Metric-based State Space Reduction for MCs

Giovanni Bacci, Giorgio Bacci, Kim G. Larsen, Radu Mardare Aalborg University

QuantLA Seminars, TU Dresden

24th Jan 2017

Talk Outline

* Labelled Markov Chains
- probabilistic bisimilarity
- couplings
* Behavioral distances on Markov Chains
- probabilistic bisimilarity distance
- relation with probabilistic model checking
\star Metric-based state space reduction
- Closest Bounded Approximant (CBA)
- Minimum Significant Approximant Bound (MSAB)
- Expectation Maximization-like algorithm

Probabilistic Systems

labelled
Markov Chain

$\mathrm{t}: \mathrm{M} \rightarrow \operatorname{Dist}(\mathrm{M})$

the transitions of a state m are presented by a probability distribution $\mathrm{T}(\mathrm{m})$ on M
$T\left(m_{0}\right)(u)=\left\{\begin{array}{cl}1 / 3 & \text { if } u=m_{1} \\ 2 / 3 & \text { if } u=m_{2} \\ 0 & \text { otherwise }\end{array}\right.$

Probabilistic Bisimulation

Definition (Larsen \& Skou 89)

An equivalence relation $R \subseteq M \times M$ is a probabilistic bisimulation if for all $(\mathrm{m}, \mathrm{n}) \in \mathrm{R}$

- $\ell(m)=\ell(n)$ and
- for all $C \in M / R, \quad \sum u \in C T(m)(u)=\sum u \in C T(n)(u)$.

Definition

Probabilistic bisimilarity is the largest probabilistic bisimulation

Complexity of Bisimulation

Proposition (Jonsson, Larsen 91)
An equivalence relation $\mathrm{R} \subseteq \mathrm{M} \times \mathrm{M}$ is a probabilistic bisimulation if for all $(m, n) \in R$

- $\ell(m)=\ell(n)$ and
- exists $\omega \in \Omega(T(m), T(n))$ such that $\operatorname{supp}(\omega) \subseteq R$.
set of couplings
Theorem (Baier CAV96)
Probabilistic bisimilarity can be tested in polynomial time -specifically $\mathrm{O}\left(\mathrm{h}^{2} \mathrm{e}\right)$

Coupling

Definition (W. Doeblin 36)

A coupling of a pair (μ, v) of probability distributions on M is a distribution ω on $M \times M$ such that

- $\sum n \in M \omega(m, n)=\mu(m)$
(left marginal)
- $\sum_{m \in M} \omega(m, n)=v(n)$
(right marginal).

One can think of a coupling as a measure-theoretic relation between probability distribution

$$
\sum_{u, v \in M} w(u, v) \mathbb{1}_{R}(u, v) \stackrel{?}{=} 1
$$

Bisimilarity is not robust

Fundamental problem
Smolka (1990) observed that behavioral equivalences are not robust for systems with real-valued data

Behavioral Pseudometric

Robust Alternative
Equivalence Relation
Pseudometric
R : $\mathrm{M} \times \mathrm{M} \rightarrow$ \{true,false\} $\Longrightarrow d: M \times M \rightarrow[0,1]$

$$
\text { minimize } \sum_{u, v \in M} \omega(u, v) d(u, v)
$$

A quantitative generalization of probabilistic bisimilarity

The $\boldsymbol{\lambda}$-discounted probabilistic bisimilarity pseudometric is the smallest $d_{\lambda}: M \times M \rightarrow[0,1]$ such that

A quantitative generalization of probabilistic bisimilarity

The $\boldsymbol{\lambda}$-discounted probabilistic bisimilarity pseudometric is the smallest $d_{\lambda}: M \times M \rightarrow[0,1]$ such that
$d_{\lambda}(m, n)= \begin{cases}1 & \text { if } \ell(m) \neq \ell(n) \\ \min _{\omega \in \Omega((m), T(n))} \wedge \sum_{u, v \in M} \omega(u, v) d_{\lambda}(u, v) & \text { otherwise }\end{cases}$
Kantorovich distance

$$
K(d)(\mu, v)=\min _{\omega \in \Omega(\mu, v)} \sum_{u, v \in M} \omega(u, v) d(u, v)
$$

