Approximants

(*) MC with rational transition probabilities

Computing the Approximants

- Both lower \& upper approx. are computable

Computing the Approximants

- Both lower \& upper approx. are computable
- For each $\mathrm{k}>0$, l_{k} and u_{k} can be computed in polynomial time in the size of the MC

Computing the Approximants

- Both lower \& upper approx. are computable
- For each $\mathrm{k}>0$, l_{k} and u_{k} can be computed in polynomial time in the size of the MC
proved via alternative characterizations

Computing the Approximants

- Both lower \& upper approx. are computable
- For each $\mathrm{k}>0$, l_{k} and u_{k} can be computed in polynomial time in the size of the MC
proved via alternative characterizations

> the threshold problem for T(s,t) is still NP-hard!

Upper approx. are Branching Metrics!

$$
\Theta(d)(s, t)= \begin{cases}I & \text { if } s \neq t \\ K(d)(T(s), T(t)) & \text { otherwise }\end{cases}
$$

Upper approx. are Branching Metrics!

if $\mathbf{s} \neq \mathrm{t}$
$\mathrm{K}(\mathrm{d})(\mathrm{T}(\mathrm{s}), \mathrm{T}(\mathrm{t}))$ otherwise
the Ist upper-approx is the least fixed point of the operator Θ

Upper approx. are Branching Metrics!

if $\boldsymbol{s} \neq \mathrm{t}$
$\mathrm{K}(\mathrm{d})(\mathrm{T}(\mathrm{s}), \mathrm{T}(\mathrm{t}))$ otherwise
Kantorovich lifting
the Ist upper-approx is the least fixed point of the operator Θ

Upper approx. are Branching Metrics!

$$
\Theta(d)(s, t)= \begin{cases}1 & \text { if } s \neq t\end{cases}
$$

$\mathrm{K}(\mathrm{d})(\mathrm{T}(\mathrm{s}), \mathrm{T}(\mathrm{t})$) otherwise
it is the Kantorovich distance of Desharnais at al.!

Kantorovich lifting
the Ist upper-approx is the least fixed point of the operator Θ

Upper approx. are Branching Metrics!

$$
\Theta(d)(s, t)= \begin{cases}1 & \text { if } s \neq t\end{cases}
$$

$\mathrm{K}(\mathrm{d})(\mathrm{T}(\mathrm{s}), \mathrm{T}(\mathrm{t})$) otherwise
it is the Kantorovich distance of Desharnais at al.!

Kantorovich lifting
the Ist upper-approx is the least fixed point of the operator Θ
its kernel is Larsen-Skou probabilistic bisimilarity!

Upper approx. are Branching Metrics!

Upper approx. are Branching Metrics!

Upper approx. are Branching Metrics!

the k-th upper-approx is the least fixed point of the operator Θ^{k}
its kernel is k-step generalization of probabilistic bisimilarity...

Upper approx. are Branching Metrics!

Exact semantics do NOT converge

(monotone)
(bound)
(convergence) $\quad \inf _{k} u_{k}=T$
equiv.-based
$\sim_{k} \subseteq \sim_{h k}$
$\sim_{k} \subseteq \approx$
$\mathrm{U}_{\mathrm{k}} \sim_{\mathrm{k}} \neq \approx$

The Counterexample

The Counterexample

The Counterexample

Concluding Remarks

Concluding Remarks

- Metrics for Model Checking

Concluding Remarks

- Metrics for Model Checking
- Approximation algorithms (via duality)

Concluding Remarks

- Metrics for Model Checking
- Approximation algorithms (via duality)
- Branching converge to linear

Concluding Remarks

- Metrics for Model Checking
- Approximation algorithms (via duality)
- Branching converge to linear

Future Work

Concluding Remarks

- Metrics for Model Checking
- Approximation algorithms (via duality)
- Branching converge to linear

Future Work

- Better algorithms? (on-the-fly techniques)

Concluding Remarks

- Metrics for Model Checking
- Approximation algorithms (via duality)
- Branching converge to linear

Future Work

- Better algorithms? (on-the-fly techniques)
- different kind of models (non-determinism?)

Concluding Remarks

- Metrics for Model Checking
- Approximation algorithms (via duality)
- Branching converge to linear

Future Work

- Better algorithms? (on-the-fly techniques)
- different kind of models (non-determinism?)
- explore topological properties

Thank you

for the attention

Appendix

The theorem behind...

For $\mu, v: \Sigma \rightarrow \mathbb{R}_{+}$finite measures on (X, Σ) and $F \subseteq \Sigma$ field such that $\sigma(F)=\Sigma$

Representation Theorem

$$
\|\mu-v\|=\sup _{E \in F}|\mu(E)-v(E)|
$$

The theorem behind...

For $\mu, v: \Sigma \rightarrow \mathbb{R}_{+}$finite measures on (X, Σ) and $F \subseteq \Sigma$ field such that $\sigma(F)=\Sigma$

Representation Theorem

$$
\|\mu-v\|=\sup _{E \in F}|\mu(E)-v(E)|
$$

F is much simpler than Σ, nevertheless it suffices to attain the supremum!

