Outline	Calculus + Logic	Undecidability	with Replication	Guarantee + Quantifiers	Conclusions

Undecidability of Model Checking in Brane Logic

Giorgio Bacci Marino Miculan

Department of Mathematics and Computer Science University of Udine, ITALY

DCM 2007

Outline	Calculus + Logic	Undecidability	with Replication	Guarantee + Quantifiers	Conclusions
Talk (Outline				

+ Summary of the Calculus and Logic

Proof of model checking undecidability calculus with replication logic with adjoints and quantifiers

+ Conclusions

(Basic) Brane Calculus [Cardelli '04]

Intended to be a model of biological membranes

systems	<i>P</i> , <i>Q</i> ::=	$\diamond \sigma(P) P \circ Q P$	nests of membranes
branes	$\sigma, \tau ::=$	0 $\sigma \tau $ a . $\sigma ! \sigma$	combination of actions
actions	a, b ::=		(not now)

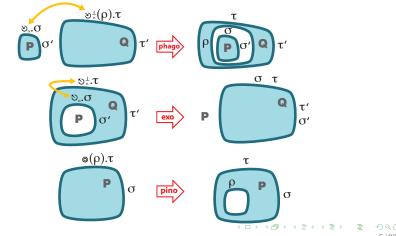
Undecidab

with Replication

Guarantee + Quantifiers

Conclusions

Structural Equivalence \equiv


	Systems	Membranes
Fluidity	$P \circ Q \equiv Q \circ P$ $P \circ (Q \circ R) \equiv (P \circ Q) \circ R$ $P \circ \diamond \equiv P$	$\sigma \tau \equiv \tau \sigma$ $\sigma (\tau \rho) \equiv (\sigma \tau) \rho$ $\sigma 0 \equiv \sigma$
Plenitude	$P \equiv P \circ P$ etc.	$ \sigma \equiv \sigma !\sigma$ etc.
Congruence	$P \equiv Q \Rightarrow P \circ R \equiv Q \circ R$ $P \equiv Q \Rightarrow !P \equiv !Q$	$\sigma \equiv \tau \Rightarrow \sigma \rho \equiv \tau \rho$ $\sigma \equiv \tau \Rightarrow ! \sigma \equiv ! \tau$
		<u>< 10 > < 10 > < 2 > < 2 > < 2 > < 2 < 0</u>

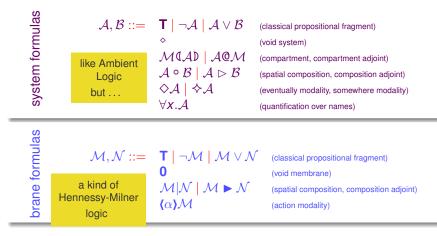
4/26

Brane Reactions \rightarrow (PEP semantics)

actions $\ldots \mathfrak{D}_n | \mathfrak{D}_n^{\perp}(\sigma) | \mathfrak{D}_n | \mathfrak{D}_n^{\perp} | \mathfrak{O}(\sigma)$ phago \mathfrak{D} , exo \mathfrak{D} , pino \mathfrak{O}

5/26

Brane Logic [CMSB '06]: motivations


Logics allow to express formally the properties of biological systems, usually written in natural language.

- System specification and verification (possibly automatic): check whether a given system *P* satisfies a given property *A*
- System synthesis: find a system which satisfies a given property *A* (synthetic biology)
- System characterization: find the formula which characterizes the behaviour of the system *P*
- Model validation: predict a property which should hold in a system and mount an experiment to verify it (predictive biology)

Outline	Calculus + Logic	Undecidability	with Replication	Guarantee + Quantifiers	Conclusions

Brane Logic: syntax

There are two interacting logics:

Brane Logic: satisfaction \models

Spatial connectives and their adjoints...

(properly of spatial calculi)

$$\begin{array}{lll} P \vDash \mathcal{A} \circ \mathcal{B} & \triangleq & \exists P', P''.P \equiv P' \circ P'' \wedge P' \vDash \mathcal{A} \wedge P'' \vDash \mathcal{B} \\ P \vDash \mathcal{M}(\mathcal{A}\mathbb{D}) & \triangleq & \exists P', \sigma.P \equiv \sigma(P'\mathbb{D} \wedge P' \vDash \mathcal{A} \wedge \sigma \vDash \mathcal{M} \end{array}$$

$$\begin{array}{lll} P \vDash \mathcal{A}@\mathcal{M} & \triangleq & \forall \sigma. \sigma \vDash \mathcal{M} \Rightarrow \sigma \P P \triangleright \varUpsilon \\ P \vDash \mathcal{A} \rhd \mathcal{B} & \triangleq & \forall P'. P' \vDash \mathcal{A} \Rightarrow P \circ P' \vDash \mathcal{B} & (\text{guarantee}) \end{array}$$

