On the Metric-based
 Approximate Minimization of Markov Chains*

Giovanni Bacci, Giorgio Bacci, Kim G. Larsen, Radu Mardare Aalborg University

ICALP 2017

Warsaw, 11th July 2017

Introduction

- Moore‘56, Hopcroft‘71: Minimization algorithm for DFA (partition refinement wrt Myhill-Nerode equiv.)
- Minimization via partition refinement:
- Kanellakis-Smolka'83: minimization of LTSs wrt Milner's strong bisimulation
- Baier'96: minimization of MCs wrt Larsen-Skou probabilistic bisimulation
- Alur et al.'92, Yannakakis-Lee'97: minimization of timed \& real-time transition systems.
- and many more...

A fundamental problem

Jou-Smolka'90 observed that behavioral equivalences are not robust for systems with real-valued data

Probabilistic systems (labelled Markov Chains)

A fundamental problem

Jou-Smolka'90 observed that behavioral equivalences are not robust for systems with real-valued data

Probabilistic systems (labelled Markov Chains)

Metric-based
 Approximate Minimization

Closest Bounded
Approximant (CBA)

Minimum Significant
Approximant Bound (MSAB)

Metric-based
 Approximate Minimization

Closest Bounded
Approximant (CBA)

Minimum Significant
Approximant Bound (MSAB)

Metric-based
 Approximate Minimization

Closest Bounded
Approximant (CBA)

Minimum Significant Approximant Bound (MSAB)

minimize d

Metric-based
 Approximate Minimization

Closest Bounded
Approximant (CBA)

minimize d

Minimum Significant Approximant Bound (MSAB)

Metric-based
 Approximate Minimization

Closest Bounded
Approximant (CBA)

minimize d

Minimum Significant Approximant Bound (MSAB)

minimize k
"To study the complexity of an optimization problem one has to look at its decision variant"
(C. Papadimitriou)

Closest Bounded
Approximant (CBA)

minimize d

Minimum Significant Approximant Bound (MSAB)

minimize k
"To study the complexity of an optimization problem one has to look at its decision variant"
(C. Papadimitriou)

Bounded
Approximant (BA)

given ε

Minimum Significant Approximant Bound (MSAB)

minimize k
"To study the complexity of an optimization problem one has to look at its decision variant"
(C. Papadimitriou)

Bounded
Approximant (BA)

given ε

Significant Bounded Approximant (SBA)

given k

What distance on MCs?

(λ-discounted) Probabilistic Bisimilarity distance of Desharnais et al. -denoted d_{λ}

What distance on MCs?

(λ-discounted) Probabilistic Bisimilarity distance of Desharnais et al. -denoted d_{λ}

Theorem (Desharnais et. al 99)

$$
\mathrm{m} \sim \mathrm{n} \quad \text { iff } \quad \mathrm{d}_{\lambda}(\mathrm{m}, \mathrm{n})=0
$$

What distance on MCs?

a.k.a. Kantorovich distance
(λ-discounted) Probabilistic Bisimilarity distance of Desharnais et al. -denoted d_{λ}

Theorem (Desharnais et. al 99)

$$
m \sim n \quad \text { iff } \quad d_{\lambda}(m, n)=0
$$

Theorem (Chen, van Breugel, Worrell 12) The probabilistic bisimilarity distance can be computed in polynomial time

Relation with Model Checking

 Theorem (Chen, van Breugel, Worrell 12)For all $\phi \in \operatorname{LTL} \quad|\operatorname{Pr}(m \vDash \phi)-\operatorname{Pr}(n \vDash \phi)| \leq d_{1}(m, n)$

Relation with Model Checking

 Theorem (Chen, van Breugel, Worrell 12)For all $\phi \in \operatorname{LTL} \quad|\operatorname{Pr}(m \vDash \phi)-\operatorname{Pr}(n \vDash \phi)| \leq d_{1}(m, n)$
...imagine that $|\mathrm{M}|>|\mathrm{N}|$, we can use N in place of M

