On the Metric-based Approximate Minimization of Markov Chains*

Giovanni Bacci, **Giorgio Bacci**, Kim G. Larsen, Radu Mardare *Aalborg University*

ICALP 2017

Warsaw, 11th July 2017

Introduction

- Moore'56, Hopcroft'71: Minimization algorithm for DFA (partition refinement wrt Myhill-Nerode equiv.)
- Minimization via partition refinement:
 - Kanellakis-Smolka'83: minimization of LTSs wrt Milner's strong bisimulation
 - Baier'96: minimization of MCs wrt Larsen-Skou probabilistic bisimulation
 - Alur et al.'92, Yannakakis-Lee'97: minimization of timed & real-time transition systems.
 - and many more...

A fundamental problem

Jou-Smolka'90 observed that behavioral equivalences are not robust for systems with real-valued data

A fundamental problem

Jou-Smolka'90 observed that behavioral equivalences are not robust for systems with real-valued data

Closest Bounded Approximant (CBA)

Closest Bounded Approximant (CBA)

Closest Bounded Approximant (CBA)

minimize d

Closest Bounded Approximant (CBA)

minimize d

Closest Bounded Approximant (CBA)

minimize d

minimize k

"To study the complexity of an optimization problem one has to look at its decision variant"

(C. Papadimitriou)

Closest Bounded Approximant (CBA)

Minimum Significant Approximant Bound (MSAB)

minimize k

"To study the complexity of an optimization problem one has to look at its decision variant"

(C. Papadimitriou)

Bounded Approximant (BA)

"To study the complexity of an optimization problem one has to look at its decision variant"

(C. Papadimitriou)

Bounded Approximant (BA)

Significant Bounded Approximant (SBA)

What distance on MCs?

a.k.a. Kantorovich distance

(λ-discounted) **Probabilistic Bisimilarity distance** of Desharnais et al. —denoted d_{λ}

What distance on MCs?

a.k.a. Kantorovich distance

(λ-discounted) **Probabilistic Bisimilarity distance** of Desharnais et al. —denoted d_{λ}

Theorem (Desharnais et. al 99) -

$$m \sim n$$
 iff $d_{\lambda}(m,n) = 0$

What distance on MCs?

a.k.a. Kantorovich distance

(λ-discounted) Probabilistic Bisimilarity distance of Desharnais et al. —denoted d_{λ}

Theorem (Desharnais et. al 99)

 $m \sim n$ iff $d_{\lambda}(m,n) = 0$

Theorem (Chen, van Breugel, Worrell 12)

The probabilistic bisimilarity distance can be computed in polynomial time

Relation with Model Checking

Theorem (Chen, van Breugel, Worrell 12) —

```
For all \varphi \in LTL \quad | \Pr(m \models \varphi) - \Pr(n \models \varphi) | \le d_1(m,n)
```

Relation with Model Checking

Theorem (Chen, van Breugel, Worrell 12) -

For all
$$\varphi \in LTL$$
 | $Pr(m \models \varphi) - Pr(n \models \varphi)$ | $\leq d_1(m,n)$

...imagine that $|M| \gg |N|$, we can use N in place of M

CBA: Example* m_2 m_1 2/3 1/3 m_4 m_5 m_3 MC(5)(*) With respect to the undiscounted 8/29 probabilistic bisimilarity distance d₁

CBA: Example* 1/2 m_2 m_1 1/3 m_4 m_5 m_3 MC(5)(*) With respect to the undiscounted 8/29 probabilistic bisimilarity distance d₁

(*) With respect to the undiscounted probabilistic bisimilarity distance d₁

CBA: Example* m_0 with $0 \le x+y \le 1$ m_{12} 1/2 1-x-y m_2 m_1 m_4 m_3 1/3 m_4 m_5 m_3 MC(5)(*) With respect to the undiscounted 8/29 probabilistic bisimilarity distance d₁

CBA: Example* m_0 with $0 \le x+y \le 1$ m₁₂ 1/2 1-x-y m_2 m_1 m_4 m_3 1/3 m_0 m_4 1/2 m_5 m_3 m_{12} m_{12} MC(5)1/2 m_5 m_4 (*) With respect to the undiscounted 8/29 probabilistic bisimilarity distance d₁

(*) With respect to the undiscounted probabilistic bisimilarity distance d_1

Characterizations + COMPLEXITY results:

