Finding a Forest in a Tree The matching problem for wide reactive systems

Giorgio Bacci, Marino Miculan, Romeo Rizzi Dept. of Computer Science, Aalborg University

Breakfast Talk
(presented @TGC 2014)

Outline of the talk

- Introduction
- The problem: forest matching
- NP-completeness
- Fixed-parameter Algorithm (the core only)
- Concluding remaks

Motivations

- Reactive systems (aka reduction systems) are common in process calculi
- Defined by
- a set of reduction rules $\quad l(x) \rightarrow r(x)$
- a contextual closure

$$
\frac{l(x) \rightarrow r(x) \quad a=C[I(x) \sigma] \quad b=C[r(x) \sigma]}{a \rightarrow b}
$$

- However: not always easy to apply, especially in models of global computing

Ex: Message Passing

Ex: Message Passing

Ex: Remote Message Passing

$\left.\mathrm{C}_{1}[\overline{\mathrm{a}} / \mathrm{M}\rangle . \mathrm{P}\right]\left|\mathrm{C}_{2}[\mathrm{a}(\mathrm{x}) . \mathrm{Q}] \rightarrow \mathrm{C}_{1}[\mathrm{P}]\right| \mathrm{C}_{2}[\mathrm{Q}\{\mathrm{M} / \mathrm{x}\}]$

Ex: Remote Message Passing

$\mathrm{C}_{1}[\overline{\mathrm{a}}\langle\mathrm{M}\rangle . \mathrm{P}]\left|\mathrm{C}_{2}[\mathrm{a}(\mathrm{x}) . \mathrm{Q}] \rightarrow \mathrm{C}_{1}[\mathrm{P}]\right| \mathrm{C}_{2}[\mathrm{Q}\{\mathrm{M} / \mathrm{x}\}]$
Infinite reduction rules are needed
(one for each pair $\mathrm{C}_{1}, \mathrm{C}_{2}$)

Ex: Remote Message Passing

Ex: Remote Message Passing

Just one wide reduction rule
Context has two holes

Wide reactive systems

A set of wide reaction rules

$$
\begin{gathered}
\left\langle l_{1}\left(\mathbf{x}_{1}\right), \ldots, I_{\mathrm{n}}\left(\mathbf{x}_{\mathrm{n}}\right)\right\rangle \rightarrow\left\langle\boldsymbol{r}_{1}\left(\boldsymbol{y}_{1}\right), \ldots, r_{\mathrm{n}}\left(\mathbf{y}_{\mathrm{n}}\right)\right\rangle \\
\text { with }\left\{\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{\mathrm{n}}\right\} \subseteq\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{n}}\right\}
\end{gathered}
$$

Contextual closure:

$$
\begin{gathered}
\left\langle l_{1}\left(\mathbf{x}_{1}\right), \ldots, l_{n}\left(\mathbf{x}_{n}\right)\right\rangle \rightarrow\left\langle r_{1}\left(\mathbf{y}_{1}\right), \ldots, r_{n}\left(\mathbf{y}_{\mathrm{n}}\right)\right\rangle \\
a=\mathrm{C}\left[l_{1}\left(\mathbf{x}_{1}\right) \sigma, \ldots, l_{\mathrm{n}}\left(\mathbf{x}_{\mathrm{n}}\right) \sigma\right] \quad b=\mathrm{C}\left[r_{1}\left(\mathbf{y}_{1}\right) \sigma, \ldots, r_{\mathrm{n}}\left(\mathbf{y}_{\mathrm{n}}\right) \sigma\right] \\
a \rightarrow b
\end{gathered}
$$

Wide vs. Non-wide

Wide vs. Non-wide

- WRSs are more expressive than non-WRSs

Wide vs. Non-wide

- WRSs are more expressive than non-WRSs
- non-wide are a particular case of wide (width $=1$)

Wide vs. Non-wide

- WRSs are more expressive than non-WRSs
- non-wide are a particular case of wide (width $=1$)
- WRSs need less rules (often, finite instead of infinite)

Wide vs. Non-wide

- WRSs are more expressive than non-WRSs
- non-wide are a particular case of wide (width = I)
- WRSs need less rules (often, finite instead of infinite)
- Pattern matching in WRSs is more complex

Wide vs. Non-wide

- WRSs are more expressive than non-WRSs
- non-wide are a particular case of wide (width = I)
- WRSs need less rules (often, finite instead of infinite)
- Pattern matching in WRSs is more complex
- The bad news: NP-complete