CBA: Example*

(*) With respect to the undiscounted probabilistic bisimilarity distance d_{1}

CBA: Example*

(*) With respect to the undiscounted probabilistic bisimilarity distance d_{1}

CBA: Example*

(*) With respect to the undiscounted probabilistic bisimilarity distance d_{1}

CBA: Example*

CBA: Example*

CBA: Example*

CBA: Example*

(*) With respect to the undiscounted probabilistic bisimilarity distance d_{1}

CBA: Example*

(*) With respect to the undiscounted probabilistic bisimilarity distance d_{1}

CBA: Example*

${\text { (*) With respect to the undiscounted probabilistic bisimilarity distance } d_{1}}^{*}$

Our Contributions

Our Contributions

Characterizations + COMPLEXITY results:

Our Contributions

Characterizations + COMPLEXITY results:

1. Closest Bounded Approximant (CBA) encoded as a bilinear program

Our Contributions

Characterizations + COMPLEXITY results:

1. Closest Bounded Approximant (CBA) encoded as a bilinear program
2. Bounded Approximant (BA) PSPACE \& NP-hard for all $\lambda \in(0,1]$

Our Contributions

Characterizations + COMPLEXITY results:

1. Closest Bounded Approximant (CBA) encoded as a bilinear program
2. Bounded Approximant (BA) PSPACE \& NP-hard for all $\lambda \in(0,1]$
3. Significant Bounded Approximant (SBA) NP-complete for $\lambda=1$

Our Contributions

Theoretical

Characterizations + COMPLEXITY results:

1. Closest Bounded Approximant (CBA) encoded as a bilinear program
2. Bounded Approximant (BA) PSPACE \& NP-hard for all $\lambda \in(0,1]$
3. Significant Bounded Approximant (SBA) NP-complete for $\lambda=1$

Our Contributions

Theoretical

Characterizations + COMPLEXITY results:

1. Closest Bounded Approximant (CBA) encoded as a bilinear program
2. Bounded Approximant (BA) PSPACE \& NP-hard for all $\lambda \in(0,1]$
3. Significant Bounded Approximant (SBA) NP-complete for $\lambda=1$

Practical

We proposed an EM-like method to obtain a sub-optimal approximants

Talk Outline

^ Probabilistic bisimilarity distance

- fixed point characterization (Kantorovich oper.)
* Metric-based Optimal Approximate Minimization
- Closest Bounded Approximant (CBA) - bilinear characterization (+ complexity)
- Minimum Significant Approximant Bound (MSAB) - characterization (+ complexity)
- Expectation Maximization-like algorithm - 2 heuristics + experimental results

Probabilistic bisimulation

It tries to match the behaviors "quantitatively"

Probabilistic bisimulation

It tries to match the behaviors "quantitatively"

Probabilistic bisimulation

It tries to match the behaviors "quantitatively"

Probabilistic bisimulation

It tries to match the behaviors "quantitatively"

Probabilistic bisimulation

It tries to match the behaviors "quantitatively"

Coupling

Definition (W. Doeblin 36)

A coupling of a pair (μ, v) of probability distributions on M is a distribution ω on $M \times M$ such that

- $\sum n \in M \omega(m, n)=\mu(m)$
(left marginal)
- $\sum m \in M \omega(m, n)=v(n)$
(right marginal).

One can think of a coupling as a measure-theoretic relation between probability distribution

A quantitative generalization

A quantitative generalization of probabilistic bisimilarity

(Desharnais et al.'99 \& Worrell-van Breugel'00)

The λ-discounted probabilistic bisimilarity pseudometric is the smallest $d_{\lambda}: M \times M \rightarrow[0,1]$ such that

$$
d_{\lambda}(m, n)=\Gamma_{\lambda}\left(d_{\lambda}\right)= \begin{cases}1 & \text { if } \ell(m) \neq \ell(n) \\ \lambda K\left(d_{\lambda}\right)(\tau(m), T(n)) & \text { otherwise }\end{cases}
$$

