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Given an initial state, SMCs can be interpreted as “machines”

that emit timed traces of states with a certain probability
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Timed paths & Events
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Trace Pseudometric
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Eco(T)
O-algebra generated from
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\

J

— |t’s a Behavioral Distance! —
d(s,s’) =0 iff s=4§
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Distance = Approx. Error

Example: Probabilistic Model Checking

probablllty of
satlsfylng P

P[Mo]({shcp}\ / P[Mi]({s=©})

dlstance bounds J

the abs. error
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Trace Distance

VS.
Model Checking

(i.e., does it provide a good approximation error?)
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Model Checking SMCs

i.e., measuring the likelihood that a
a linear real-time property is satisfied by the SMC
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Linear Real-time Spec.

11/28



Model Checking SMCs

i.e., measuring the likelihood that a
a linear real-time property is satisfied by the SMC

SMC Linear Real-time Spec.
) A

represented as
Metric Temporal Logic
formulas

11/28



Model Checking SMCs

i.e., measuring the likelihood that a
a linear real-time property is satisfied by the SMC

SMC

(

A

represented as
Metric Temporal Logic

formulas

Linear Real-time Spec.

AN

(

N
... or languages
recognized
by Timed Automata
J

11/28



Model Checking SMCs

i.e., measuring the likelihood that a
a linear real-time property is satisfied by the SMC

SMC

[ a proper measurable set! j

(

A

represented as
Metric Temporal Logic

formulas

Linear Real-time Spec.

AN

(

... or languages
recognized
by Timed Automata

11/28



(Alur-Henzinger)
Metric Temporal Logic

Q=p|L]|p2p| X |pUy

(*) 1SR closed interval with rational endpoints

12/28



(Alur-Henzinger)
Metric Temporal Logic

Q=p|L]|p2p| X |pUy

(*) 1SR closed interval with rational endpoints

12/28



MTL distance

(max error w.r.t. MTL properties)

set of timed paths
that satisfy

MTL(s,s’) = sup \P[s]({Tr\=/(P}) - P[s']({TT=))]
@ eMTL
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(Alur-Dill)

(Muller) Timed Automata
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TA distance

(max error w.r.t. timed regular properties)
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The theorem behind...
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The theorem behind...

For y,v:2 — R finite measures on (X,2)
and FC2 field such that o(F)=2

Representation Theorem :
I - VI = sup [U(E) - VE)
S
A y

F is much simpler than 2, nevertheless
it suffices to attain the supremum!
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Computing
the trace distance...

—— NP-hardness [Lyngs@-Pedersen JCSS’02] —

Approximating the trace distance

up to any €>0 whose size is polynomial
in the size of the MC is NP-hard.
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Computing
the trace distance...

—— NP-hardness [Lyngs@-Pedersen JCSS’02] —

Approximating the trace distance

up to any €>0 whose size is polynomial
in the size of the MC is NP-hard.

\ A J
reduction from
the max-clique problem

Decidability still an open problem!
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Approximation
Algorithm for
the Trace Distance

(from below & from above)
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o I ..l 1 uo
: Uk
( lower approximants ) ( upper approxmants )

® | and u; must converge to ||H - V||,

® For all ieN, | and ui must be computable.
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... from below

. Representation Theorem

||k - V|| = sup [U(E) - V(E)]
\ EeF <
LF field that generates Zj

We need FoCFi CFC ... suchthat UiFi=F

= sup [U(E) - V(E)]

EEFi
so that Vi=0,li < |+ & supili=||p- V||
A

(increa/;ing) ( limiting )
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Approx Trace Distance
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Provide Fo C F| C F, C ... such that

Ui Fi is a field for o(T)

from below

J

Take Fi to be the collection of finite unions of cylinders

(S(I!',R@,".JMJ,III)eziT

where R; € {[2,") | 0=<n=i2'}u{[i,o0)}

each repartitioned in 2' [closed-open) intervals)
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We need (2o € Q) € (), C ... such that
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= inf {w(=) | well;}
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\_

Provide (Qo € Q; € (), C ...
Ui Qi is dense in Q(P[s],P[s’])

J

Take Qi = {P¢[s,s'1€€2(P[s],P[s’]) | C of rank 21}
where Pel[s,s’] is the probability generated by

coupling structure

of rank k
C: SXS _}A(nks % |_|I<S)
such that C(s,s)eQ(P[s]%P[s']%)

~N

from above
such that

(

\k multisteps of length k

Stochastic process

generating pairs of timed

paths divided in

\

J
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Decidability

® A|:residence-time distributions are
computable on [q,q") with q,q’eQ-+

® A2:total variation between residence-time
distributions is computable

For any €>0, the approximation procedure
for the trace distance is decidable.

26/28



strong!

\V4
® Al:residence-time distributions are

computable on [q,q") with q,q’eQ-+

[ — ] Decidability

® A2:total variation between residence-time
distributions is computable

For any €>0, the approximation procedure
for the trace distance is decidable.

26/28



strong!

\V4
® Al:residence-time distributions are

computable on [q,q") with q,q’eQ-+

[ — ] Decidability

® A2:total variation between residence-time
distributions is computable I

Exp(N)

For any €>0, the approximation procedure
for the trace distance is decidable.

26/28



strong!

\V4
® Al:residence-time distributions are

computable on [q,q") with q,q’eQ-+

[ — ] Decidability

® A2:total variation between residence-time
distributions is computable EXPO\)‘ N(a,b)

For any €>0, the approximation procedure
for the trace distance is decidable.

26/28



[

strong!

Not th ] Decidability

\V4
® Al:residence-time distributions are

® A2:total variation between residence-time

computable on [q,q") with q,q’eQ-+

distributions is computable EXPO\)‘ N(a,b)‘ UGt
)

(

For any €>0, the approximation procedure
for the trace distance is decidable.

26/28



[

strong!

Not th ] Decidability

\V4
® Al:residence-time distributions are

® A2:total variation between residence-time

computable on [q,q") with q,q’eQ-+

distributions is computable EXPO\)‘ N(a,b)‘ UGt
)

(

For any €>0, the approximation procedure
for the trace distance is decidable.

26/28



Concluding Remarks

27/28



Concluding Remarks

® Trace Distance vs Model Checking

27/28



Concluding Remarks

® Trace Distance vs Model Checking

® (General results for Total Variation distance:

27/28



Concluding Remarks

® Trace Distance vs Model Checking

® (General results for Total Variation distance:

® algebraic representation theorem

27/28



Concluding Remarks

® Trace Distance vs Model Checking

® (General results for Total Variation distance:

® algebraic representation theorem

® approximation strategies

27/28



Concluding Remarks

® Trace Distance vs Model Checking

® (General results for Total Variation distance:

® algebraic representation theorem

® approximation strategies

® Approx. algorithm for Trace Distance

27/28



Concluding Remarks

® Trace Distance vs Model Checking

® (General results for Total Variation distance:

® algebraic representation theorem

® approximation strategies

® Approx. algorithm for Trace Distance

® Relation with Kantorovich dist. (not shown)
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Thank you
for the attention
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