Wide vs. Non-wide

- WRSs are more expressive than non-WRSs
- non-wide are a particular case of wide (width $=1$)
- WRSs need less rules (often, finite instead of infinite)
- Pattern matching in WRSs is more complex
- The bad news: NP-complete
- The good news: combinatorial explosion depends on redex width only (constant and usually ≤ 3)

Linear Context Trees

$T(X):=\begin{gathered}0 \\ x\end{gathered}$ $\mathrm{m}[\mathrm{T}(\mathrm{X})$]
$T\left(X^{\prime}\right) \mid T(X ")$
empty tree
leaf $(x \in X)$
labeled tree
siblings ($X=X^{\prime} \uplus X^{\prime \prime}$)

$\mathrm{m}[\mathrm{T}(\mathrm{X})] \mid \mathrm{n}[\mathrm{T}(\mathrm{Y})]$

Linear Context Trees

empty tree
leaf $(x \in X)$
labeled tree
siblings ($X=X^{\prime} \uplus X^{\prime \prime}$)

$\mathrm{m}[\mathrm{T}(\mathrm{X})] \mid \mathrm{n}[\mathrm{T}(\mathrm{Y})]$

The matching problem

Context
Pattern

Parameters

$$
T \equiv(C\{S / z\})\left\{D_{1}, \ldots, D_{m} / x_{1}, \ldots, x_{m}\right\}
$$

The matching problem

 forest$$
T \equiv\left(C\left\{S_{1}, \ldots, S_{h} / z_{1}, \ldots, z_{h}\right\}\right)\left\{D_{1}, \ldots, D_{m} / x_{1}, \ldots, x_{m}\right\}
$$

Forest matching is NP-complete

- Tree matching problem is in P (subtree isomorphim algorithm [Matula'78])
- Forest matching problem is NP-complete!

The pattern matchings must not overlap
=
antichain in T

Forest matching is NP-complete

- Tree matching problem is in P (subtree isomorphim algorithm [Matula'78])
- Forest matching problem is NP-complete!

\neq sub-forest isomorphism
The pattern matchings must not overlap
=
antichain in T

Rainbow antichain

Instance: a tree T colored on palette P of colors. Problem: to find a P -colorful antichain in T .

Rainbow antichain

Instance: a tree T colored on palette P of colors. Problem: to find a P -colorful antichain in T .

Proof sketch of NP-hardness

Rainbow antichain

Instance: a tree T colored on palette P of colors. Problem: to find a P -colorful antichain in T .

Proof sketch of NP-hardness

Rainbow antichain

Instance: a tree T colored on palette P of colors. Problem: to find a P-colorful antichain in T.

Proof sketch of NP-hardness

$$
(\bar{x} \vee y \vee \bar{z}) \wedge(x \vee y \vee z)
$$

Rainbow antichain

Instance: a tree T colored on palette P of colors. Problem: to find a P-colorful antichain in T.

Proof sketch of NP-hardness

Rainbow antichain

Instance: a tree T colored on palette P of colors. Problem: to find a P -colorful antichain in T .

Proof sketch of NP-hardness

Fixed-parameter Tractability

How to cope with computational intractability?

approximation algorithms, average case analysis, randomized algorithms, heuristics methods, etc...

Fixed-parameter Tractability

How to cope with computational intractability?

approximation algorithms, average case analysis, randomized algorithms, heuristics methods, etc...

FPT's basic observation:

"for many hard problems, the seemingly inherent combinatorial explosion really can be restricted to a 'small part' of the input, the parameter"
[Downey-Fellows'99]

Parameterized algorithm for Rainbow antichain

- Rainbow antichain is the core problem behind the forest matching problem
- Rainbow antichain is solved in 2 steps:
I. Reduction to kernel-size of the input tree

2. Exhaustive search of a rainbow antichain

Parameterized algorithm for

Rainbow antichain

- Rainbow antichain is the core problem behind the forest matching problem
- Rainbow antichain is solved in 2 steps:
I. Reduction to kernel-size of the input tree

2. Exhaustive search of a rainbow antichain

I. Reduction by decoloring

${ }^{*}$) we will assume the root cannot be deleted
Deletion of uncolored nodes does not influence existence of rainbow antichain!