... both temporal and spatial modalities (bi-modal logic)

$$P \vDash \Diamond \mathcal{A} \triangleq \exists P' : \Pi . P \Longrightarrow^* P' \land P' \vDash \mathcal{A}$$
$$P \vDash \Diamond \mathcal{A} \triangleq \exists P' : \Pi . P \downarrow^* P' \land P' \vDash \mathcal{A}$$

Undecidability of model checking

Given *P* and A, is $P \vDash A$?

Two sources of undecidability:

 if processes have unbound replication (!P), model checking is undecidable Solution:

consider only finite calculi (without replications)
or admit only guarded replications [Busi-Zavattaro '04]

If the logic contain guarantee (▷) and quantifiers, model checking the finite state Brane Calulus is also undecidable.

In [CMSB '06] a model checking algorithm for finite calculus and $\triangleright\mbox{-free logic}$

Undecidability of model checking

Given *P* and A, is $P \vDash A$?

Two sources of undecidability:

- if processes have unbound replication (!P), model checking is undecidable Solution:
 - consider only finite calculi (without replications)
 - or admit only guarded replications [Busi-Zavattaro '04]
- If the logic contain guarantee (▷) and quantifiers, model checking the finite state Brane Calulus is also undecidable.

In [CMSB '06] a model checking algorithm for finite calculus and $\triangleright\mbox{-free logic}$

Undecidability in presence of replication

The proof is done by reduction of a undecidable problem:

Proof Outline

- encode in Brane Calculus the Post Corrispondence Problem
- give a formula that holds iff PCP as a solution

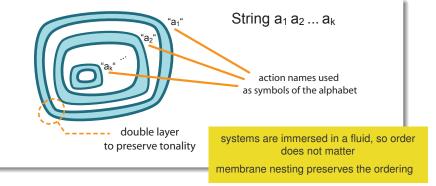
Encoding PCP

Post Corrispondence Problem

Instance: a finite set of pairs of words $\{(\alpha_1, \beta_1), \ldots, (\alpha_n, \beta_n)\}$

Question: there exist a sequence i_0, i_1, \ldots, i_k $(1 \le i_j \le n \text{ for all } 0 \le j \le k)$ such that $\alpha_{i_0} \cdot \ldots \cdot \alpha_{i_k} = \beta_{i_0} \cdot \ldots \cdot \beta_{i_k}$

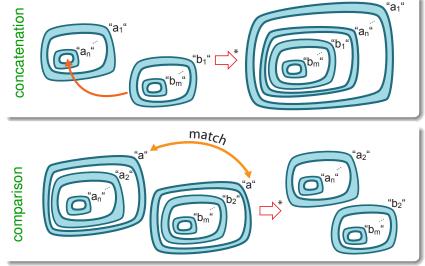
Encoding idea:


start from two empty words W_1 , W_2

- non-deterministically choose a pair from the instace to concatenate to W₁ and W₂
- compare the two words

and repeat...

... we use membranes as string constructors



Outline Calculus + Logic Undecidability with Replication Guat

Guarantee + Quantifiers

Conclusions

Encoding PCP: concatenation & comparison

Undecidability in presence of replication

Two replication constructors:

- replication on systems $(!P \equiv P \circ !P)$
- replication on branes $(!\sigma \equiv \sigma |!\sigma)$

We have to treat them separately...

Encoding PCP on systems: first definition

$$\begin{array}{rcl} \mathbf{PCP}_{\mathcal{S}} & \triangleq & \mathbf{Word}_1(\epsilon) \circ \mathbf{Word}_2(\epsilon) \circ \\ & & \mathbf{Concatenate} \circ \mathbf{Compare} \end{array}$$

- **Concatenate** \triangleq **!Concatenate**(α_1, β_1) ... **!Concatenate**(α_n, β_n)
 - **Compare** \triangleq !**Consume**(*a*) \circ !**Consume**(*b*)