A quantitative generalization of probabilistic bisimilarity

(Desharnais et al.'99 \& Worrell-van Breugel'00)

The λ-discounted probabilistic bisimilarity pseudometric is the smallest $d_{\lambda}: M \times M \rightarrow[0,1]$ such that

$$
d_{\lambda}(m, n)=\Gamma_{\lambda}\left(d_{\lambda}\right)= \begin{cases}1 & \text { if } \ell(m) \neq \ell(n) \\ \lambda K\left(d_{\lambda}\right)(\tau(m), \tau(n)) & \text { otherwise }\end{cases}
$$

A quantitative generalization of probabilistic bisimilarity

(Desharnais et al.'99 \& Worrell-van Breugel'00)

The λ-discounted probabilistic bisimilarity pseudometric is the smallest $d_{\lambda}: M \times M \rightarrow[0,1]$ such that

Kantorovich distance

$$
K(d)(\mu, v)=\min _{\omega \in \Omega(\mu, v)} \sum_{u, v \in M} \omega(u, v) d(u, v)
$$

Talk Outline

* Probabilistic bisimilarity distance
- fixed point characterization (Kantorovich oper.)
^ Metric-based Optimal Approximate Minimization
- Closest Bounded Approximant (CBA) - bilinear characterization + complexity
- Minimum Significant Approximant Bound (MSAB) - complexity (+ characterization)
- Expectation Maximization-like algorithm - 2 heuristics + experimental results

The CBA- λ problem

CBA wrt d ${ }_{\lambda}$
Instance: An MC M, and $k \in \mathbb{N}$
Output: An MC N \tilde{N}, with at most k states minimizing $d_{\lambda}\left(\mathrm{m}_{0}, \tilde{n}_{0}\right)$

The CBA- λ problem

CBA wrt d ${ }_{\lambda}$
Instance: An MC M, and $k \in \mathbb{N}$
Output: An MC Ñ, with at most k states minimizing $d_{\lambda}\left(\mathrm{m}_{0}, \tilde{n}_{0}\right)$

$d_{\lambda}\left(m_{0}, \tilde{n}_{0}\right)=\inf \left\{d_{\lambda}\left(m_{0}, n_{0}\right) \mid N \in M C(k)\right\}$

The CBA- λ problem

CBA wrt d ${ }_{\lambda}$
Instance: An MC M, and $k \in \mathbb{N}$
Output: An MC N k states minimizing $\mathrm{d}_{\lambda}\left(\mathrm{m}_{0}, \tilde{n}_{0}\right)$

$d_{\lambda}\left(m_{0}, \tilde{n}_{0}\right)=\inf \left\{d_{\lambda}\left(m_{0}, n_{0}\right) \mid N \in M C(k)\right\}$
we get a solution iff the infimum is a minimum

The CBA- λ problem

CBA wrt d ${ }_{\lambda}$
Instance: An MC M, and $k \in \mathbb{N}$
Output: An MC Ñ, with at most k states minimizing $d_{\lambda}\left(m_{0}, \tilde{n}_{0}\right)$

$$
\mathrm{d}_{\lambda}\left(\mathrm{m}_{0}, \tilde{n}_{0}\right)=\inf \left\{\mathrm{d}_{\lambda}\left(\mathrm{m}_{0}, \mathrm{n}_{0}\right) \mid \mathrm{N} \in \mathrm{MC}(\mathrm{k})\right\}
$$ we get a solution iff the infimum is a minimum

CBA- λ as a Bilinear Program

$$
d_{\lambda}\left(m_{0}, \tilde{n}_{0}\right)=\inf \left\{d_{\lambda}\left(m_{0}, n_{0}\right) \mid N \in M C(k)\right\}
$$