1. Closest Bounded Approximant (CBA) encoded as a bilinear program

- 1. Closest Bounded Approximant (CBA) encoded as a bilinear program
- Bounded Approximant (BA)
 PSPACE & NP-hard for all λ∈(0,1]

- 1. Closest Bounded Approximant (CBA) encoded as a bilinear program
- Bounded Approximant (BA)
 PSPACE & NP-hard for all λ∈(0,1]
- 3. Significant Bounded Approximant (SBA) NP-complete for $\lambda=1$

Theoretical

- 1. Closest Bounded Approximant (CBA) encoded as a bilinear program
- Bounded Approximant (BA)
 PSPACE & NP-hard for all λ∈(0,1]
- 3. Significant Bounded Approximant (SBA) NP-complete for $\lambda=1$

Theoretical

Characterizations + COMPLEXITY results:

- 1. Closest Bounded Approximant (CBA) encoded as a bilinear program
- Bounded Approximant (BA)
 PSPACE & NP-hard for all λ∈(0,1]
- 3. Significant Bounded Approximant (SBA) NP-complete for $\lambda=1$

Practical

We proposed an EM-like method to obtain a sub-optimal approximants

Talk Outline

★ Probabilistic bisimilarity distance

fixed point characterization (Kantorovich oper.)

★ Metric-based Optimal Approximate Minimization

- Closest Bounded Approximant (CBA)
 - bilinear characterization (+ complexity)
- Minimum Significant Approximant Bound (MSAB)
 - characterization (+ complexity)
- Expectation Maximization-like algorithm
 - 2 heuristics + experimental results

Probabilistic bisimulation

It tries to match the behaviors "quantitatively"

Probabilistic bisimulation

It tries to match the behaviors "quantitatively"

Probabilistic bisimulation

It tries to match the behaviors "quantitatively"

Probabilistic bisimulation

It tries to match the behaviors "quantitatively"

Probabilistic bisimulation

It tries to match the behaviors "quantitatively"

Coupling

Definition (W. Doeblin 36)

A *coupling* of a pair (μ, ν) of probability distributions on M is a distribution ω on M×M such that

```
• \sum_{n \in M} \omega(m,n) = \mu(m) (left marginal)
• \sum_{m \in M} \omega(m,n) = v(n) (right marginal).
```

One can think of a coupling as a measure-theoretic relation between probability distribution

A quantitative generalization

minimize
$$\sum_{u,v\in M} \omega(u,v) d(u,v)$$

A quantitative generalization of probabilistic bisimilarity

(Desharnais et al.'99 & Worrell-van Breugel'00)

The λ -discounted probabilistic bisimilarity pseudometric is the smallest d_{λ} : $M \times M \rightarrow [0,1]$ such that

A quantitative generalization of probabilistic bisimilarity (Desharnais et al.'99 & Worrell-van Breugel'00)

The λ-discounted probabilistic bisimilarity pseudometric

A quantitative generalization of probabilistic bisimilarity

(Desharnais et al.'99 & Worrell-van Breugel'00)

The λ-discounted probabilistic bisimilarity pseudometric

is the smallest
$$d_{\lambda}$$
: $M \times M \rightarrow [0,1]$ such that

 $d_{\lambda}(m,n) = \Gamma_{\lambda}(d_{\lambda}) = \begin{cases} 1 & \text{transition} & \text{if } \ell(m) \neq \ell(n) \\ \text{probabilities} & \text{homegapter} \end{cases}$ $\lambda \ K(d_{\lambda})(\tau(m),\tau(n)) \quad \text{otherwise}$

Kantorovich distance

$$K(d)(\mu,v) = \min_{\omega \in \Omega(\mu,v)} \sum_{u,v \in M} \omega(u,v) d(u,v)$$

Talk Outline

★ Probabilistic bisimilarity distance

fixed point characterization (Kantorovich oper.)

