On Decidability of Bigraphical Sortings

Giorgio Bacci Davide Grohmann

Department of Mathematics and Computer Science University of Udine, Italy

GCM 2010

2nd October 2010, Enschede

Often the meta-framework its "too general", and an exact encoding requires to recast the theory

The specialized framework is a sorted version of the general one

sorted base
 category
 category
 $s: x \rightarrow c$

+ faithful $\left(\operatorname{Hom}_{\mathbf{x}}(X, Y) \longmapsto \operatorname{Hom}_{\mathbf{C}}(\mathcal{S} X, \mathcal{S} Y)\right.$ injective $)$
+ surjective on objects

Example: $M=\left(\{a, b\}^{*}, \cdot\right)$ monoid

In this talk we focus our attention on bigraphs and decidability issues on bigraphical sortings

1. Introduction to Bigraphs
2. Bigraphical Sortings
3. Sortings and decidability
4. A decidable subclass of Sortings: Match Sorting
5. Expressiveness of Match Sorting

+ Homomorphic Sortings
+ Local Bigraphs
bigraph: $G=\left\langle G^{P}, G^{L}\right\rangle:\langle m, X\rangle \rightarrow\langle n, Y\rangle$

place graph: $G^{P}: m \rightarrow n$
link graph: $G^{L}: X \rightarrow Y$
composite: $F \circ H=\left\langle F^{P} \circ H^{P}, F^{L} \circ H^{L}\right\rangle:\langle m, X\rangle \rightarrow\langle n, Y\rangle$

A general and intuitive class of bigraphical sortings:
Predicate Sortings: $\mathcal{S}_{P}: \mathbf{X} \rightarrow \mathbf{C}$
sortings from decomposable predicates P over C-morphisms

+ the image of \mathcal{S}_{P} is precisely the set of morphisms satisfying P $+\mathcal{S}_{P}$ transfers RPOs (if \mathbf{C} has RPOs then \mathbf{X} has RPOs too)

$$
P(f \circ g) \Longrightarrow \quad P(f) \wedge P(g) \quad \text { (decomposability) }
$$

Theorem (Factorization): A predicate P on morphisms

 is decomposable iff there exists a set of morphism Φ such that$P(f) \quad$ iff $\quad \forall g, \psi, h: f=g \circ \psi \circ h \Longrightarrow \psi \notin \Phi$

An exhaustive construction of the sorted category is unfeasible
Proposal: use the base category morphisms and check if they are well-sorted (hence, if they have a sorting pre-image)

> for predicate sortings
> it is enough to check $P(f)$

Post Corrispondence Problem

Instance: a finite set of pairs of words $\left\{\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{n}, \beta_{n}\right)\right\}$ in $\{a, b\}^{*}$.
Question: there exist a sequence $i_{0}, i_{1}, \ldots, i_{k}\left(1 \leq i_{j} \leq n\right)$ such that

$$
\alpha_{i_{0}} \cdot \ldots \cdot \alpha_{i_{k}} \stackrel{?}{=} \beta_{i_{0}} \cdot \ldots \cdot \beta_{i_{k}}
$$

The reduction (sketch):

+ define an encoding $\llbracket \cdot \rrbracket$ of PCP instances to Big-morphisms

$$
\mathcal{P}_{\mathrm{fin}}\left(\{a, b\}^{*} \times\{a, b\}^{*}\right) \rightarrow \operatorname{Hom}_{\mathrm{Big}}(\epsilon, \epsilon)
$$

+ show that $U \subseteq \operatorname{Hom}_{\operatorname{Big}}(\epsilon, \epsilon)$ is decomposable and undecidable

$$
\begin{aligned}
& U=\left\{f \in \operatorname{Hom}_{\mathrm{Big}}(\epsilon, \epsilon) \mid \forall g, \phi, h . f=g \circ \phi \circ h \Rightarrow \phi \notin \Phi_{P C P}\right\} \\
& \Phi_{P C P}=\{\llbracket i \rrbracket \mid i \in \mathrm{PCP}\}
\end{aligned}
$$

P decidable $\Longrightarrow \mathcal{S}_{P}$-pre-image existence decidable

Some general problems:

+ not easy to define a predicate that is also decomposable
+ usually predicates are complicated and not easy to be understood at first sight
+ a new algorithm every time a new P is chosen

A possible solution:

1. define predicates from sets of ill-formed morphisms
2. provide a universal algorithm that checks for ill-formed occurrences

Construction:

1. define a Rec (possibly infinite) set Φ of ill-formed bigraphs
2. $M_{\Phi}=\left\{f: \forall \psi \in \Phi . f \neq g \circ\left(\psi \otimes i d_{Z}\right) \circ h\right\}$ (decomposable)
3. $\mathcal{S}_{M_{\Phi}}: \mathbf{X} \rightarrow \mathbf{B i g}$ (Debois' predicate sorting)

$$
\neg M_{\Phi}(f)
$$

decidable:
matching algorithm $---\rightarrow f=g \circ\left(\psi \otimes i d_{Z}\right) \circ h$
(Damgaard et.al '07)

Input: A finite bigraph G, and a Rec set Φ of ill-formed bigraphs Question: Decide whether $M_{\Phi}(G)$ holds

checkFin (G, Φ) res $=$ true for each $\psi \in \Phi$ if matchCheck (ϕ, G) res $=$ false; break		checkInf $(G, \Phi) \quad(\Phi$ infinite $)$ endfor

+ Homomorphic sorting (CCS, kind-Bigraphs, ...)

+ Local bigraphs (π-calculus, λ-calculus, \ldots)

$$
\Phi_{\mathrm{LOC}}=\{\underbrace{0}_{n}
$$

Conclusions:

+ Investigated the decidability of sortings
+ Proposed an decidable subclass of sorting (+ algorithm)
+ Proposed an intuitive way to define sortings
+ Investigated the expressive power of the decidable subclass

Future work:

+ Applying the same approach to other categories?
+ Investigate for a better algorithm
+ Integration into tools? (e.g. BPL)

Thanks