Decoloring (rule I)

Ancestors with the same color can be decolored

Decoloring (rule 2)

If the tree has all leaves of the same color, then leaves with fan-out $\geq|P|$ can be decolored

How to apply the rules? (an example of reduction to kernel size)

$P=\{$ red, yellow, green $\}$

How to apply the rules? (an example of reduction to kernel size)

Rule I: Decoloring of ancestors of the same color

How to apply the rules? (an example of reduction to kernel size)

Rule I: Decoloring of ancestors of the same color

How to apply the rules? (an example of reduction to kernel size)

Rule I: Decoloring of ancestors of the same color

How to apply the rules? (an example of reduction to kernel size)

Rule I: Decoloring of ancestors of the same color

How to apply the rules? (an example of reduction to kernel size)

Rule I: Decoloring of ancestors of the same color

How to apply the rules? (an example of reduction to kernel size)

Rule I: Decoloring of ancestors of the same color

How to apply the rules? (an example of reduction to kernel size)

Rule I: Decoloring of ancestors of the same color

How to apply the rules? (an example of reduction to kernel size)

Rule I: Decoloring of ancestors of the same color

How to apply the rules? (an example of reduction to kernel size)

Rule 2: Decoloring of nodes with fan-out $\geq|P|$

How to apply the rules? (an example of reduction to kernel size)

Rule 2: Decoloring of nodes with fan-out $\geq|P|$

How to apply the rules? (an example of reduction to kernel size)

Rule 2: Decoloring of nodes with fan-out $\geq|P|$

How to apply the rules? (an example of reduction to kernel size)

Rule 2: Decoloring of nodes with fan-out $\geq|P|$

How to apply the rules? (an example of reduction to kernel size)

Rule 2: Decoloring of nodes with fan-out $\geq|P|$

How to apply the rules? (an example of reduction to kernel size)

Rule 2: Decoloring of nodes with fan-out $\geq|P|$

How to apply the rules? (an example of reduction to kernel size)

Rule 2: Decoloring of nodes with fan-out $\geq|P|$

How to apply the rules? (an example of reduction to kernel size)

Rule 2: Decoloring of nodes with fan-out $\geq|P|$

How to apply the rules? (an example of reduction to kernel size)

Rule 2: Decoloring of nodes with fan-out $\geq|P|$

How to apply the rules? (an example of reduction to kernel size)

Rule 2: Decoloring of nodes with fan-out $\geq|P|$

How to apply the rules? (an example of reduction to kernel size)

Rule 2: Decoloring of nodes with fan-out $\geq|P|$

How to apply the rules? (an example of reduction to kernel size)

Rule 2: Decoloring of nodes with fan-out $\geq|P|$

How to apply the rules? (an example of reduction to kernel size)

...to obtain the reduced tree

Reduction to Kernel-Size

- by repeating rule I ... height $(T) \leq|P|$
- by repeating rule $2 \ldots \quad|c-c o l o r(T)| \leq 2^{|P|}$

Reduction to Kernel-Size

No repetitions of colors in a path from the root to a leaf

- by repeating rule I... height $(T) \leq|P|$
- by repeating rule $2 \ldots \quad \mid c$-color $(T) \mid \leq 2^{|P|}$

Reduction to Kernel-Size

No repetitions of colors in a path from the root to a leaf

- by repeating rule I... height $(T) \leq|P|$
- by repeating rule $2 \ldots \quad|c-c o l o r(T)| \leq 2^{|P|}$

If $\max \{$ fort $(\mathrm{n}) \mid \mathrm{n}$ node in $T\} \leq m$, then T has at most $2^{|P|}$ leaves

Reduction to Kernel-Size

No repetitions of colors in a path from the root to a leaf

- by repeating rule I ... height $(T) \leq|P|$
- by repeating rule $2 \ldots \quad \mid c$-color $(T) \mid \leq 2^{|P|}$

If $\max \{$ fort $(\mathrm{n}) \mid \mathrm{n}$ node in $T\} \leq m$, then T has at most $2^{|P|}$ leaves
as a result $\quad|\operatorname{nodes}(T)| \leq|P| 2^{|P|}$

2. Searching for a rainbow

using the fast subset convolution algorithm by
[Björklund et al. STOC'97]

$$
A(T, X)=N(T, X) \vee \bigvee_{Y \subseteq X}\left(A\left(T^{\prime}, Y\right) \wedge A\left(T^{\prime}, Y \backslash X\right)\right)
$$