★ Metric-based Optimal Approximate Minimization

- Closest Bounded Approximant (CBA)
 - bilinear characterization + complexity
- Minimum Significant Approximant Bound (MSAB)
 - complexity (+ characterization)
- Expectation Maximization-like algorithm
 - 2 heuristics + experimental results

CBA wrt d_{\lambda}

Instance: An MC M, and k∈N

Output: An MC \tilde{N} , with at most k states minimizing $d_{\lambda}(m_0, \tilde{n}_0)$

CBA wrt d_{\lambda}

Instance: An MC M, and $k \in \mathbb{N}$

Output: An MC \tilde{N} , with at most k states minimizing $d_{\lambda}(m_0, \tilde{n}_0)$

$$d_{\lambda}(m_0, \tilde{n}_0) = \inf \{ d_{\lambda}(m_0, n_0) \mid N \in MC(k) \}$$

CBA wrt d_{\lambda}

Instance: An MC M, and $k \in \mathbb{N}$

Output: An MC \tilde{N} , with at most k states minimizing $d_{\lambda}(m_0, \tilde{n}_0)$

$$d_{\lambda}(m_0,\tilde{n}_0)=\inf\left\{\;d_{\lambda}(m_0,n_0)\;\;\middle|\;\;N\in MC(k)\;\right\}$$

we get a solution iff the infimum is a minimum

CBA wrt d_{\lambda}

Instance: An MC M, and $k \in \mathbb{N}$

Output: An MC \tilde{N} , with at most k states minimizing $d_{\lambda}(m_0, \tilde{n}_0)$

 $d_{\lambda}(m_0,\tilde{n}_0)=\inf\left\{\;d_{\lambda}(m_0,n_0)\;\;\middle|\;\;N\in MC(k)\;\right\}$

we get a solution iff the infimum is a minimum

generalization of bisimilarity quotient

```
d_{\lambda}(m_0, \tilde{n}_0) = \inf \{ d_{\lambda}(m_0, n_0) \mid N \in MC(k) \}
```

```
\begin{split} d_{\lambda}(m_{0},\tilde{n}_{0}) &= \inf \big\{ \; d_{\lambda}(m_{0},n_{0}) \; \; \big| \; \; N {\in} MC(k) \, \big\} \\ &= \inf \big\{ \; d(m_{0},n_{0}) \; \; \big| \; \; \Gamma_{\lambda}(d) {\leq} d, \; N {\in} MC(k) \big\} \end{split}
```

```
\begin{split} d_{\lambda}(m_{0},\tilde{n}_{0}) &= \inf \big\{ \ d_{\lambda}(m_{0},n_{0}) \ \big| \ \ N \in MC(k) \big\} \\ &= \inf \big\{ \ d(m_{0},n_{0}) \ \big| \ \ \Gamma_{\lambda}(d) \leq d, \ N \in MC(k) \big\} \end{split}
```

```
mimimize d_{m_0,n_0}

such that d_{m,n} = 1 \lambda \sum_{(u,v) \in M \times N} c_{u,v}^{m,n} \cdot d_{u,v} \leq d_{m,n} \ell(m) \neq \alpha(n) \ell(m) = \alpha(n) \ell(m) = \alpha(n) m, u \in M, n \in N \sum_{u \in M} c_{u,v}^{m,n} = \theta_{n,v} m \in M, n, v \in N m \in M, n, v \in N m, u \in M, n, v \in N
```

```
\begin{split} d_{\lambda}(m_0,\tilde{n}_0) &= \inf \left\{ \ d_{\lambda}(m_0,n_0) \ \big| \ N \in MC(k) \right\} \\ &= \inf \left\{ \ d(m_0,n_0) \ \big| \ \Gamma_{\lambda}(d) \leq d, \ N \in MC(k) \right\} \end{split}
```

```
mimimize d_{m_0,n_0}

such that d_{m,n} = 1
\lambda \sum_{(u,v) \in M \times N} c_{u,v}^{m,n} \cdot d_{u,v} \leq d_{m,n}
\sum_{v \in N} c_{u,v}^{m,n} = \tau(m)(u)
\sum_{u \in M} c_{u,v}^{m,n} = \theta_{n,v}
c_{u,v}^{m,n} \geq 0
m, u \in M, n, v \in N
m \in M, n, v \in N
m, u \in M, n, v \in N
```

```
\begin{split} d_{\lambda}(m_0,\tilde{n}_0) &= \inf \left\{ \ d_{\lambda}(m_0,n_0) \ \middle| \ N \in MC(k) \right\} \\ &= \inf \left\{ \ d(m_0,n_0) \ \middle| \ \Gamma_{\lambda}(d) \leq d, \ N \in MC(k) \right\} \end{split}
```

```
mimimize d_{m_0,n_0} such that d_{m,n} = 1 \lambda \sum_{(u,v) \in M \times N} c_{u,v}^{m,n} \cdot d_{u,v} \leq d_{m,n} \ell(m) \neq \alpha(n) \ell(m) = \alpha(n) \ell(m) = \alpha(n) m, u \in M, n \in N \sum_{u \in M} c_{u,v}^{m,n} = \theta_{n,v} variable! m \in M, n, v \in N m \in M, n, v \in N
```

```
\begin{split} d_{\lambda}(m_0,\tilde{n}_0) &= \inf \left\{ \ d_{\lambda}(m_0,n_0) \ \middle| \ \ N \in MC(k) \right\} \\ &= \inf \left\{ \ d(m_0,n_0) \ \middle| \ \left[ \Gamma_{\lambda}(d) \leq d, \ N \in MC(k) \right] \right\} \end{split}
```