CBA- λ as a Bilinear Program

$d_{\lambda}\left(m_{0}, \tilde{n}_{0}\right)=\inf \left\{d_{\lambda}\left(m_{0}, n_{0}\right) \mid N \in M C(k)\right\}$ $=\inf \left\{d\left(m_{0}, n_{0}\right) \mid \Gamma_{\lambda}(d) \leq d, N \in M C(k)\right\}$

CBA- λ as a Bilinear Program

$d_{\lambda}\left(m_{0}, \tilde{n}_{0}\right)=\inf \left\{d_{\lambda}\left(m_{0}, n_{0}\right) \mid N \in M C(k)\right\}$ $=\inf \left\{d\left(m_{0}, n_{0}\right) \mid \Gamma_{\lambda}(d) \leq d, N \in M C(k)\right\}$

$$
\begin{array}{lll}
\text { mimimize } & d_{m_{0}, n_{0}} & \\
\text { such that } & d_{m, n}=1 & \ell(m) \neq \alpha(n) \\
& \lambda \sum_{(u, v) \in M \times N} c_{u, v}^{m, n} \cdot d_{u, v} \leq d_{m, n} & \ell(m)=\alpha(n) \\
& \sum_{v \in N} c_{u, v}^{m, n}=\tau(m)(u) & m, u \in M, n \in N \\
& \sum_{u \in M} c_{u, v}^{m, n}=\theta_{n, v} & m \in M, n, v \in N \\
c_{u, v}^{m, n} \geq 0 & m, u \in M, n, v \in N
\end{array}
$$

CBA- λ as a Bilinear Program

$$
\begin{aligned}
\mathrm{d}_{\lambda}\left(\mathrm{m}_{0}, \tilde{n}_{0}\right) & =\inf \left\{\mathrm{d}_{\lambda}\left(\mathrm{m}_{0}, \mathrm{n}_{0}\right) \mid \mathrm{N} \in \mathrm{MC}(\mathrm{k})\right\} \\
& =\inf \left\{\mathrm{d}\left(\mathrm{~m}_{0}, \mathrm{n}_{0}\right) \mid \Gamma_{\lambda}(\mathrm{d}) \leq \mathrm{d}, \mathrm{~N} \in \mathrm{MC}(\mathrm{k})\right\}
\end{aligned}
$$

$$
\begin{array}{rll}
\operatorname{mimimize} & d_{m_{0}, n_{0}} \\
\text { such that } & \ell(m) \neq \alpha(n) \\
d_{m, n}=1 & \ell(m)=\alpha(n) \\
\lambda \sum_{(u, v) \in M \times N} c_{u, v}^{m, n} \cdot d_{u, v} \leq d_{m, n} & m, u \in M, n \in N \\
\sum_{v \in N} c_{u, v}^{m, n}=\tau(m)(u) & m \in M, n, v \in N \\
\sum_{u \in M} c_{u, v}^{m, n}=\theta_{n, v} & m, u \in M, n, v \in N \\
c_{u, v}^{m, n} \geq 0 & m, 0
\end{array}
$$

CBA- λ as a Bilinear Program

$$
\begin{aligned}
\mathrm{d}_{\lambda}\left(\mathrm{m}_{0}, \tilde{n}_{0}\right) & =\inf \left\{\mathrm{d}_{\lambda}\left(\mathrm{m}_{0}, \mathrm{n}_{0}\right) \mid \mathrm{N} \in \mathrm{MC}(\mathrm{k})\right\} \\
& =\inf \left\{\mathrm{d}\left(\mathrm{~m}_{0}, n_{0}\right) \mid \Gamma_{\lambda}(\mathrm{d}) \leq \mathrm{d}, \mathrm{~N} \in \mathrm{MC}(\mathrm{k})\right\}
\end{aligned}
$$