2. Searching for a rainbow

using the fast subset convolution algorithm by
[Björklund et al. STOC'97]

$$
A(T, X)=N(T, X) \vee \bigvee_{Y \subseteq X}\left(A\left(T^{\prime}, Y\right) \wedge A\left(T^{\prime}, Y \backslash X\right)\right)
$$

true iff T contains all the colors in $X \subseteq P$

2. Searching for a rainbow

using the fast subset convolution algorithm by [Björklund et al. STOC'97]

$$
A(T, X)=N(T, X) \vee \bigvee_{Y \subseteq X}\left(A\left(T^{\prime}, Y\right) \wedge A\left(T^{\prime}, Y \backslash X\right)\right)
$$

true iff T contains all the colors in $X \subseteq P$
for each node: $\mathrm{O}\left(|\mathrm{P}|^{2} 2^{|P|}\right)$

From Forest Matching to Rainbow Antichain

Target T
$\mathrm{n}[0]|\mathrm{m}[\mathrm{x} \mid \mathrm{n}[0]]| \mathrm{k}[\mathrm{n}[\mathrm{y}]]|\mathrm{m}[0]| \mathrm{z}$

Forest pattern S
$\langle m[x] \mid n[0], m[0]\rangle$

From Forest Matching to Rainbow Antichain

Target T
$\mathrm{n}[0]|\mathrm{m}[\mathrm{x} \mid \mathrm{n}[0]]| \mathrm{k}[\mathrm{n}[\mathrm{y}] \mathrm{]}|\mathrm{~m}[0]| \mathrm{z}$

Forest pattern S
$\langle m[x] \mid n[0], m[0]\rangle$

From Forest Matching to Rainbow Antichain

Target T
$\mathrm{n}[0]|\mathrm{m}[\mathrm{x} \mid \mathrm{n}[0]]| \mathrm{k}[\mathrm{n}[\mathrm{y}] \mathrm{]}|\mathrm{~m}[0]| \mathrm{z}$

Forest pattern S
$\langle m[x] \mid n[0], m[0]\rangle$

From Forest Matching to Rainbow Antichain

Target T
$\mathrm{n}[0]|\mathrm{m}[\mathrm{x} \mid \mathrm{n}[0]]| \mathrm{k}[\mathrm{n}[\mathrm{y}] \mathrm{]}|\mathrm{~m}[0]| \mathrm{z}$

From Forest Matching to Rainbow Antichain

From Forest Matching to Rainbow Antichain

Target T
$\mathrm{n}[0]|\mathrm{m}[\mathrm{x} \mid \mathrm{n}[0]]| \mathrm{k}[\mathrm{n}[\mathrm{y}] \mathrm{]}|\mathrm{~m}[0]| \mathrm{z}$

Forest pattern S
$\langle m[x] \mid n[0], m[0]\rangle$

From Forest Matching to Rainbow Antichain

Target T
$n[0]|m[x \mid n[0]]| k[n[y]]|m[0]| z$
亿

Forest pattern S $\langle m[x] \mid n[0], m[0]\rangle$
the reduction is done on a 2-level palette

Forest matching is

Fixed Parameter Tractable

```
h ="# trees in pattern S" Parameters
k = "max # of I'st
```

- subtree isomorphisms: $\mathrm{O}\left(|\mathrm{S}||T|^{3 / 2}\right)$
- reduction to kernel size: $\mathrm{O}(|\mathrm{T}|)$
- exhaustive search of antichains: $O\left(h^{3} k 2^{2 h}\right)$

Forest matching is

 Fixed Parameter Tractable```
h ="# trees in pattern S" Parameters
k = "max # of I'st
```

- subtree isomorphisms: $\mathrm{O}\left(|\mathrm{S}||T|^{3 / 2}\right)$
- reduction to kernel size: $\mathrm{O}(|\mathrm{T}|)$
- exhaustive search of antichains: $O\left(h^{3} k 2^{2 h}\right)$

Total: $O\left(h^{3} k 2^{2 h}\right)+O\left(|S||T|^{3 / 2}\right)$

## Conclusions

- WRSs yield simpler and smaller semantics
- We have shown that matching for WRSs is feasible:
- exponential in redex width (constant and small)
- but polynomial in the size of agent
- Side result: rainbow antichain problem
- Applications: abstract machines (distributed $\pi, A m b i e n t s$, CaSPiS, etc.) and bigraphic reactive systems
- Future work: quantitative variants (probabilistic, etc.)


## Thanks for your attention

