Symbolic Search and Abstraction Heuristics for Cost-Optimal Planning

Álvaro Torralba
Advisors: Daniel Borrajo and Carlos Linares López

Universidad Carlos III de Madrid - June 2, 2015

- Cost-Optimal Planning
(2) Symbolic Search
- (Background) Symbolic Search
- Image Computation
- State Invariants
(3) Abstraction Heuristics
- (Background) Abstractions
- Merge-and-Shrink for Symbolic Search
- Symbolic Perimeter Merge-and-Shrink
(4) Symbolic Bidirectional Heuristic Search
(5) Conclusions
- Final Results: IPC14
- Conclusions

Outline

(1) Introduction

- Cost-Optimal Planning
(2) Symbolic Search
- (Background) Symbolic Search
- Image Computation
- State Invariants
(3) Abstraction Heuristics
- (Background) Abstractions
- Merge-and-Shrink for Symbolic Search
- Symbolic Perimeter Merge-and-Shrink
(4) Symbolic Bidirectional Heuristic Search
(5) Conclusions
- Final Results: IPC14
- Conclusions

Automated Planning

Given a planning task:

- A logical description of the initial situation, goal condition and a set of possible actions

$$
\begin{aligned}
\mathcal{V}= & \{\text { at }-T=\{A, B\}, \text { at }-P=\{A, B, T\}\} \\
s_{0}= & \{\text { at }-T A, \text { at }-P A\} \\
s_{\star}= & \{\text { at-P B }\} \\
\mathcal{O}= & \{\operatorname{move-}-T(A, B), \\
& \text { move- } T(B, A), \operatorname{load}-P(A), \ldots\}
\end{aligned}
$$

\rightarrow Find a plan (sequence of actions)
\rightarrow Cost-optimal: plan of minimum cost (prove it)

Empirical Evaluation Methods

$$
\text { SAS+ task } \longrightarrow \text { Planner } \quad \text { Optimal plan }
$$

\rightarrow Domain independent!! a planner can deal with any task

Empirical Evaluation Methods

$$
\text { SAS+ task } \longrightarrow \text { Planner } \longrightarrow \text { Optimal plan }
$$

\rightarrow Domain independent!! a planner can deal with any task

- Empirical evaluation methods:
- International Planning Competition: 1998, 2000, 2002, 2004, 2006, 2008, 2011, 2014, ...
- Standard set of benchmark domains: 1998-2011
- Time limit: 30 minutes
- Memory limit: 4GB RAM
- Coverage: number of problems solved
- Time: solve problems faster

Motivation of this Thesis

- Improve state-of-the-art optimal planning
\rightarrow Efficiently solve optimal planning problems
- Techniques considered
- Bidirectional search
- Symbolic search
- Abstraction heuristics
- Understand strengths/weaknesses
- Understand relation between techniques

Motivation of this Thesis

- Improve state-of-the-art optimal planning
\rightarrow Efficiently solve optimal planning problems
- Techniques considered
- Bidirectional search
- Symbolic search \Rightarrow GAMER: winner of IPC 2008
- Abstraction heuristics
\Rightarrow Merge-and-shrink: runner-up and part of the winner of IPC 2011
- Understand strengths/weaknesses
- Understand relation between techniques

State of the Art in Cost-Optimal Planning

> Explicit search

Symbolic search

Algorithms

A^{*}
Uniform-Cost

forward
backward
bidirectional

Heuristics

Delete-relaxation: $h^{\text {max }}$,
h^{+}
Landmarks: $h^{\text {LA }}$, LM-cut
Abstractions: PDBs, M\&S
Critical paths: h^{m}
Flow
max add

Pruning techniques

State invariants
Symmetries
Partial-order pruning

State of the Art in Cost-Optimal Planning

> Explicit search

Symbolic search

Algorithms

A^{*}
Uniform-Cost

forward
backward
bidirectional

Heuristics

Delete-relaxation: $h^{\max }$,
h^{+}
Landmarks: $h^{\text {LA }}$, LM-cut
Abstractions: PDBs, M\&S
Critical paths: h^{m}
Flow
max ad

State of the Art in Cost-Optimal Planning

> Explicit search
Symbolic search

Algorithms

Heuristics

Delete-relaxation: $h^{\max }, h^{+}$
Landmarks: $h^{\text {LA }}$, LM-cut
Abstractions: PDBs, M\&S
Critical paths: h^{m}
Flow
max add