CBA- λ as a Bilinear Program

$$
\begin{aligned}
\mathrm{d}_{\lambda}\left(\mathrm{m}_{0}, \tilde{n}_{0}\right) & =\inf \left\{\mathrm{d}_{\lambda}\left(\mathrm{m}_{0}, \mathrm{n}_{0}\right) \mid \mathrm{N} \in \mathrm{MC}(\mathrm{k})\right\} \\
& =\inf \left\{\mathrm{d}\left(\mathrm{~m}_{0}, \mathrm{n}_{0}\right) \mid \Gamma_{\lambda}(\mathrm{d}) \leq \mathrm{d}, \mathrm{~N} \in \mathrm{MC}(\mathrm{k})\right\}
\end{aligned}
$$

CBA- λ as a Bilinear Program

 Lemma (Meaningful labels)For any $N \in M C(k)$, there exists $N^{\prime} \in M C(k)$ with labels taken from M, such that $d_{\lambda}(M, N) \geq d_{\lambda}\left(M, N^{\prime}\right)$

CBA- λ as a Bilinear Program

Lemma (Meaningful labels)

For any $N \in M C(k)$, there exists $N^{\prime} \in M C(k)$ with labels taken from M, such that $d_{\lambda}(M, N) \geq d_{\lambda}\left(M, N^{\prime}\right)$
mimimize $d_{m_{0}, n_{0}}$
such that $\lambda \sum_{(u, v) \in M \times N} c_{u, v}^{m, n} \cdot d_{u, v} \leq d_{m, n}$

$$
\begin{aligned}
& 1-\alpha_{n, l} \leq d_{m, n} \leq 1 \\
& \alpha_{n, l} \cdot \alpha_{n, l^{\prime}}=0 \\
& \sum_{l \in L(\mathcal{M})} \alpha_{n, l}=1 \\
& \sum_{v \in N} c_{u, v}^{m, n}=\tau(m)(u) \\
& \sum_{u \in M} c_{u, v}^{m, n}=\theta_{n, v} \\
& c_{u, v}^{m, n} \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& m \in M, n \in N \\
& n \in N, l \in L(\mathcal{M}), \ell(m) \neq l \\
& n \in N, l, l^{\prime} \in L(\mathcal{M}), l \neq l^{\prime} \\
& n \in N \\
& m, u \in M, n \in N \\
& m \in M, n, v \in N \\
& m, u \in M, n, v \in N
\end{aligned}
$$

CBA- λ as a Bilinear Program

Lemma (Meaningful labels)

For any $N \in M C(k)$, there exists $N^{\prime} \in M C(k)$ with labels taken from M, such that $d_{\lambda}(M, N) \geq d_{\lambda}\left(M, N^{\prime}\right)$
$\operatorname{mimimize} d_{m_{0}, n_{0}}$
such that $\lambda \sum_{(u, v) \in M \times N} c_{u, v}^{m, n} \cdot d_{u, v} \leq d_{m, n}$

$$
m \in M, n \in N
$$

$$
\begin{array}{ll}
1-\alpha_{n, l} \leq d_{m, n} \leq 1 & n \in N, l \in L(\mathcal{M}), \ell(m) \neq l \\
\alpha_{n, l} \cdot \alpha_{n, l^{\prime}}=0 & n \in N, l, l^{\prime} \in L(\mathcal{M}), l \neq l^{\prime} \\
\sum_{l \in L(\mathcal{M})} \alpha_{n, l}=1 & n \in N \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \sum_{v \in N} c_{u, v}^{m, n}=\tau(m)(u) \\
& \sum_{u \in M} c_{u, v}^{m, n}=\theta_{n, v}
\end{aligned}
$$

$$
m, u \in M, n \in N
$$

$$
m \in M, n, v \in N
$$

$$
c_{u, v}^{m, n} \geq 0 \quad m, u \in M, n, v \in N
$$

CBA $-\lambda$ as a Bilinear Program

this characterization has two main consequences...

1. CBA- λ admits always a solution
(finite intersection of closed subsets)
2. CBA- λ can be approximated up to any precision

Complexity of CBA- λ

actually, its decision variant!

Complexity of CBA- λ

actually, its decision variant!