Lemma (Meaningful labels) -

For any N \in MC(k), there exists N' \in MC(k) with labels taken from M, such that $d_{\lambda}(M,N) \geq d_{\lambda}(M,N')$

Lemma (Meaningful labels) -

For any N \in MC(k), there exists N' \in MC(k) with labels taken from M, such that $d_{\lambda}(M,N) \geq d_{\lambda}(M,N')$

$$\begin{array}{ll} \text{mimimize} & d_{m_0,n_0} \\ \text{such that} & \lambda \sum_{(u,v) \in M \times N} c_{u,v}^{m,n} \cdot d_{u,v} \leq d_{m,n} \\ & 1 - \alpha_{n,l} \leq d_{m,n} \leq 1 \\ & \alpha_{n,l} \cdot \alpha_{n,l'} = 0 \\ & \sum_{l \in L(\mathcal{M})} \alpha_{n,l} = 1 \\ & \sum_{v \in N} c_{u,v}^{m,n} = \tau(m)(u) \\ & \sum_{u \in M} c_{u,v}^{m,n} = \theta_{n,v} \\ & c_{u,v}^{m,n} \geq 0 \end{array} \qquad \begin{array}{ll} m \in M, \ n \in N \\ m, u \in M, \ n \in N \\ m \in M, \ n, v \in N \\ m, u \in M, \ n, v \in N \\ m, u \in M, \ n, v \in N \end{array}$$

Lemma (Meaningful labels) -

For any N \in MC(k), there exists N' \in MC(k) with labels taken from M, such that $d_{\lambda}(M,N) \geq d_{\lambda}(M,N')$

$$\begin{array}{lll} \text{mimimize} & d_{m_0,n_0} \\ \text{such that} & \lambda \sum_{(u,v) \in M \times N} c_{u,v}^{m,n} \cdot d_{u,v} \leq d_{m,n} & m \in M, \ n \in N \\ \hline & 1 - \alpha_{n,l} \leq d_{m,n} \leq 1 & n \in N, \ l \in L(\mathcal{M}), \ \ell(m) \neq l \\ & \alpha_{n,l} \cdot \alpha_{n,l'} = 0 & n \in N, \ l, l' \in L(\mathcal{M}), \ l \neq l' \\ & \sum_{l \in L(\mathcal{M})} \alpha_{n,l} = 1 & n \in N \\ \hline & \sum_{v \in N} c_{u,v}^{m,n} = \tau(m)(u) & m, u \in M, \ n \in N \\ & \sum_{u \in M} c_{u,v}^{m,n} = \theta_{n,v} & m \in M, \ n, v \in N \\ & c_{u,v}^{m,n} \geq 0 & m, u \in M, \ n, v \in N \\ \hline \end{array}$$

this characterization has two main consequences...

- 1. CBA-λ admits always a solution (finite intersection of closed subsets)
- 2. CBA-λ can be approximated up to any precision

Complexity of CBA-λ

actually, its decision variant!

Complexity of CβA-λ

actually, its decision variant!

Complexity Upper-bound

BA-λ is in **PSPACE**

Proof sketch: we can encode the question $\langle M, k, \varepsilon \rangle \in BA-\lambda$ to that of checking the feasibility of a set of bilinear inequalities. This can be encoded as a decision problem for the existential theory of the reals, thus it can be solved in PSPACE [Canny—STOC88].

Complexity of CβA-λ

actually, its decision variant!

Complexity Upper-bound

BA-λ is in **PSPACE**

Complexity lower-bound

BA-λ is **NP-hard**

Proof idea: we provide a reduction from VERTEX COVER. (see the appendix for a sketch of the reduction)

Complexity of CβA-λ

actually, its decision variant!