State of the Art in Cost-Optimal Planning

> Explicit search

Symbolic search

Heuristics

Delete-relaxation: $h^{\max }, h^{+}$
Landmarks: $h^{\text {LA }}$, LM-cut
Abstractions: PDBs, M\&S
Critical paths: h^{m}
Flow
max add

State of the Art in Cost-Optimal Planning

> Explicit search

Symbolic search

Heuristics

Delete-relaxation: $h^{\max }, h^{+}$
Landmarks: $h^{\text {LA }}$, LM-cut
Abstractions: PDBs, M\&S
Critical paths: h^{m}
Flow
max add

State of the Art in Cost-Optimal Planning

> Explicit search

Symbolic search

Heuristics

Delete-relaxation: $h^{\max }, h^{+}$
Landmarks: $h^{\text {LA }}$, LM-cut
Abstractions: PDBs, M\&S
Critical paths: h^{m}
Flow
max add

State of the Art in Cost-Optimal Planning

> Explicit search

Symbolic search

Heuristics

Delete-relaxation: $h^{\text {max }}, h^{+}$
Landmarks: $h^{\text {LA }}$, LM-cut
Abstractions: PDBs, M\&S
Critical paths: h^{m}
Flow
max add

\qquad

Outline

(1) Introduction

- Cost-Optimal Planning
(2) Symbolic Search
- (Background) Symbolic Search
- Image Computation
- State Invariants
(3) Abstraction Heuristics
- (Background) Abstractions
- Merge-and-Shrink for Symbolic Search
- Symbolic Perimeter Merge-and-Shrink
(4) Symbolic Bidirectional Heuristic Search
(5) Conclusions
- Final Results: IPC14
- Conclusions

From Explicit to Symbolic Search

- S_{\star}

From Explicit to Symbolic Search

- S_{\star}

From Explicit to Symbolic Search

- S_{\star}

From Explicit to Symbolic Search

Reason with sets of states!

- S_{\star}

Binary Decision Diagrams (BDDs)

- Sets of states represented with Binary Decision Diagrams
- Variable ordering
- Reduction rules
- Possible exponential gain in memory/time
- Efficient operations (polynomial in BDD size)
(1) (at Truck A) (at Package A)
(2) (at Truck A) (in Package Truck)
(3) (at Truck B) (at Package A)

Image Computation

- Expand a set of states and generate the successor states
- Transition Relation: BDD that represents one or more planning actions with the same cost

$$
S^{\prime} \leftarrow \operatorname{image}(S, T)=\exists x . S(x) \wedge T\left(x, x^{\prime}\right)\left[x^{\prime} \leftrightarrow x\right]
$$

Symbolic Bidirectional Breadth-First Search

Symbolic Bidirectional Breadth-First Search

Symbolic Bidirectional Breadth-First Search

- Decide forward or backward direction at each step

Symbolic Bidirectional Breadth-First Search

- Decide forward or backward direction at each step

Symbolic Bidirectional Breadth-First Search

- Decide forward or backward direction at each step

Outline

(1) Introduction

- Cost-Optimal Planning
(2) Symbolic Search
- (Background) Symbolic Search
- Image Computation
- State Invariants
(3) Abstraction Heuristics
- (Background) Abstractions
- Merge-and-Shrink for Symbolic Search
- Symbolic Perimeter Merge-and-Shrink
(4) Symbolic Bidirectional Heuristic Search
(5) Conclusions
- Final Results: IPC14
- Conclusions

Optimizing Image Computation

- Image computation is the main bottleneck in symbolic search
- How to represent the Transition Relation?
- Monolithic relation \Rightarrow may use exponential memory
- Solution in Gamer \Rightarrow One TR for each action
move-T (A, B)
load-P (A)
move-T (B, A)

Optimizing Image Computation

- Image computation is the main bottleneck in symbolic search
- How to represent the Transition Relation?
- Monolithic relation \Rightarrow may use exponential memory
- Solution in Gamer \Rightarrow One TR for each action
- Idea 1: Separate preconditions and effects
\rightarrow avoid using auxiliary variables!

