Quantitative

Algebraic Reasoning

(an Overview)

Giorgio Bacci

Aalborg University, Denmark (invited talk, EXPRESS/SOS 2020)

based on joint work with

R. Mardare, P. Panangaden, G. Plotkin

Why Algebraic Reasoning?

Algebraic reasoning is extensively used in process algebras ...actually, all theoretical computer science!

- Representability: describing mathematical structures as an algebra of operations subject to equations eg: Labelled transition systems as process algebras
- Effectful Languages: understanding computational effects as operations to be performed during execution eg: Moggi's monadic effects
- Algorithms: compositional reasoning, up-to techniques, normal forms, etc...

An Application

Consider the recursively defined CCS process $P \stackrel{\text { def }}{=} a \mid P$

$$
P \sim P \mid P
$$

not image finite!

Bisimulation up-to technique is an elegant and way to prove it!

To understand how should be a quantitative generalisation of the concept of equational logic we first need to understand

Universal algebras
 (its categorical generalisation)

Historical Perspective

- Lawvere'64: categorically axiomatised (the clone of) equational theories
- Eilenberg-Moore'65, Kleisli'65: Every standard construction is induced by a pair of adjoint functors, and EM-algebras for are universal algebras
- Linton'66: general connection between monads and Lawvere theories

Universal Algebras (the standard picture)

Historical Perspective
 (continued)

- Moggi'88: How to incorporate effects into denotational semantics? - Monads as notions of computations
- Plotkin \& Power'01: (most of the) Monads are given by operations and equations expressed by means of enriched Lawvere Theories - Generic Algebraic Effects

Universal Algebras (the "enriched"picture)

Historical Perspective
 (continued)

- Moggi'88: How to incorporate effects into denotational semantics? - Monads as notions of computations
- Plotkin \& Power'01: (most of the) Monads are given by operations and equations expressed by means of enriched Lawvere Theories - Generic Algebraic Effects
- Mardare, Panangaden, Plotkin (LICS'16):

Theory of effects in a metric setting

- Quantitative Algebraic Effects (operations \& quantitative equations give monads on EMet)

The picture of the Talk

Quantitative Equations

$$
S={ }_{\varepsilon} t
$$

" S is approximately equal to t up to an error ε "

Quantitative Equational Theory

Mardare, Panangaden, Plotkin (LICS'16)

A quantitative equational theory \mathscr{U} of type Σ is a set of

$$
\left\{t_{i}={ }_{\varepsilon_{i}} s_{i} \mid i \in I\right\} \vdash t={ }_{\varepsilon} s\left\{\begin{array}{c}
\text { conditional } \\
\text { quantitative } \\
\text { equations }
\end{array}\right.
$$

closed under substitution of variables, logical inference, and the following "meta axioms"
(Refl) $\vdash x={ }_{0} x$
(Symm) $x={ }_{\varepsilon} y \vdash y={ }_{\varepsilon} x$
(Triang) $x={ }_{\varepsilon} y, y==_{\delta} z \vdash x={ }_{\varepsilon+\delta} y$
(NExp) $x_{1}=_{\varepsilon} y_{1}, \ldots, y_{n}={ }_{\varepsilon} y_{n} \vdash f\left(x_{1}, \ldots, x_{n}\right)={ }_{\varepsilon} f\left(y_{1}, \ldots, y_{n}\right)-\mathbf{f o r} f \in \Sigma$
(Max) $x={ }_{\varepsilon} y \vdash x={ }_{\varepsilon+\delta} y-$ for $\delta>0$
(Inf) $\left\{x={ }_{\delta} y \mid \delta>\varepsilon\right\} \vdash x={ }_{\varepsilon} y$

Quantitative Algebras

Mardare, Panangaden, Plotkin (LICS'16)
The models of a quantitative equational theory \mathscr{U} of type Σ are
Quantitative Σ-Algebras:
$\mathscr{A}=(A, \alpha: \Sigma A \rightarrow A)$-Universal Σ-algebras on EMet
Satisfying the all the conditional quantitative equations in \mathscr{U}

