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Outline of the talk

• Introduction

• The problem: forest matching

• NP-completeness

• Fixed-parameter Algorithm (the core only)

• Concluding remaks



Motivations
• Reactive systems (aka reduction systems) 

are common in process calculi

• Defined by
• a set of reduction rules     l(x)→r(x)
• a contextual closure

   l(x)→r(x)   a=C[l(x)σ]  b=C[r(x)σ]
                        a→b

• However: not always easy to apply, 
especially in models of global computing
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Ex: Remote Message Passing
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Ex: Remote Message Passing

S1 S2

M x

C1[ā⟨M⟩.P] | C2[a(x).Q]  → C1[P] | C2[Q{M/x}]

a

Infinite reduction rules are needed 
(one for each pair C1,C2)



⟨C1 , C2⟩

S1 S2

M x
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Ex: Remote Message Passing



⟨C1 , C2⟩

S1 S2

M x

⟨ā⟨M⟩.P, a(x).Q⟩  → ⟨P, Q{M/x}⟩

a

Just one wide reduction rule
Context has two holes

Ex: Remote Message Passing



Wide reactive systems

A set of wide reaction rules
⟨l1(x1),…, ln(xn)⟩ → ⟨r1(y1),…, rn(yn)⟩

     with {y1,…, yn} ⊆ {x1,…, xn} 

Contextual closure:

⟨l1(x1),…, ln(xn)⟩ → ⟨r1(y1),…, rn(yn)⟩
a=C[l1(x1)σ,…, ln(xn)σ]     b=C[r1(y1)σ,…, rn(yn)σ]

a→b
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Wide vs. Non-wide

• WRSs are more expressive than non-WRSs

• non-wide are a particular case of wide (width = 1)

• WRSs need less rules (often, finite instead of infinite)

• Pattern matching in WRSs is more complex

• The bad news: NP-complete

• The good news: combinatorial explosion depends on 
redex width only (constant and usually ≤3)



Linear Context Trees

T(X) ::     0                      empty tree
              x                      leaf  (x ∈ X)
              m[ T(X)]           labeled tree
              T(X’) | T(X’’)     siblings (X = X’ ⊎ X’’)
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Linear Context Trees

T(X) ::     0                      empty tree
              x                      leaf  (x ∈ X)
              m[ T(X)]           labeled tree
              T(X’) | T(X’’)     siblings (X = X’ ⊎ X’’)

=

Unordered
(up to structural congruence ≡)

T(X) T(Y)

m n

m[ T(X)] | n[T(Y)]



S

...

The matching problem

T ≡ (C{S/z}){D ,...,D  /x ,...,x  }1            m      1          m

D      D1              m

C
T        ≡

Context

Pattern

Parameters
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T ≡ (C{S ,...,S  /z ,..., z  }){D ,...,D  /x ,...,x  }1          h      1           h           1            m      1          m

D                     D1                                        m

C
T        ≡

Context

Pattern list

Parameters

forest

1 S

...
h...

...

The matching problem
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is NP-complete

• Tree matching problem is in P                
(subtree isomorphim algorithm [Matula’78])
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Forest matching
is NP-complete

• Tree matching problem is in P                
(subtree isomorphim algorithm [Matula’78])

• Forest matching problem is NP-complete!

S

...
D                     D1                                        m

C

1 S

...
h...

...

The pattern matchings 
must not overlap

=
antichain in T

≠ sub-forest isomorphism



Rainbow antichain
Instance: a tree T colored on palette P of colors.
Problem: to find a P-colorful antichain in T.



Rainbow antichain
Instance: a tree T colored on palette P of colors.
Problem: to find a P-colorful antichain in T.

Proof sketch of NP-hardness



Rainbow antichain
Instance: a tree T colored on palette P of colors.
Problem: to find a P-colorful antichain in T.

reduction 
from 3-SAT

Proof sketch of NP-hardness



Rainbow antichain
Instance: a tree T colored on palette P of colors.
Problem: to find a P-colorful antichain in T.

( x v y v z )   ( x v y v z )
_ _ v

C1 C2

reduction 
from 3-SAT

Proof sketch of NP-hardness



Rainbow antichain
Instance: a tree T colored on palette P of colors.
Problem: to find a P-colorful antichain in T.

( x v y v z )   ( x v y v z )
_ _ v

C1 C2

x x
_

y y
_

z z
_

C2 C2 C2C1C1C1

reduction 
from 3-SAT

Proof sketch of NP-hardness



Rainbow antichain
Instance: a tree T colored on palette P of colors.
Problem: to find a P-colorful antichain in T.