move-T (A, B)
$\operatorname{load-P~(A)}$
$\operatorname{move-T}(\mathrm{B}, \mathrm{A})$

pre: at-T A	eff: at-T B
pre: at-T A, at-P A	eff: at-P T
pre: at-T B	eff: at-T A

Optimizing Image Computation

- Image computation is the main bottleneck in symbolic search
- How to represent the Transition Relation?
- Monolithic relation \Rightarrow may use exponential memory
- Solution in Gamer \Rightarrow One TR for each action
- Idea 1: Separate preconditions and effects
\rightarrow avoid using auxiliary variables!
- Idea 2: Conjunction Tree
\rightarrow check preconditions of all operators simultaneously
move-T (A, B)
load-P (A)
move-T (B, A)

Optimizing Image Computation

- Image computation is the main bottleneck in symbolic search
- How to represent the Transition Relation?
- Monolithic relation \Rightarrow may use exponential memory
- Solution in Gamer \Rightarrow One TR for each action
- Idea 1: Separate preconditions and effects
\rightarrow avoid using auxiliary variables!
- Idea 2: Conjunction Tree
\rightarrow check preconditions of all operators simultaneously
- Idea 3: Aggregate TRs
\rightarrow different strategies to group the actions

move-T (A, B)
$\operatorname{load}-\mathrm{P}(\mathrm{A})$
$\operatorname{move-T}(\mathrm{B}, \mathrm{A})$

$$
\begin{aligned}
& \text { move-T }(A, B) \\
& \text { load-P }(A)
\end{aligned}
$$

move-T (B, A)

Empirical Results

- Compare image computation methods:
(1) $T R^{1}$: baseline approach
(2) $T R^{1+}$: avoid using x^{\prime} variables
(3) $C T_{20}^{\llcorner }$: conjunction tree
(4) $T_{100 k}^{D T}$: aggregate TRs

Total coverage of symbolic search algorithms over 1375 instances:

	$T R^{1}$	$T R^{1+}$	$C T_{20}^{L}$	$T_{100 k}^{D T}$
Forward uniform-cost search	699	676	724	$\mathbf{7 4 2}$
Backward uniform-cost search	444	525	529	$\mathbf{5 3 2}$
Bidirectional uniform-cost search	729	763	769	$\mathbf{7 9 3}$
BDDA ${ }^{*}$ with SPDBs	705	717	724	$\mathbf{7 6 4}$

$$
\begin{aligned}
& T R^{1} \leq T R^{1+} \leq C T_{20}^{\mathrm{L}} \leq T_{100 k}^{D T} \\
& \quad \text { (across all domains) }
\end{aligned}
$$

Time of Bidirectional Search

Outline

(1) Introduction

- Cost-Optimal Planning
(2) Symbolic Search
- (Background) Symbolic Search
- Image Computation
- State Invariants
(3) Abstraction Heuristics
- (Background) Abstractions
- Merge-and-Shrink for Symbolic Search
- Symbolic Perimeter Merge-and-Shrink

4 Symbolic Bidirectional Heuristic Search
(5. Conclusions

- Final Results: IPC14
- Conclusions

Motivation: State Invariants in Symbolic Search

- Invariant: holds in all states that may belong to a solution path
(1) Mutex: pair of facts that cannot be true in the same state
\rightarrow a truck cannot be simultaneously at two locations
(2) Invariant group: Set of facts such that exactly one is true
\rightarrow a truck must be somewhere
- Generated computing h^{2} in both directions
- Useful for:
() Removing operators from the planning task
(2) Pruning invalid states during the search

Encoding Constraints with cBDD

- $c B D D$: BDD that describes invalid states
(1) Mutex: $f_{i} \wedge f_{j}$
(2) "At-least-1" invariant: $\neg\left(f_{1} \vee f_{2} \vee \ldots \vee f_{n}\right)$
- Remove invalid states from $S_{g}: S_{g} \backslash c B D D$

(c) $c B D D$

(d) S_{g}

(e) $S_{g} \backslash c B D D$
e-deletion: encode invariants in the TRs
\rightarrow no invalid states are generated

Experimental Results

- Constraints found in 35 out of 43 domains
- 10\%-74\% invalid operators found in 17 out of 43 domains
- Mutex types:
- Baseline (B)
- Not pruning invalid states: \mathcal{M}_{\emptyset}
- Pruning invalid states: $c B D D$ or e-deletion (e-del)