Satisfiability

$$
\mathscr{A} \vDash\left(\left\{t_{i}={ }_{\varepsilon_{i}} s_{i} \mid i \in I\right\} \vdash t={ }_{\varepsilon} s\right)
$$

iff
for any assignment $l: X \rightarrow A$
$\left(\forall i \in I . d_{A}\left(l\left(t_{i}\right), l\left(s_{i}\right)\right) \leq \varepsilon_{i}\right)$ implies $d_{A}(l(t), l(s)) \leq \varepsilon$

Category of Models

The collection of models for \mathscr{U} forms a category denoted by

$$
\mathbb{K}(\Sigma, \mathscr{U})
$$

with morphisms being the non-expansive homomorphisms

Quantitative Semilattices with \perp

Are the quantitative algebras over the signature

$$
\Sigma_{\delta}=\{0: 0,+: 2\}
$$

satisfying the following conditional quantitative equations
(SO) $\vdash x+\mathbf{0}={ }_{0} x$
(S1) $\vdash x+x={ }_{0} x$
(S2) $\vdash x+y={ }_{0} y+x$
(S3) $\vdash(x+y)+z={ }_{0} x+(y+z)$
(S4) $x={ }_{\epsilon} y, x^{\prime}={ }_{\epsilon^{\prime}} y^{\prime} \vdash x+x^{\prime}={ }_{\delta} y+y^{\prime}$, where $\delta=\max \left\{\epsilon, \epsilon^{\prime}\right\}$

Example of models

Unit interval with Euclidian distance and max as join
$\left([0,1], d_{[0,1]}\right)$
$(\mathbf{0})^{[0,1]}=0$
$(+)^{[0,1]}=\max$

Finite subsets with Hausdorff distance, with union as join
$\left(\mathscr{P}_{\text {fin }}(X), \mathscr{H}\left(d_{X}\right)\right)$
$(0))^{\mathscr{P}_{\text {fin }}}=\varnothing$
$(+)^{\mathscr{P}_{\text {fin }}}=U$

Compact subsets with Hausdorff distance, with union as join
$\left(\mathscr{C}(X), \mathscr{H}\left(d_{X}\right)\right)$
$(\mathbf{0})^{\mathscr{C}}=\varnothing$
$(+)^{\mathscr{C}}=U$

Interpolative Barycentric Algebras

Are the quantitative algebras over the signature

$$
\Sigma_{\mathscr{B}}=\{\underbrace{}_{\underbrace{++_{e}}_{\text {convex sum }}: 2 \mid} \text {, } e \in[0,1]\}
$$

satisfying the following conditional quantitative equations
(B1) $\vdash x+{ }_{1} y={ }_{0} x$
(B2) $\vdash x+{ }_{e} x={ }_{0} x$
(B3) $\vdash x+y=0 y+x$
(SC) $\vdash x+{ }_{e} y={ }_{0} y+_{1-e} x$
(SA) $\vdash\left(x+{ }_{e} y\right)+_{e^{\prime}} z={ }_{0} x+_{e e^{\prime}}\left(y+_{\frac{\left(1-e e e^{\prime}\right.}{1-e e^{\prime}}} z\right)$, for $e, e^{\prime} \in(0,1)$
(IB) $x==_{\epsilon} y, x^{\prime}={ }_{\epsilon^{\prime}} y^{\prime} \vdash x+{ }_{e} x^{\prime}={ }_{\delta} y+{ }_{e} y^{\prime}$, where $\delta=e \epsilon+(1-e) \epsilon^{\prime}$

A geometric intuition

(IB) $x={ }_{\epsilon} y, x^{\prime}=\epsilon_{\epsilon^{\prime}} y^{\prime} \vdash x+{ }_{e} x^{\prime}={ }_{\delta} y+{ }_{e} y^{\prime}$, where $\delta=e \epsilon+(1-e) \epsilon^{\prime}$

Example of models

Unit interval with Euclidian distance and convex combinators

$$
\left([0,1], d_{[0,1]}\right) \quad\left(+_{e}\right)^{[0,1]}(a, b)=e a+(1-e) b
$$