Complexity Upper-bound

BA-λ is in **PSPACE**

Complexity lower-bound

BA-λ is **NP-hard**

unlikely to solve CBA as simple linear program

The MSAB-λ problem

The MSAB wrt da

Instance: An MC M

Output: The smallest k such that

 $d_{\lambda}(m_0,n_0)<1$, for some $N\in MC(k)$

The MSAB-λ problem

The MSAB wrt d_{λ}

Instance: An MC M

Output: The smallest k such that $d_{\lambda}(m_0,n_0)<1$, for some $N\in MC(k)$

For $\lambda < 1$, the MSAB- λ problem is trivial, because the solution is always k=1

The MSAB-λ problem

The MSAB wrt d_{\lambda}

Instance: An MC M

Output: The smallest k such that $d_{\lambda}(m_0,n_0)<1$, for some $N\in MC(k)$

For $\lambda < 1$, the MSAB- λ problem is trivial, because the solution is always k=1

For $\lambda=1$, the same problem is surprisingly difficult...

Complexity of MSAB-1

actually, its decision variant!

Theorem

SBA-1 is **NP-complete**

Proof idea: we provide a reduction from VERTEX COVER. (see the appendix for a sketch of the reduction)

Towards an Algorithm...

Towards an Algorithm...

The CBA can be solved as a bilinear program.
 Theoretically nice, but practically unfeasible!
 (our implementation in PENBMI can handle MCs with at most 5 states...)

Towards an Algorithm...

The CBA can be solved as a bilinear program.
 Theoretically nice, but practically unfeasible!
 (our implementation in PENBMI can handle MCs with at most 5 states...)

 We are happy with sub-optimal solutions if they can be obtained by a practical algorithm.

EM-like Algorithm

- Given the MC M and an initial approximant N₀
- it produces a sequence N₀, ..., N_h of approximants having strictly decreasing distance from M
- N_h may be a sub-optimal solution of CBA-λ

EM-like Algorithm

Algorithm 1

```
Input: \mathcal{M} = (M, \tau, \ell), \, \mathcal{N}_0 = (N, \theta_0, \alpha), \, \text{and} \, h \in \mathbb{N}.

1. i \leftarrow 0

2. repeat

3. i \leftarrow i + 1

4. compute \mathcal{C} \in \Omega(\mathcal{M}, \mathcal{N}_{i-1}) such that \delta_{\lambda}(\mathcal{M}, \mathcal{N}_{i-1}) = \gamma_{\lambda}^{\mathcal{C}}(\mathcal{M}, \mathcal{N}_{i-1})

5. \theta_i \leftarrow \text{UPDATETRANSITION}(\theta_{i-1}, \mathcal{C})

6. \mathcal{N}_i \leftarrow (N, \theta_i, \alpha)

7. until \delta_{\lambda}(\mathcal{M}, \mathcal{N}_i) > \delta_{\lambda}(\mathcal{M}, \mathcal{N}_{i-1}) or i \geq h

8. return \mathcal{N}_{i-1}
```

EM-like Algorithm

Algorithm 1

```
Input: \mathcal{M} = (M, \tau, \ell), \mathcal{N}_0 = (N, \theta_0, \alpha), \text{ and } h \in \mathbb{N}.

1. i \leftarrow 0

2. repeat

3. i \leftarrow i + 1

4. compute \mathcal{C} \in \Omega(\mathcal{M}, \mathcal{N}_{i-1}) such that \delta_{\lambda}(\mathcal{M}, \mathcal{N}_{i-1}) = \gamma_{\lambda}^{\mathcal{C}}(\mathcal{M}, \mathcal{N}_{i-1})

5. \theta_i \leftarrow \text{UPDATETRANSITION}(\theta_{i-1}, \mathcal{C})

6. \mathcal{N}_i \leftarrow (N, \theta_i, \alpha)

7. until \delta_{\lambda}(\mathcal{M}, \mathcal{N}_i) > \delta_{\lambda}(\mathcal{M}, \mathcal{N}_{i-1}) or i \geq h

8. return \mathcal{N}_{i-1}
```

Intuitive Idea

UpdateTransition assigns greater probability to transitions that are most representative of the behavior of M

Two update heuristics

- Averaged Marginal (AM): given N_k we construct N_{k+1} by averaging the marginal of certain "coupling variables" obtained by optimizing the number of occurrences of the edges that are most likely to be seen in M.
- Averaged Expectations (AE): similar to the above, but now the N_{k+1} looks only the expectation of the number of occurrences of the edges likely to be found in M.