Remarkable properties

Theorem (Desharnais et. al 99)

$$
m \sim n \quad \text { iff } \quad d_{\lambda}(m, n)=0
$$

Theorem (Chen, van Breugel, Worrell 12)
The probabilistic bisimilarity distance can be computed in polynomial time

Relation with Model Checking

Theorem (Chen, van Breugel, Worrell 12)
For all $\phi \in \operatorname{LTL} \quad|\operatorname{Pr}(m \vDash \phi)-\operatorname{Pr}(n \vDash \phi)| \leq d_{1}(m, n)$

Relation with Model Checking

 Theorem (Chen, van Breugel, Worrell 12)For all $\phi \in \operatorname{LTL} \quad|\operatorname{Pr}(m \vDash \phi)-\operatorname{Pr}(n \vDash \phi)| \leq d_{1}(m, n)$
...imagine that $|\mathrm{M}|>|\mathrm{N}|$, we can use N in place of M

Metric-based

 State Space Reduction

 State Space Reduction}

Closest Bounded
Approximant (CBA)

Minimum Significant
Approximant Bound (MSAB)

Metric-based

 State Space Reduction

 State Space Reduction}

Closest Bounded
Approximant (CBA)

Minimum Significant
Approximant Bound (MSAB)

Metric-based

 State Space Reduction

 State Space Reduction}

Closest Bounded
Approximant (CBA)

Minimum Significant
Approximant Bound (MSAB)

minimize d

Metric-based

State Space Reduction

Closest Bounded
Approximant (CBA)

minimize d
Minimum Significant
Approximant Bound (MSAB)

Metric-based

State Space Reduction

Closest Bounded
Approximant (CBA)

minimize d

Minimum Significant
Approximant Bound (MSAB)

minimize k

List of our Results

- CBA as bilinear program
- The CBA's threshold problem is
- NP-hard (complexity lower bound)
- PSPACE (complexity upper bound)
- The MSAB's threshold problem is NP-complete
- Expectation Maximization heuristic for CBA

The CBA- λ problem

The Closest Bounded Approximant wrt d_{λ}
Instance: An MC M, and a positive integer k Ouput: An MC \tilde{N}, with at most k states minimizing $d_{\lambda}\left(m_{0}, \tilde{n}_{0}\right)$

$$
\mathrm{d}_{\lambda}\left(\mathrm{m}_{0}, \tilde{n}_{0}\right)=\inf _{\Lambda}\left\{\mathrm{d}_{\lambda}\left(\mathrm{m}_{0}, \mathrm{n}_{0}\right) \mid \mathrm{N} \in \mathrm{MC}(\mathrm{k})\right\}
$$

we get a solution iff the infimum is a minimum

The CBA- λ problem

The Closest Bounded Approximant wrt d_{λ}

Instance: An MC M, and a positive integer k
Ouput: An MC \tilde{N}, with at most k states minimizing $d_{\lambda}\left(m_{0}, \tilde{n}_{0}\right)$

$$
\mathrm{d}_{\lambda}\left(\mathrm{m}_{0}, \tilde{n}_{0}\right)=\inf _{\substack{\text { we get a solution iff the } \\ \text { infimum is a minimum }}}\left\{\mathrm{d}_{\lambda}\left(\mathrm{m}_{0}, \mathrm{n}_{0}\right) \mid \mathrm{N} \in \mathrm{MC}(\mathrm{k})\right\}
$$

CBA- λ as a Bilinear Program

$d_{\lambda}\left(m_{0}, \tilde{n}_{0}\right)=\inf \left\{d_{\lambda}\left(m_{0}, n_{0}\right) \mid N \in M C(k)\right\}$ $=\inf \left\{d\left(m_{0}, n_{0}\right) \mid \Gamma_{\lambda}(d) \leq d, N \in M C(k)\right\}$

CBA- λ as a Bilinear Program

$d_{\lambda}\left(m_{0}, \tilde{n}_{0}\right)=\inf \left\{d_{\lambda}\left(m_{0}, n_{0}\right) \mid N \in M C(k)\right\}$ $=\inf \left\{d\left(m_{0}, n_{0}\right) \mid \Gamma_{\lambda}(d) \leq d, N \in M C(k)\right\}$

$$
\begin{array}{lll}
\text { mimimize } & d_{m_{0}, n_{0}} & \\
\text { such that } & d_{m, n}=1 & \ell(m) \neq \alpha(n) \\
& \lambda \sum_{(u, v) \in M \times N} c_{u, v}^{m, n} \cdot d_{u, v} \leq d_{m, n} & \ell(m)=\alpha(n) \\
& \sum_{v \in N} c_{u, v}^{m, n}=\tau(m)(u) & m, u \in M, n \in N \\
& \sum_{u \in M} c_{u, v}^{m, n}=\theta_{n, v} & m \in M, n, v \in N \\
c_{u, v}^{m, n} \geq 0 & m, u \in M, n, v \in N
\end{array}
$$