Finitely supported distributions with Kantorovich distance
$\left(\mathscr{D}(X), \mathscr{K}\left(d_{X}\right)\right)$
$\left(+_{e}\right)^{\mathscr{D}}(\mu, \nu)=e \mu+(1-e) \nu$

Borel probability measures with Kantorovich distance
($\left.\Delta(X), \mathscr{K}\left(d_{X}\right)\right)$
$(+)^{\Delta}(\mu, \nu)=e \mu+(1-e) \nu$

Completeness

Mardare, Panangaden, Plotkin (LICS'16)

For quantitative the equational logic we have an analogue of the usual completeness theorem

Theorem

$$
\begin{gathered}
\forall \mathscr{A} \in \mathbb{K}(\Sigma, \mathscr{U}) . \mathscr{A} \vDash\left(\Gamma \vdash t={ }_{\varepsilon} s\right) \\
\text { iff } \\
\left(\Gamma \vdash t={ }_{\varepsilon} s\right) \in \mathscr{U}
\end{gathered}
$$

Free Quantitative Algebra

Given \mathscr{U} and a metric space $M \in$ EMet , there exists a quantitative algebra* $\left(T_{M}, \phi_{M}: \Sigma T_{M} \rightarrow T_{M}\right)$ and non-expansive map $\eta_{M}: M \rightarrow T_{M}$ such that

$\left(^{*}\right) T_{M}$ is the term algebra with distance $d_{M}^{u}(t, s)=\inf \left\{\epsilon \mid \vdash t={ }_{\epsilon} s \in \mathscr{U}_{M}\right\}$

Free Monad on EMet

\mathscr{U} Models are $T_{\mathscr{U}}$-Algebras

Theorem

For any basic quantitative equational theory \mathscr{U} of type Σ

$$
\mathbb{K}(\Sigma, \mathscr{U}) \cong T_{\mathscr{U}} \underbrace{\text { Alg }}
$$

EM algebras for
the monad T_{U}
A quantitative equational theory \mathscr{U} is basic if it can be axiomatised by a set of basic conditional quantitative equations

$$
\left\{x_{i}=\bar{\varepsilon}_{i} y_{i} \mid i \in I\right\} \vdash t={ }_{\varepsilon} s
$$

The picture of the Talk (...once again)

Examples of Monads

...and many more: total variation, p-Wasserstein distance, ...

The Continuous Case

(Complete Separable Metric Spaces)
all Cauchy
exists a countable
sequences have limit
dense subset

Free Monads on CEMet

A quantitative equational theory is continuous if it can be axiomatised by a collection of continuous schemata of quantitative equations

$$
\left\{x_{1}={ }_{\varepsilon_{1}} y_{1}, \ldots, x_{n}={ }_{\varepsilon_{n}} y_{n}\right\} \vdash t={ }_{\varepsilon} s \quad-\text { for } \varepsilon \geq \underbrace{f\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)}_{\text {continuous real-valued function }}
$$

Free Monads on CSEMet

If \mathscr{U} is continuous and $T_{\mathscr{U}}$ preserves separability

Examples of Monads

...and many more: total variation, p-Wasserstein distance, ...

Combining

 Quantitative Theories
Disjoint Union of Theories

The disjoint union $\mathscr{U}+\mathscr{U}^{\prime}$ of two quantitative theories with disjoint signatures is the smallest quantitative theory containing \mathscr{U} and \mathscr{U}^{\prime}

Disjoint Union of Theories

Bacci, Mardare, Panangaden, Plotkin (LICS'18)
The answer is positive for basic quantitative theories

$$
T_{\mathscr{U}}+T_{\mathscr{U}^{\prime}} \cong T_{\mathscr{U}+\mathscr{U}^{\prime}}
$$

The proof follows standard techniques (Kelly'80)