Two update heuristics

- Averaged Marginal (AM): given N_k we construct N_{k+1} by averaging the marginal of certain "coupling variables" obtained by optimizing the number of occurrences of the edges that are most likely to be seen in M.
- Averaged Expectations (AE): similar to the above but now the N_{k+1} looks on of the number of occurren likely to be found in M.

 Update Transition in polynomial time for both heuristics!

Case	M	k	$\lambda = 1$				$\lambda = 0.8$			
			δ_{λ} -init	δ_{λ} -final	#	time	δ_{λ} -init	δ_{λ} -final	#	time
	23	5	0.775	0.054	3	4.8	0.576	0.025	3	4.8
IPv4	53	5	0.856	0.062	3	25.7	0.667	0.029	3	25.9
	103	5	0.923	0.067	3	116.3	0.734	0.035	3	116.5
(AM)	53	6	0.757	0.030	3	39.4	0.544	0.011	3	39.4
	103	6	0.837	0.032	3	183.7	0.624	0.017	3	182.7
	203	6	_	_	_	ТО	_	_	_	ТО
	23	5	0.775	0.109	2	2.7	0.576	0.049	3	4.2
IPv4 (AE)	53	5	0.856	0.110	2	14.2	0.667	0.049	3	21.8
	103	5	0.923	0.110	2	67.1	0.734	0.049	3	100.4
	53	6	0.757	0.072	2	21.8	0.544	0.019	3	33.0
	103	6	0.837	0.072	2	105.9	0.624	0.019	3	159.5
	203	6	_	_	_	ТО	_	_	_	ТО
DrkW (AM)	39	7	0.565	0.466	14	259.3	0.432	0.323	14	252.8
	49	7	0.568	0.460	14	453.7	0.433	0.322	14	420.5
	59	8	0.646	_	_	ТО	0.423	_	_	ТО
DrkW (AE)	39	7	0.565	0.435	11	156.6	0.432	0.321	2	28.6
	49	7	0.568	0.434	10	247.7	0.433	0.316	2	46.2
	59	8	0.646	0.435	10	588.9	0.423	0.309	2	115.7

Table 1. Comparison of the performance of EM algorithm on the IPv4 zeroconf protocol and the classic Drunkard's Walk w.r.t. the heuristics AM and AE.

Future Work

- Conjecture 1: (with Nathanaël Fijalkow)
 Is BA-1 is SUM-OF-SQUARE-ROOTS-hard
- Conjecture 2: (by Borja Balle)
 for λ<1, BA-λ is in NP (hence NP-complete!)
- Real/better EM-heuristics?
- What about different models/distances?

Thank you for your attention

Appendix

BA-λ is NP-hard

 $\langle G,h\rangle \in VERTEX\ COVER$ iff $\langle M_G,m+h+2,\lambda^2/2m^2\rangle \in BA-\lambda$

Characterization of SBA-1

Characterization of SBA-1

Proof sketch: compute with Tarjan's algorithm all the SCCs of G(M). Then non deterministically choose a BSCC and a path to it. In polytime we can count the number of labels in the path and the size of the BSCC.

SBA-1 is NP-hard

Proof sketch: by reduction to VERTEX COVER:

 $\langle G,h\rangle \in VERTEX\ COVER \ iff \ \langle M_G,\ h+m+1\rangle \in SBA-1$

SBA-1 is NP-hard

Proof sketch: by reduction to VERTEX COVER:

 $\langle G,h\rangle \in VERTEX\ COVER\ iff\ \langle M_G,\ h+m+1\rangle \in SBA-1$

EM-like algorithm (experimental results)

Averaged Marginal (AM)

Averaged Marginal (AM)

Averaged Marginal (AM)

Averaged Marginal (AM)

Averaged Expectations (AE)

Averaged Expectations (AE)

Averaged Expectations (AE)

Averaged Marginal (AM)

Input model

1. 3 0.1 4 0.9 4 0.9 4 0.1 4

Averaged Marginal (AM)

Averaged Marginal (AM)

Averaged Marginal (AM)

$$\delta_{0.9}(M, N_1) \approx 0.56$$