CBA- λ as a Bilinear Program

$$
\begin{aligned}
\mathrm{d}_{\lambda}\left(\mathrm{m}_{0}, \tilde{n}_{0}\right) & =\inf \left\{\mathrm{d}_{\lambda}\left(\mathrm{m}_{0}, \mathrm{n}_{0}\right) \mid \mathrm{N} \in \mathrm{MC}(\mathrm{k})\right\} \\
& =\inf \left\{\mathrm{d}\left(\mathrm{~m}_{0}, \mathrm{n}_{0}\right) \mid \Gamma_{\lambda}(\mathrm{d}) \leq \mathrm{d}, \mathrm{~N} \in \mathrm{MC}(\mathrm{k})\right\}
\end{aligned}
$$

$$
\begin{array}{rll}
\operatorname{mimimize} & d_{m_{0}, n_{0}} \\
\text { such that } & \ell(m) \neq \alpha(n) \\
d_{m, n}=1 & \ell(m)=\alpha(n) \\
\lambda \sum_{(u, v) \in M \times N} c_{u, v}^{m, n} \cdot d_{u, v} \leq d_{m, n} & m, u \in M, n \in N \\
\sum_{v \in N} c_{u, v}^{m, n}=\tau(m)(u) & m \in M, n, v \in N \\
\sum_{u \in M} c_{u, v}^{m, n}=\theta_{n, v} & m, u \in M, n, v \in N \\
c_{u, v}^{m, n} \geq 0 & m, 0
\end{array}
$$

CBA- λ as a Bilinear Program

$$
\begin{aligned}
\mathrm{d}_{\lambda}\left(\mathrm{m}_{0}, \tilde{n}_{0}\right) & =\inf \left\{\mathrm{d}_{\lambda}\left(\mathrm{m}_{0}, \mathrm{n}_{0}\right) \mid \mathrm{N} \in \mathrm{MC}(\mathrm{k})\right\} \\
& =\inf \left\{\mathrm{d}\left(\mathrm{~m}_{0}, \mathrm{n}_{0}\right) \mid \Gamma_{\lambda}(\mathrm{d}) \leq \mathrm{d}, \mathrm{~N} \in \mathrm{MC}(\mathrm{k})\right\}
\end{aligned}
$$

$$
\begin{array}{ll}
\operatorname{mimimize} & d_{m_{0}, n_{0}} \\
\text { such that } & \ell(m) \neq \alpha(n) \\
& \begin{array}{ll}
d_{m, n}=1 & \ell(m)=\alpha(n) \\
\lambda \sum_{(u, v) \in M \times N} c_{u, v}^{m, n} \cdot d_{u, v} \leq d_{m, n} & \\
\sum_{v \in N} c_{u, v}^{m, n}=\tau(m)(u) & \text { what labels should } \\
\sum_{u \in M} c_{u, v}^{m, n}=\theta_{n, v} \\
c_{u, v}^{m, n} \geq 0 & \text { the MC N have? }
\end{array}
\end{array}
$$

CBA- λ as a Bilinear Program
 (continued)

 Lemma (Meaningful labels)For any $N \in M C(k)$, there exists $N^{\prime} \in M C(k)$ with labels taken from M, such that $d_{\lambda}(M, N) \geq d_{\lambda}\left(M, N^{\prime}\right)$

CBA- λ as a Bilinear Program
 (continued)

Lemma (Meaningful labels)