( x v y v z )   ( x v y v z )
_ _ v

C1 C2

x x
_

y y
_

z z
_

C2 C2 C2C1C1C1

reduction 
from 3-SAT

every truth assignment satisfying 
the formula induces a rainbow antichain

...and vice versa

Proof sketch of NP-hardness
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Fixed-parameter 
Tractability

How to cope with computational intractability?
approximation algorithms, average case analysis, 
randomized algorithms, heuristics methods, etc...

[Downey-Fellows’99]

FPT’s basic observation:
“for many hard problems, the seemingly inherent 
combinatorial explosion really can be restricted to 

a ‘small part’ of the input, the parameter”



Parameterized algorithm for
Rainbow antichain

• Rainbow antichain is the core problem 
behind the forest matching problem

• Rainbow antichain is solved in 2 steps:
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2. Exhaustive search of a rainbow antichain



Parameterized algorithm for
Rainbow antichain

• Rainbow antichain is the core problem 
behind the forest matching problem

• Rainbow antichain is solved in 2 steps:

1. Reduction to kernel-size of the input tree

2. Exhaustive search of a rainbow antichain

parameter:
size of P



1. Reduction by decoloring

delete u

Deletion of uncolored nodes does not influence
existence of rainbow antichain!

u

x y

v

x y

v

(*) we will assume the root cannot be deleted



Decoloring (rule 1)

u

decolor u

u

Ancestors with the same color can be decolored



Decoloring (rule 2)

u

decolor u

If the tree has all leaves of the same color,
then leaves with fan-out ≥ |P| can be decolored

u

fout(u) = 4   (*)   fout(u) = out-degree of the whole path from u to the root



How to apply the rules?
(an example of reduction to kernel size)

P = { red, yellow, green }
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How to apply the rules?
(an example of reduction to kernel size)

Rule 1: Decoloring of ancestors of the same color

Uncolored nodes 
can be removed 
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same color
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How to apply the rules?
(an example of reduction to kernel size)

Rule 2: Decoloring of nodes with fan-out ≥ |P| 

fout(u) = 6   

fout(u) = 3   

fout(u) = 4   

fout(u) = 5   

and repeat for 
each color...



How to apply the rules?
(an example of reduction to kernel size)

...to obtain the reduced tree
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Reduction to Kernel-Size

• by repeating rule 1 ...     height(T) ≤ |P|

• by repeating rule 2 ...     |c-color(T)| ≤ 2|P|

as a result           |nodes(T)| ≤ |P| 2|P|

No repetitions of colors 
in a path from the root to a leaf

   If max{ fout(n) | n node in T } ≤ m, then T has at most 2|P| leaves



2. Searching for a rainbow
using the fast subset convolution algorithm by

[Björklund et al. STOC’97]
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2. Searching for a rainbow
using the fast subset convolution algorithm by

[Björklund et al. STOC’97]

A(T, X) = N(T, X) v        (A(T’,Y)   A(T’’,Y \ X))v
Y⊆X

T’ ...
T = 

T’’
true iff  T contains all 

the colors in X⊆P  

O(|P|2 2|P|)for each node:
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n[0] | m[x | n[0]] | k[n[y]] | m[0] | z ⟨m[x] | n[0] ,  m[0]⟩

Target T Forest pattern S

closed nodes can only be 
matched by closed nodes

open nodes 
are freely
matchable

subtrees 
isomorphisms
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From Forest Matching to 
Rainbow Antichain

mkmn

*

n n

nm

* *

m

n[0] | m[x | n[0]] | k[n[y]] | m[0] | z

Target T Forest pattern S

the rainbow antichain is 
found on the children’s palette

1 2

the reduction is done on
a 2-level palette

⟨m[x] | n[0] ,  m[0]⟩
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Fixed Parameter Tractable
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• reduction to kernel size:

• exhaustive search of antichains: O(h3 k 22h)
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O(|S| |T|3/2)
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k = “max # of 1  -level children in S”st
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Forest matching is
Fixed Parameter Tractable

• subtree isomorphisms:

• reduction to kernel size:

• exhaustive search of antichains: O(h3 k 22h)

O(|T|)

O(|S| |T|3/2)

h = “# trees in pattern S”
k = “max # of 1  -level children in S”st

Parameters

O(h3 k 22h) + O(|S| |T|3/2)Total:



Conclusions

• WRSs yield simpler and smaller semantics

• We have shown that matching for WRSs is feasible:
• exponential in redex width (constant and small)
• but polynomial in the size of agent

• Side result: rainbow antichain problem

• Applications: abstract machines (distributed π, Ambients, 
CaSPiS, etc.) and bigraphic reactive systems

• Future work: quantitative variants (probabilistic, etc.)



Thanks for your 
attention