Complexity Upper-bound

$B A-\lambda$ is in PSPACE

Proof sketch: we can encode the question $\langle M, k, \varepsilon\rangle \in B A-\lambda$ to that of checking the feasibility of a set of bilinear inequalities. This can be encoded as a decision problem for the existential theory of the reals, thus it can be solved in PSPACE [Canny-STOC88].

Complexity of CBA- λ

actually, its decision variant!

Complexity Upper-bound

 $B A-\lambda$ is in PSPACEComplexity lower-bound $B A-\lambda$ is NP-hard

Proof idea: we provide a reduction from VERTEX COVER. (see the appendix for a sketch of the reduction)

Complexity of CBA- λ

actually, its decision variant!
Complexity Upper-bound
$B A-\lambda$ is in PSPACE

Complexity lower-bound
$B A-\lambda$ is NP-hard
unlikely to solve CBA as simple linear program

The MSAB- λ problem

The MSAB wrt d_{λ}
Instance: An MC M
Output: The smallest k such that $\mathrm{d}_{\lambda}\left(\mathrm{m}_{0}, \mathrm{n}_{0}\right)<1$, for some $\mathrm{N} \in \mathrm{MC}(\mathrm{k})$

The MSAB- λ problem

The MSAB wrt d_{λ}
Instance: An MC M
Output: The smallest k such that $\mathrm{d}_{\lambda}\left(\mathrm{m}_{0}, \mathrm{n}_{0}\right)<1$, for some $\mathrm{N} \in \mathrm{MC}(\mathrm{k})$

For $\lambda<1$, the MSAB- $\boldsymbol{\lambda}$ problem is trivial, because the solution is always $\mathrm{k}=1$

The MSAB- λ problem

The MSAB wrt d_{λ}
Instance: An MC M
Output: The smallest k such that $\mathrm{d}_{\lambda}\left(\mathrm{m}_{0}, \mathrm{n}_{0}\right)<1$, for some $\mathrm{N} \in \mathrm{MC}(\mathrm{k})$

For $\lambda<1$, the MSAB- λ problem is trivial, because the solution is always $\mathrm{k}=1$

For $\lambda=1$, the same problem is surprisingly difficult...

Complexity of MSAB-1

 actually, its decision variant!
Theorem
 SBA-1 is NP-complete

Proof idea: we provide a reduction from VERTEX COVER. (see the appendix for a sketch of the reduction)

Towards an Algorithm...

Towards an Algorithm...

- The CBA can be solved as a bilinear program. Theoretically nice, but practically unfeasible! (our implementation in PENBMI can handle MCs with at most 5 states...)

Towards an Algorithm...

- The CBA can be solved as a bilinear program. Theoretically nice, but practically unfeasible! (our implementation in PENBMI can handle MCs with at most 5 states...)
- We are happy with sub-optimal solutions if they can be obtained by a practical algorithm.

EM-like Algorithm

- Given the MC M and an initial approximant No
- it produces a sequence $\mathrm{N}_{0}, \ldots, \mathrm{~N}_{\mathrm{h}}$ of approximants having strictly decreasing distance from M
- N_{h} may be a sub-optimal solution of CBA- λ

EM-like Algorithm

```
Algorithm 1
Input: \(\mathcal{M}=(M, \tau, \ell), \mathcal{N}_{0}=\left(N, \theta_{0}, \alpha\right)\), and \(h \in \mathbb{N}\).
    1. \(i \leftarrow 0\)
    2. repeat
    3. \(\quad i \leftarrow i+1\)
    4. compute \(\mathcal{C} \in \Omega\left(\mathcal{M}, \mathcal{N}_{i-1}\right)\) such that \(\delta_{\lambda}\left(\mathcal{M}, \mathcal{N}_{i-1}\right)=\gamma_{\lambda}^{\mathcal{C}}\left(\mathcal{M}, \mathcal{N}_{i-1}\right)\)
    5. \(\quad \theta_{i} \leftarrow \operatorname{UpdateTransition}\left(\theta_{i-1}, \mathcal{C}\right)\)
    6. \(\quad \mathcal{N}_{i} \leftarrow\left(N, \theta_{i}, \alpha\right)\)
    7. until \(\delta_{\lambda}\left(\mathcal{M}, \mathcal{N}_{i}\right)>\delta_{\lambda}\left(\mathcal{M}, \mathcal{N}_{i-1}\right)\) or \(i \geq h\)
    8. return \(\mathcal{N}_{i-1}\)
```