For any $\mathrm{N} \in \mathrm{MC}(\mathrm{k})$, there exists $\mathrm{N}^{\prime} \in \mathrm{MC}(\mathrm{k})$ with labels taken from M, such that $d_{\lambda}(M, N) \geq d_{\lambda}\left(M, N^{\prime}\right)$

$$
\begin{array}{cll}
\operatorname{mimimize} & d_{m_{0}, n_{0}} & \\
\text { such that } & l_{m, n} \leq d_{m, n} \leq 1 & m \in M, n \in N \\
& \lambda \sum_{(u, v) \in M \times N} c_{u, v}^{m, n} \cdot d_{u, v} \leq d_{m, n} & m \in M, n \in N \\
& l_{m, n} \cdot l_{u, n}=0 & n \in N, \ell(m) \neq \ell(u) \\
& l_{m, n}+l_{u, n}=1 & n \in N, \ell(m) \neq \ell(u) \\
l_{m, n}=l_{u, n} & n \in N, \ell(m)=\ell(u) \\
\sum_{m \in M} l_{m, n} \leq|M|-1 & n \in N \\
\sum_{v \in N} c_{u, v}^{m, n}=\tau(m)(u) & m, u \in M, n \in N \\
\sum_{u \in M} c_{u, v}^{m, n}=\theta_{n, v} & m \in M, n, v \in N \\
c_{u, v}^{m, n} \geq 0 & m, u \in M, n, v \in N
\end{array}
$$

CBA- λ as a Bilinear Program
 (continued)

Lemma (Meaningful labels)

For any $N \in M C(k)$, there exists $N^{\prime} \in M C(k)$ with labels taken from M, such that $d_{\lambda}(M, N) \geq d_{\lambda}\left(M, N^{\prime}\right)$

$$
\begin{array}{ll}
\operatorname{mimimize} & d_{m o, n_{0}} \\
\text { such tha } & l_{m, n} \leq d_{m, n} \leq 1 \\
\lambda \sum_{(u, v) \in M \times N} c_{u, v}^{m, n} \cdot d_{u, v} \leq d_{m, n} & m \in M, n \in N \\
\begin{array}{ll}
l_{m, n} \cdot l_{u, n}=0 & n \in N, \ell(m) \neq \ell(u) \\
l_{m, n}+l_{u, n}=1 & n \in N, \ell(m) \neq \ell(u) \\
l_{m, n}=l_{u, n} & n \in N, \ell(m)=\ell(u) \\
\sum_{m \in M} l_{m, n} \leq|M|-1 & n \in N \\
\sum_{v \in N} c_{u, v}^{m, n}=\tau(m)(u) & m, u \in M, n \in N \\
\sum_{u \in M} c_{u, v}^{m, n}=\theta_{n, v} & m \in M, n, v \in N \\
c_{u, v}^{m, n} \geq 0 & m, u \in M, n, v \in N
\end{array}
\end{array}
$$

CBA- λ as a Bilinear Program $\underset{\text { (continued) }}{ }$

this characterization has two main consequences...

1. CBA $-\lambda$ admits always a solution
 2. CBA- λ is decidable

Complexity of CBA- λ

"To study the complexity of an optimization problem one has to look at its decision variant"
(C. Papadimitriou)

Complexity of CBA- λ

"To study the complexity of an optimization problem one has to look at its decision variant"
(C. Papadimitriou)

Bounded Approximant threshold wrt d_{λ}
Instance: An MC M, a positive integer k, and a rational $\varepsilon>0$
Ouput: yes iff there exists N with at most k states such that $\mathrm{d}_{\lambda}\left(\mathrm{m}_{0}, \mathrm{n}_{0}\right) \leq \varepsilon$

Complexity upper bound

Theorem

$B A-\lambda$ is in PSPACE

Proof sketch: we can encode the question $\langle M, k, \varepsilon\rangle \in B A-\lambda$ to that of checking the feasibility of a set of bilinear inequalities. This can be encoded as a decision problem for the existential theory of the reals, thus it can be solved in PSPACE [Canny-STOC88].