Encoding PCP on systems: first definition

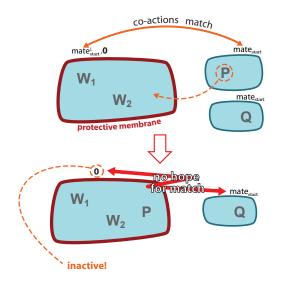
$$\begin{aligned} \mathsf{PCP}_{S} &\triangleq & \mathsf{Word}_{1}(\epsilon) \circ \mathsf{Word}_{2}(\epsilon) \\ & \mathsf{Concatenate} \circ \mathsf{Contrare} \\ \end{aligned}$$

$$\begin{aligned} \mathsf{Concatenate} &\triangleq & |\mathsf{Concatenate}(\alpha_{1},\beta_{1}) \circ \dots \circ |\mathsf{Concatenate}(\alpha_{n},\beta_{n}) \\ & \mathsf{Compare} &\triangleq & |\mathsf{Consume}(a) \circ |\mathsf{Consume}(b) \end{aligned}$$

if comparison is interleaved with concatenation?

Outli	ne	

_ogic Un


Undecidability

with Replication

Guarantee + Quantifiers

Conclusions

Synchronizing jobs...

the two words are enveloped in a protective membrane

Encoding PCP on systems: final definition

formally...

 $\mathbf{PCP}_{\mathcal{S}} \triangleq \mathsf{mate}_{\mathsf{start}}^{\perp} \mathbb{(Word_1(\epsilon) \circ Word_2(\epsilon) \circ End)} \circ \\ \mathbf{Concatenate} \circ \mathbf{Compare}$

Concatenate \triangleq **!Concatenate**(α_1, β_1) $\circ \dots \circ$ **!Concatenate**(α_n, β_n)

Compare \triangleq **!Consume**(*a*) \circ **!Consume**(*b*)

Undecidability (systems replication)

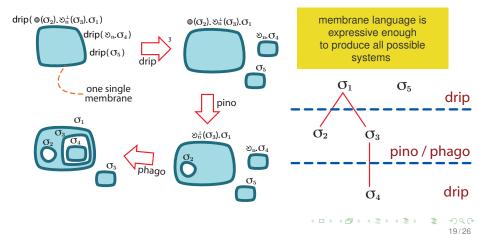
if $\textbf{PCP}_{\mathcal{S}}$ satisfy the the formula $\mathcal A$ the PCP as a solution

 $\mathcal{A} \triangleq \Diamond (\textit{nonempty}(w_1) \land \Diamond (\textit{empty}(w_1) \land \textit{empty}(w_2)))$

A contains only propositional connectives, temporal and spatial modalities and the compartment connective.

No need of quantifiers or adjoint connectives

Theorem


The model checking problem for Brane Calculi with replication on systems against the Brane Logic is undecidable.

Reducing membranes to systems

we do not directly define a system \mathbf{PCP}_{m} ...

... instead we use a little trick

Outline Calculus + Logic

Undecidability

with Replication

Guarantee + Quantifiers

Conclusions

Generate(P): definition & properties

formally...

$\operatorname{Generate}_{\phi}(\diamond)$	≜	0
Generate $_{\phi}(\sigma \mathbb{QPD})$	≜	drip(Endo $^{\perp}_{\phi}(P, \sigma)$) Endo $_{\phi}(P)$
Generate $_{\phi}(P \circ Q)$	≜	drip(Generate $_{\phi}(P)$) drip(Generate $_{\phi}(Q)$)
,		, , , , , , , , , , , , , , , , , , ,
$Endo_\phi(\diamond)$	≜	
$\mathbf{Endo}_\phi(\tau \mathbb{Q} \mathbb{Q} \mathbb{D})$	≜	$\begin{cases} 0 & \text{if } Q \equiv \circ \\ \text{drip}(\otimes_{\phi(\tau \in Q\mathbb{D})}, \mathbf{Generate}_{\phi}(Q)) & \text{otherwise} \end{cases}$
$Endo_\phi(P\circQ)$	≜	$Endo_{\phi}(P) Endo_{\phi}(Q)$
$Endo_\phi^{\perp}(\diamond,\sigma)$	≜	σ
$\mathbf{Endo}_\phi^{\scriptscriptstyle \perp}(\tau \mathfrak{Q} \mathcal{Q} \mathfrak{d}, \sigma)$	≜	$\begin{cases} {\scriptstyle { { $
$\mathbf{Endo}_\phi^{\scriptscriptstyle \perp}(\mathbf{P}\circ \mathbf{Q},\sigma)$	≜	Endo ^{\perp} _{ϕ} (<i>P</i> , Endo ^{\perp} _{ϕ} (<i>Q</i> , σ))

 $Generate_{\phi}(P) \mathbb{I} \diamond \mathbb{D} \implies^{*} P$ $!Generate_{\phi}(P) \mathbb{I} \diamond \mathbb{D} \implies^{*} !Generate_{\phi}(P) \mathbb{I} \diamond \mathbb{D} \circ P$

instead...