		Remove invalid ops		
	B	\mathcal{M}_{\emptyset}	cBDD	e-del
Forward uniform-cost search	699	742	745	750
Backward uniform-cost search	509	532	677	696
Bidirectional uniform-cost search	765	793	836	841
BDDA * with SPDBs	736	764	777	781

Time of Bidirectional Uniform-Cost Search

(f) remove operators

(g) prune invalid states

(h) e-deletion vs cBDD

Comparison with State-of-the-Art Planners

Summary

(1) Image computation

- Analyzed different methods for image computation
- Best method: aggregate TRs
(2) State invariants
- Pruning invalid states (specially useful in bw search)
- Best encoding for symbolic search: e-edeletion

These significantly improved performance of symbolic planning
\rightarrow Symbolic bidirectional blind search is the current state-of-the-art for cost-optimal planning

Outline

(1) Introduction

- Cost-Optimal Planning
(2) Symbolic Search
- (Background) Symbolic Search
- Image Computation
- State Invariants
(3) Abstraction Heuristics
- (Background) Abstractions
- Merge-and-Shrink for Symbolic Search
- Symbolic Perimeter Merge-and-Shrink
(4) Symbolic Bidirectional Heuristic Search
(5) Conclusions
- Final Results: IPC14
- Conclusions

Motivation: Heuristics in Symbolic Search

Heuristics
Delete-relaxation: $h^{\text {max }}, h^{+}$ Landmarks: $h^{\text {LA, LM-cut }}$ Abstractions: PDBs, M\&S, CEGAR, Fork Critical paths: h^{m} Flow max $-a d d$

Motivation: Heuristics in Symbolic Search

Heuristics Delete-relaxation: $h^{\text {max }}, h^{+}$ Landmarks: $h^{L A}$, LM-cut Abstractions: PDBs, M\&S, CEGAR, Fork Critical paths: h^{m} Flow max add

Challenge: How to evaluate $h(s)$ on a set of states?

Motivation: Heuristics in Symbolic Search

Heuristics Delete-relaxation: $h^{\text {max }}, h^{+}$ Landmarks: $h^{L A}$, LM-cut Abstractions: PDBs, M\&S, CEGAR, Fork Critical paths: h^{m} Flow max add

Challenge: How to evaluate $h(s)$ on a set of states?

Abstraction Heuristics

- Abstraction: Mapping from states to abstract states
- Smaller abstract state space \rightarrow easier to search
- Use optimal distances in abstract state space as heuristic
- Preserve transitions \rightarrow admissible estimation

Abstraction Heuristics

- Abstraction: Mapping from states to abstract states
- Smaller abstract state space \rightarrow easier to search
- Use optimal distances in abstract state space as heuristic
- Preserve transitions \rightarrow admissible estimation

Abstraction Heuristics

- Abstraction: Mapping from states to abstract states
- Smaller abstract state space \rightarrow easier to search
- Use optimal distances in abstract state space as heuristic
- Preserve transitions \rightarrow admissible estimation

- Pattern Databases (PDBs)
- Ignore some variables in the problem
- Limitation: ignoring a single variable may relax too much

Abstraction Heuristics

- Abstraction: Mapping from states to abstract states
- Smaller abstract state space \rightarrow easier to search
- Use optimal distances in abstract state space as heuristic
- Preserve transitions \rightarrow admissible estimation

- Pattern Databases (PDBs)
- Ignore some variables in the problem
- Limitation: ignoring a single variable may relax too much

Merge-and-Shrink Algorithm (M\&S)

Algorithm 1: M\&S

```
\(\alpha_{1} \leftarrow \Pi_{v_{1}}\)
foreach \(v \in\left\{v_{2} \ldots v_{n}\right\}\) :
    if \(|\alpha|>\mathbf{N}\) :
        \(\operatorname{shrink}\left(\alpha_{i-1}\right) \otimes \Pi_{i}\)
    \(\alpha_{i} \leftarrow \alpha_{i-1} \otimes \Pi_{i}\)
```


return α

- Merge strategy: Linear
\rightarrow variable ordering
- Shrink strategy
\rightarrow reduce abstraction size

Merge-and-Shrink Algorithm (M\&S)