Complexity lower bound

Theorem

$B A-\lambda$ is NP-hard

Complexity lower bound

Theorem

$B A-\lambda$ is NP-hard

The MSAB- λ problem

The Minimum Significant Approximant Bound wrt d_{λ} Instance: An MC M

Ouput: The smallest k such that $d_{\lambda}\left(m_{0}, n_{0}\right)<1$, for some $\mathrm{N} \in \mathrm{MC}(\mathrm{k})$

The MSAB- λ problem

The Minimum Significant Approximant Bound wrt d_{λ}

 Instance: An MC MOuput: The smallest k such that $d_{\lambda}\left(m_{0}, n_{0}\right)<1$, for some $\mathrm{N} \in \mathrm{MC}(\mathrm{k})$

For $\lambda<1$, the MSAB- λ problem is trivial, because the solution is always $k=1$

The MSAB- λ problem

The Minimum Significant Approximant Bound wrt d_{λ}

Instance: An MC M

Ouput: The smallest k such that $d_{\lambda}\left(m_{0}, n_{0}\right)<1$, for some $\mathrm{N} \in \mathrm{MC}(\mathrm{k})$

For $\lambda<1$, the MSAB- λ problem is trivial, because the solution is always $k=1$

For $\boldsymbol{\lambda}=1$, the same problem is surprisingly difficult...

Complexity of MSAB-1

...as before we should look at its decision variant

Complexity of MSAB-1

...as before we should look at its decision variant

Significant Bounded Approximant wrt d_{1}
Instance: An MC M and a positive k
Ouput: yes iff there exists N with at most k states such that $d_{1}\left(m_{0}, n_{0}\right)<1$.

Complexity of MSAB-1

...as before we should look at its decision variant
Significant Bounded Approximant wrt d_{1}
Instance: An MC M and a positive k
Ouput: yes iff there exists N with at most k states such that $d_{1}\left(m_{0}, n_{0}\right)<1$.

Theorem

SBA- 1 is NP-complete

SBA-1 $\subseteq \mathbf{N P}$

Lemma

Assume M be maximally collapsed. Then,
$\langle M, k\rangle \in S B A-1 \quad$ iff $G(M)=$
and $\quad h+|C| \leq k$

SCC

SBA-1 $\subseteq \mathbf{N P}$

Proof sketch: compute with Tarjan all the SCCs of $\mathcal{G}(M)$. Then non deterministically choose an SCC and a path to it. In poly-time we can check the size of the path and of the SCC.

SBA- 1 is NP-hard

Proof sketch: by reduction to VERTEX COVER:
$\langle G, h\rangle \in V E R T E X$ COVER iff $\left\langle M_{G}, h+m+1\right\rangle \in S B A-1$

Towards an Algorithm...

Towards an Algorithm...

- The CBA can be solved as a bilinear program. Theoretically nice, but practically unfeasible! (our implementation in PENBMI can handle MCs with at most 5 states...)

Towards an Algorithm...

- The CBA can be solved as a bilinear program. Theoretically nice, but practically unfeasible! (our implementation in PENBMI can handle MCs with at most 5 states...)
- We are happy with sub-optimal solutions if they can be obtained by a practical algorithm.

EM-like Algorithm

- Given the MC M and an initial approximant No
- it produces a sequence $\mathrm{N}_{0}, \ldots, \mathrm{~N}_{\mathrm{h}}$ of approximants having strictly decreasing distance from M
- N_{n} may be a sub-optimal solution of CBA- λ

EM-like Algorithm

```
Algorithm 1
Input: \(\mathcal{M}=(M, \tau, \ell), \mathcal{N}_{0}=\left(N, \theta_{0}, \alpha\right)\), and \(h \in \mathbb{N}\).
    1. \(i \leftarrow 0\)
    2. repeat
    3. \(\quad i \leftarrow i+1\)
    4. compute \(\mathcal{C} \in \Omega\left(\mathcal{M}, \mathcal{N}_{i-1}\right)\) such that \(\delta_{\lambda}\left(\mathcal{M}, \mathcal{N}_{i-1}\right)=\gamma_{\lambda}^{\mathcal{C}}\left(\mathcal{M}, \mathcal{N}_{i-1}\right)\)
    5. \(\quad \theta_{i} \leftarrow \operatorname{UpdateTransition}\left(\theta_{i-1}, \mathcal{C}\right)\)
    6. \(\quad \mathcal{N}_{i} \leftarrow\left(N, \theta_{i}, \alpha\right)\)
    7. until \(\delta_{\lambda}\left(\mathcal{M}, \mathcal{N}_{i}\right)>\delta_{\lambda}\left(\mathcal{M}, \mathcal{N}_{i-1}\right)\) or \(i \geq h\)
    8. return \(\mathcal{N}_{i-1}\)
```