 $|\text{Generate}_{\phi}(P) \mathbb{Q} \otimes \mathbb{D} \implies^* |\text{Generate}_{\phi}(P) \mathbb{Q} \otimes \mathbb{D} \circ P$

Theorem

The model checking problem for Brane Calculi with replication on membranes against the Brane Logic is undecidable.
 Outline
 Calculus + Logic
 Undecidability
 with Replication
 Guarantee + Quantifiers
 Conclusions

 000000
 0000000000
 0000000000
 000
 0000000000
 00000000000

Guarantee (⊳) can express satisfiability

$$P \vDash \mathcal{A} \vartriangleright \mathbf{F} \iff \forall P'.(P' \vDash \mathcal{A} \Rightarrow P' \circ P \vDash \mathbf{F})$$
$$\iff \forall P'.P' \nvDash \mathcal{A}$$
$$\iff \mathcal{A} \text{ is not satisfiable}$$

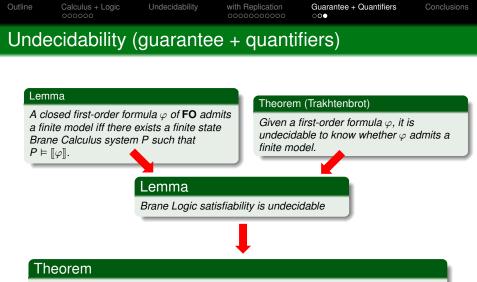
SO...

$P \vDash \neg(\mathcal{A} \triangleright \mathbf{F}) \iff \mathcal{A}$ is satisfiable

<ロ > < 回 > < 巨 > < 巨 > < 巨 > 三 の < () 22/26

Brane Logic is an extension of FOL

we can encode First Order Logic in Brane Logic...


from structures to systems

no need of replication

 $a \in \mathcal{D} \iff \exists P'.P \equiv \mathfrak{S}_d \mathfrak{O}_a \mathfrak{O} \mathfrak{O} \mathfrak{O} \circ P$

 $R_i(a_1,\ldots,a_k)\in\mathcal{S}\iff \exists P''.P\equiv \heartsuit_{r_i} \textcircled{0}_{a_1} \textcircled{0}_{\ldots} \oslash_{a_k} \textcircled{0} \diamond \textcircled{0}_{\ldots} \fbox{0} \diamond P''$

$$\begin{split} \llbracket R_i(x_1, \dots, x_k) \rrbracket &\triangleq \{ \mathfrak{S}_{r_i} \} \mathfrak{l} \{ \mathfrak{S}_{x_1} \} \mathfrak{l} \{ \mathfrak{S}_{x_2} \} \mathfrak{l} \dots \{ \mathfrak{S}_{x_k} \} \mathfrak{l} \diamond \mathfrak{D} \dots \mathfrak{D} \mathfrak{D} \mathfrak{D} \circ \mathsf{T} \\ \llbracket \varphi \land \psi \rrbracket &\triangleq \llbracket \varphi \rrbracket \land \llbracket \psi \rrbracket \\ \llbracket \neg \varphi \rrbracket &\triangleq \neg \llbracket \varphi \rrbracket \\ \llbracket \exists x. \varphi \rrbracket &\triangleq \exists x. ((\mathfrak{l} \mathfrak{S}_d) \mathfrak{l} \{ \mathfrak{S}_x \} \mathfrak{l} \diamond \mathfrak{D} \mathfrak{D} \circ \mathsf{T}) \land \llbracket \varphi \rrbracket) \end{aligned}$$

The model checking problem of finite states Brane Calculus against formulas with guarantee is undecidable.

Outline	Calculus + Logic	Undecidability	with Replication	Guarantee + Quantifiers	Conclusions
Cond	clusions				

We have shown

- Undecidability of model checking without quantifiers and adjoints, in presence of replication
- Undecidability of model checking with quantifiers and adjoints, in absence of replication

Future works

- look for some weaker logical connectives in place of adjoints
- look for subsets of the calculus for which satisfaction is decidable (Mate-Bud-Drip calculus)

Outline	Calculus + Logic	Undecidability	with Replication	Guarantee + Quantifiers	Conclusions

Thanks.