EM-like Algorithm

```
Algorithm 1
Input: \(\mathcal{M}=(M, \tau, \ell), \mathcal{N}_{0}=\left(N, \theta_{0}, \alpha\right)\), and \(h \in \mathbb{N}\).
    1. \(i \leftarrow 0\)
    2. repeat
    3. \(\quad i \leftarrow i+1\)
    4. compute \(\mathcal{C} \in \Omega\left(\mathcal{M}, \mathcal{N}_{i-1}\right)\) such that \(\delta_{\lambda}\left(\mathcal{M}, \mathcal{N}_{i-1}\right)=\gamma_{\lambda}^{\mathcal{C}}\left(\mathcal{M}, \mathcal{N}_{i-1}\right)\)
    5. \(\quad \theta_{i} \leftarrow \operatorname{UpdateTransition}\left(\theta_{i-1}, \mathcal{C}\right)\)
    6. \(\quad \mathcal{N}_{i} \leftarrow\left(N, \theta_{i}, \alpha\right)\)
    7. until \(\delta_{\lambda}\left(\mathcal{M}, \mathcal{N}_{i}\right)>\delta_{\lambda}\left(\mathcal{M}, \mathcal{N}_{i-1}\right)\) or \(i \geq h\)
    8. return \(\mathcal{N}_{i-1}\)
```


Intuitive Idea

UpdateTransition assigns greater probability to transitions that are most representative of the behavior of M

Two update heuristics

- Averaged Marginal (AM): given N_{k} we construct N_{k+1} by averaging the marginal of certain "coupling variables" obtained by optimizing the number of occurrences of the edges that are most likely to be seen in M.
- Averaged Expectations (AE): similar to the above, but now the $\mathrm{N}_{\mathrm{k}+1}$ looks only the expectation of the number of occurrences of the edges likely to be found in M .

Two update heuristics

- Averaged Marginal (AM): given N_{k} we construct N_{k+1} by averaging the marginal of certain "coupling variables" obtained by optimizing the number of occurrences of the edges that are most likely to be seen in M.
- Averaged Expectations (AE): similar to the above but now the $\mathrm{N}_{\mathrm{k}+1}$ looks on of the number of occurren likely to be found in M.

UpdateTransition in polynomial time for both heuristics!

Case	$\|M\|$	k	$\lambda=1$				$\lambda=0.8$			
			δ_{λ}-init	δ_{λ}-final	$\#$	time	δ_{λ}-init	δ_{λ}-final	$\#$	time
IPv4	23		0.775	0.054	3	4.8	0.576	0.025	3	4.8
	53	5	0.856	0.062	3	25.7	0.667	0.029	3	25.9
	53	5	0.923	0.067	3	116.3	0.734	0.035	3	116.5
	103	6	0.757	0.030	3	39.4	0.544	0.011	3	39.4
	203	6	-	0.032	3	183.7	0.624	0.017	3	182.7
	23	5	0.775	-	-	TO	-	-	-	TO
IPv4	53	5	0.856	0.110	2	14.2	0.667	0.049	3	21.8
	103	5	0.923	0.110	2	67.1	0.734	0.049	3	100.4
	53	6	0.757	0.072	2	21.8	0.544	0.019	3	33.0
	103	6	0.837	0.072	2	105.9	0.624	0.019	3	159.5
	203	6	-	-	-	TO	-	-	-	TO
	39	7	0.565	0.466	14	259.3	0.432	0.323	14	252.8
	49	7	0.568	0.460	14	453.7	0.433	0.322	14	420.5
	59	8	0.646	-	-	TO	0.423	-	-	TO
	39	7	0.565	0.435	11	156.6	0.432	0.321	2	28.6
	49	7	0.568	0.434	10	247.7	0.433	0.316	2	46.2
	59	8	0.646	0.435	10	588.9	0.423	0.309	2	115.7

Table 1. Comparison of the performance of EM algorithm on the IPv4 zeroconf protocol and the classic Drunkard's Walk w.r.t. the heuristics AM and AE.