EM-like Algorithm

```
Algorithm 1
Input: \(\mathcal{M}=(M, \tau, \ell), \mathcal{N}_{0}=\left(N, \theta_{0}, \alpha\right)\), and \(h \in \mathbb{N}\).
    1. \(i \leftarrow 0\)
    2. repeat
    3. \(\quad i \leftarrow i+1\)
    4. compute \(\mathcal{C} \in \Omega\left(\mathcal{M}, \mathcal{N}_{i-1}\right)\) such that \(\delta_{\lambda}\left(\mathcal{M}, \mathcal{N}_{i-1}\right)=\gamma_{\lambda}^{\mathcal{C}}\left(\mathcal{M}, \mathcal{N}_{i-1}\right)\)
    5. \(\quad \theta_{i} \leftarrow \operatorname{UpdateTransition}\left(\theta_{i-1}, \mathcal{C}\right)\)
    6. \(\quad \mathcal{N}_{i} \leftarrow\left(N, \theta_{i}, \alpha\right)\)
    7. until \(\delta_{\lambda}\left(\mathcal{M}, \mathcal{N}_{i}\right)>\delta_{\lambda}\left(\mathcal{M}, \mathcal{N}_{i-1}\right)\) or \(i \geq h\)
    8. return \(\mathcal{N}_{i-1}\)
```


Intuitive Idea

UpdateTransition assigns greater probability to transitions that are most representative of the behavior of M

Two update heuristics

- Averaged Marginal (AM): given N_{k} we construct N_{k+1} by averaging the marginal of certain "coupling variables" obtained by optimizing the number of occurrences of the edges that are most likely to be seen in M .
- Averaged Expectations (AE): similar to the above, but now the $\mathrm{N}_{\mathrm{k}+1}$ looks only the expectation of the number of occurrences of the edges likely to be found in M.

Case	$\|M\|$	k	$\lambda=1$				$\lambda=0.8$			
			δ_{λ}-init	δ_{λ}-final	$\#$	time	δ_{λ}-init	δ_{λ}-final	$\#$	time
IPv4	23		0.775	0.054	3	4.8	0.576	0.025	3	4.8
	53	5	0.856	0.062	3	25.7	0.667	0.029	3	25.9
	53	5	0.923	0.067	3	116.3	0.734	0.035	3	116.5
	103	6	0.757	0.030	3	39.4	0.544	0.011	3	39.4
	203	6	-	0.032	3	183.7	0.624	0.017	3	182.7
	23	5	0.775	-	-	TO	-	-	-	TO
IPv4	53	5	0.856	0.110	2	14.2	0.667	0.049	3	21.8
	103	5	0.923	0.110	2	67.1	0.734	0.049	3	100.4
	53	6	0.757	0.072	2	21.8	0.544	0.019	3	33.0
	103	6	0.837	0.072	2	105.9	0.624	0.019	3	159.5
	203	6	-	-	-	TO	-	-	-	TO
	39	7	0.565	0.466	14	259.3	0.432	0.323	14	252.8
	49	7	0.568	0.460	14	453.7	0.433	0.322	14	420.5
	59	8	0.646	-	-	TO	0.423	-	-	TO
	39	7	0.565	0.435	11	156.6	0.432	0.321	2	28.6
	49	7	0.568	0.434	10	247.7	0.433	0.316	2	46.2
	59	8	0.646	0.435	10	588.9	0.423	0.309	2	115.7

Table 1. Comparison of the performance of EM algorithm on the IPv4 zeroconf protocol and the classic Drunkard's Walk w.r.t. the heuristics AM and AE.

What we have seen

Theoretical

Metric-based state space reduction for MCs

1. Closest Bounded Approximant (CBA) encoded as a bilinear program
2. Bounded Approximant (BA) PSPACE \& NP-hard for all $\lambda \in(0,1]$
3. Significant Bounded Approximant (SBA) NP-complete for $\lambda=1$

Practical

We proposed an EM-like method to obtain a sub-optimal approximants

Future Work

- Is BA- λ SUM-OF-SQUARE-ROOTS-hard?
- Can we obtain a real/better EM-heuristics?
- What about different models/distances?

Thank you

for your attention

Appendix

$B A-\lambda$ is NP-hard

$\langle G, h\rangle \in V E R T E X$ COVER iff $\left\langle M_{G}, m+h+2, \lambda^{2} / 2 m^{2}\right\rangle \in B A-\lambda$