Algorithm 1: M\&S

```
\alpha
foreach v\in{\mp@subsup{v}{2}{}\ldots\mp@subsup{v}{n}{}}:
    if }|\alpha|>N
        shrink}(\mp@subsup{\alpha}{i-1}{})\otimes\mp@subsup{\Pi}{i}{
    \alpha
```


return α

- Merge strategy: Linear
\rightarrow variable ordering
- Shrink strategy
\rightarrow reduce abstraction size

Merge-and-Shrink Algorithm (M\&S)

Algorithm 1: M\&S

```
\alpha
foreach v\in{\mp@subsup{v}{2}{}\ldots\mp@subsup{v}{n}{}}:
    if }|\alpha|>N\mathbf{N}
        shrink}(\mp@subsup{\alpha}{i-1}{})\otimes\mp@subsup{\Pi}{i}{
    \alpha
```


return α

- Merge strategy: Linear
\rightarrow variable ordering
- Shrink strategy
\rightarrow reduce abstraction size
$\alpha_{1}=T_{A}$
move $_{A, B}$

Merge-and-Shrink Algorithm (M\&S)

Algorithm 1: M\&S

```
\alpha
foreach v\in{\mp@subsup{v}{2}{}\ldots\mp@subsup{v}{n}{}}:
    if }|\alpha|>N\mathbf{N}
        shrink}(\mp@subsup{\alpha}{i-1}{})\otimes\mp@subsup{\Pi}{i}{
    \alpha
```


return α

- Merge strategy: Linear
\rightarrow variable ordering
- Shrink strategy
\rightarrow reduce abstraction size
$\alpha_{1}=T_{A}$
move $_{A, B}$

Outline

(1) Introduction

- Cost-Optimal Planning
(2) Symbolic Search
- (Background) Symbolic Search
- Image Computation
- State Invariants
(3) Abstraction Heuristics
- (Background) Abstractions
- Merge-and-Shrink for Symbolic Search
- Symbolic Perimeter Merge-and-Shrink

4 Symbolic Bidirectional Heuristic Search
5. Conclusions

- Final Results: IPC14
- Conclusions

Merge-and-Shrink for Symbolic Search

- Hypothesis: BDDA* lacks good heuristics
\rightarrow BDDA $^{*}+\mathrm{M} \mathrm{\& S}$ can improve results
- How to use M\&S in symbolic search:

BDDs to use in symbolic search

Merge-and-Shrink as ADDs

$$
\alpha_{1}=T_{A}
$$

move $_{B, A}$

$$
\alpha_{3}=T_{A}, P_{T}, P_{A}
$$

Merge-and-Shrink as ADDs

Merge-and-Shrink as ADDs

Merge-and-Shrink as ADDs

Merge-and-Shrink as ADDs

Merge-and-Shrink as ADDs

$$
\begin{gathered}
\alpha_{1}=T_{A} \\
\operatorname{move}_{A, B} \\
\text { move }_{B, A}
\end{gathered}
$$

Theoretical Results

- M\&S to ADDs/BDDs in polynomial time
- Related empirical results:
- ADD representation of heuristics reduces memory
- Variable ordering has a huge impact
- ADD/BDD reduction rules may achieve exponential gain in memory with respect to shrinking perfect strategies
\rightarrow shows potential of improvement for M\&S strategies

Empirical Results

- Used M\&S in symbolic search \rightarrow Worse than symbolic PDBs

- Contradicts our hypothesis

Outline

(1) Introduction

- Cost-Optimal Planning
(2) Symbolic Search
- (Background) Symbolic Search
- Image Computation
- State Invariants
(3) Abstraction Heuristics
- (Background) Abstractions
- Merge-and-Shrink for Symbolic Search
- Symbolic Perimeter Merge-and-Shrink

4. Symbolic Bidirectional Heuristic Search
(5) Conclusions

- Final Results: IPC14
- Conclusions

Motivation: Combine Symbolic Search and M\&S

(1) Symbolic PDBs: larger abstract state spaces
(2) M\&S: flexible abstractions

Can we get the best of both worlds?

Motivation: Combine Symbolic Search and M\&S

(1) Symbolic PDBs: larger abstract state spaces
(2) M\&S: flexible abstractions

Can we get the best of both worlds?
\rightarrow Use symbolic search to search M\&S abstractions!