Future Work

- Conjecture 1: (with Nathanaël Fijalkow) Is BA-1 is SUM-OF-SQUARE-ROOTS-hard
- Conjecture 2: (by Borja Balle) for $\lambda<1, \mathrm{BA}-\lambda$ is in NP (hence NP-complete!)
- Real/better EM-heuristics?
- What about different models/distances?

Thank you

for your attention

Appendix

$B A-\lambda$ is NP-hard

$\langle G, h\rangle \in V E R T E X$ COVER iff $\left\langle M_{G}, m+h+2, \lambda^{2} / 2 m^{2}\right\rangle \in B A-\lambda$

Characterization of SBA-1

Assume M be maximally collapsed. Then,
$\langle M, k\rangle \in$ SBA- $1 \quad$ iff $G(M)=$
and $\quad h+|C| \leq k$
number of labels
in $m_{0} \ldots m_{n-1}$

Characterization of SBA-1

Assume M be maximally collapsed. Then,
$\langle\mathrm{M}, \mathrm{k}\rangle \in \mathrm{SBA}-1$

and $\quad h+|C| \leq k$ number of labels in $m_{0} \ldots m_{n-1}$

Proof sketch: compute with Tarjan's algorithm all the SCCs of $\mathcal{G}(M)$. Then non deterministically choose a BSCC and a path to it. In polytime we can count the number of labels in the path and the size of the BSCC.

SBA- 1 is NP-hard

Proof sketch: by reduction to VERTEX COVER:
$\langle G, h\rangle \in V E R T E X$ COVER iff $\left\langle M_{G}, h+m+1\right\rangle \in S B A-1$

SBA- 1 is NP-hard

Proof sketch: by reduction to VERTEX COVER:
$\langle G, h\rangle \in V E R T E X$ COVER iff $\left\langle M_{G}, h+m+1\right\rangle \in S B A-1$

EM-like algorithm (experimental results)

IPv4 Zero Conf Protocol Averaged Marginal (AM)

Input model

IPv4 Zero Conf Protocol

Averaged Marginal (AM)

Input model

IPv4 Zero Conf Protocol

 Averaged Marginal (AM)Input model

$\mathrm{d}_{0.9}\left(\mathrm{M}, \mathrm{N}_{1}\right) \approx 0.043$

IPv4 Zero Conf Protocol

Averaged Marginal (AM)

Input model

IPv4 Zero Conf Protocol

Averaged Expectations (AE)

Input model

IPv4 Zero Conf Protocol

Averaged Expectations (AE)

Input model

IPv4 Zero Conf Protocol

Averaged Expectations (AE)

Input model

Drunkard's Walk Averaged Marginal (AM)

Input model

$$
1.3<0.1-4=0.9 \rightarrow 4=0.9 \rightarrow 4=0.9 \rightarrow 0.9
$$

Drunkard's Walk Averaged Marginal (AM)

Input model

$$
\text { 1. (3) } 40.1 \text { (4) }
$$

Drunkard's Walk Averaged Marginal (AM)

Input model

Drunkard's Walk Averaged Marginal (AM)

Input model

Drunkard's Walk Averaged Expectations (AE)

Input model

Drunkard's Walk Averaged Expectations (AE)

Input model

Drunkard's Walk Averaged Expectations (AE)

Input model

Drunkard's Walk Averaged Expectations (AE)

Input model