Theorem

For basic quantitative equational theories $\mathscr{U}, \mathscr{U}^{\prime}$ of type Σ, Σ^{\prime}

$$
\begin{aligned}
& \mathbb{K}\left(\sum+\Sigma^{\prime}, \mathscr{U}+\mathscr{U}{ }^{\prime}\right) \cong\left\langle T_{\mathscr{U}}, T_{\mathscr{U}^{\prime}}\right\rangle-\mathbf{A l g} \cong\left(T_{\mathscr{U}}+T_{U^{\prime}}\right)-\mathbf{A l g} \\
& \binom{\text { EM-bialgebras for the }}{\text { monads } T_{\mathscr{U}}, T_{U^{\prime}}}
\end{aligned}
$$

Example: Markov chains

as the disjoint union of the theory of interpolative barycentric algebras with the theory of terminating executions with discount

Quantitative Theory of Terminating executions

$$
\underbrace{\Sigma_{\mathscr{T}}=\{\underbrace{\boldsymbol{0}: 0, ~}_{\text {transition to next state }}}_{\text {termination }} \text { (} \stackrel{\Delta-\text { Lip }) \quad x==_{\epsilon} y \vdash \diamond x=\lambda_{\epsilon} \diamond y}{ }
$$

EMt

$\mathscr{D}+\tilde{\Sigma}_{\mathscr{T}}^{*} \cong \mathscr{D}+\Sigma_{\mathscr{T}}^{*} \cong \mu y \cdot \mathscr{D}(1+\lambda \cdot y+-)$

...concretely

Acyclic finite Markov chains with bisimilarity metric are recovered as the free-algebra of the following quantitative equational theory

$$
\Sigma_{\mathscr{B}}+\Sigma_{\mathscr{T}}=\{\underbrace{\left.+_{e}: 2 \mid e \in[0,1]\right\} \cup\{\underbrace{0}_{\text {termination }}: 0, ~}_{\text {convex combination }} \underbrace{\diamond}_{\text {next state }}: 1\}
$$

(B1) $\vdash x+{ }_{1} y={ }_{0} x$
(B2) $\vdash x+{ }_{e} x={ }_{0} x$
(B3) $\vdash x+y==_{0} y+x$
(SC) $\vdash x+_{e} y={ }_{0} y+_{1-e} x$
(SA) $\vdash\left(x+_{e} y\right)+_{e^{\prime}} z={ }_{0} x+_{e e^{\prime}}\left(y+_{\frac{(1-e) e^{\prime}}{1-e e^{\prime}}} z\right)$, for $e, e^{\prime} \in(0,1)$
(IB) $x={ }_{\epsilon} y, x^{\prime}={ }_{\epsilon^{\prime}} y^{\prime} \vdash x+{ }_{e} x^{\prime}={ }_{\delta} y+{ }_{e} y^{\prime}$, where $\delta=e \epsilon+(1-e) \epsilon^{\prime}$
$\left(\diamond\right.$-Lip) $\quad x={ }_{\epsilon} y \vdash \diamond x={ }_{\lambda \epsilon} \diamond y$

What about loops?

$=0$

Markov Processes

are the completion of the disjoint union of the theories of interpolative barycentric algebras with that of terminating executions with discount

Final Coalgebra of MPs

$$
\Delta+\Sigma_{\mathscr{T}}^{*} \cong \mu y \cdot \Delta(1+\lambda \cdot y+-)
$$

assigns to any $A \in \mathbf{C S M e t}$ the initial solution of the equation

$$
M P_{A} \cong \Delta\left(1+\lambda \cdot M P_{A}+A\right)
$$

Theorem (Turi, Rutten'98)

Every locally contractive functor H on CMet has a unique fixed point, which is both an initial algebra and a final coalgebra for H

In particular, when $A \in \mathbf{0}$ (the empty metric space)

$$
M P_{\mathbf{0}} \rightarrow \Delta\left(1+\lambda \cdot M P_{\mathbf{0}}\right)\left\{\begin{array}{l}
\begin{array}{l}
\text { final coalgebra of } \\
\text { Markov processes }
\end{array}
\end{array}\right.
$$

Open problems

(hence, future work!)

Open Problem 1

Open Problem 2

Open Problem 3

Currently we are exploring another way of combining quantitative equational theories:

Open Problem 4

Quantitative theory of effects
(contribute to probabilistic programming languages)

Thank you for the attention