Symbolic Perimeter M\&S:
(1) Symbolic M\&S abstractions: larger M\&S abstract state spaces
(2) Perimeter abstractions

SM\&S Hierarchy

Enlarged M\&S abstractions: to perform symbolic search

SM\&S Hierarchy

Enlarged M\&S abstractions: to perform symbolic search

SM\&S Hierarchy

Enlarged M\&S abstractions: to perform symbolic search

SM\&S Hierarchy

Enlarged M\&S abstractions: to perform symbolic search

SM\&S Hierarchy

Enlarged M\&S abstractions: to perform symbolic search

SM\&S Hierarchy

Enlarged M\&S abstractions: to perform symbolic search

Perimeter Abstractions

- Challenges addressed with symbolic search
(1) Regression
(2) Expensive operations:
* membership in perimeter
\star frontier mapping
(3) Set perimeter radius
- Contributions
(1) Multiple abstraction levels

(2) Improved initialization of abstract searches

Perimeter Abstractions

- Challenges addressed with symbolic search
(1) Regression
(2) Expensive operations:
* membership in perimeter
* frontier mapping
(3) Set perimeter radius
- Contributions
(1) Multiple abstraction levels
(2) Improved initialization of abstract searches

Symbolic Perimeter Merge-and-Shrink

- $h_{\text {SPM }}$ heuristic is admissible and consistent

Symbolic Perimeter Merge-and-Shrink

- $h_{\text {SPM\&S }}$ heuristic is admissible and consistent

Symbolic Perimeter Merge-and-Shrink

- $h_{\text {SPM\&S }}$ heuristic is admissible and consistent

Symbolic Perimeter Merge-and-Shrink

- $h_{\text {SPM\&S }}$ heuristic is admissible and consistent

Empirical Results

Empirical Results: Expanded Nodes

Empirical Results: Expanded Nodes

Summary

Symbolic Perimeter M\&S

- Combines M\&S, perimeter abstractions and symbolic search
- Improvements to perimeter abstractions
- Synergy between symbolic search and perimeter abstractions
- More accurate heuristic than both!

But...
Results still worse than symbolic bidirectional uniform-cost search

Outline

(1) Introduction

- Cost-Optimal Planning
(2) Symbolic Search
- (Background) Symbolic Search
- Image Computation
- State Invariants
(3) Abstraction Heuristics
- (Background) Abstractions
- Merge-and-Shrink for Symbolic Search
- Symbolic Perimeter Merge-and-Shrink

4 Symbolic Bidirectional Heuristic Search
(5) Conclusions

- Final Results: IPC14
- Conclusions

Motivation: Heuristics in Symbolic Bidirectional Search

- Observations
(1) Bidirectional brute-force search is a state-of-the-art technique
(2) Good symbolic abstraction heuristics

Motivation: Heuristics in Symbolic Bidirectional Search

- Observations
(1) Bidirectional brute-force search is a state-of-the-art technique
(2) Good symbolic abstraction heuristics
- Use abstraction heuristics in symbolic bidirectional search!

Motivation: Heuristics in Symbolic Bidirectional Search

- Observations
(1) Bidirectional brute-force search is a state-of-the-art technique
(2) Good symbolic abstraction heuristics
- Use abstraction heuristics in symbolic bidirectional search!
- However, bidirectional heuristic search is not so easy:
- Very promising since years ago
- Never really able to outperform A* or bidirectional uniform-cost search

Algorithm

- Main idea:
(1) Start symbolic bidirectional uniform-cost search \star If it succeeds \rightarrow done!
(2) Detect when it is going to fail and activate heuristics
- Abstraction heuristics: Bidirectional, Partial, Perimeter

Algorithm

- Main idea:
(1) Start symbolic bidirectional uniform-cost search \star If it succeeds \rightarrow done!
(2) Detect when it is going to fail and activate heuristics
- Abstraction heuristics: Bidirectional, Partial, Perimeter
- Decide which search advance: useful and feasible

Algorithm

- Main idea:
(1) Start symbolic bidirectional uniform-cost search \star If it succeeds \rightarrow done!
(2) Detect when it is going to fail and activate heuristics
- Abstraction heuristics: Bidirectional, Partial, Perimeter
- Decide which search advance: useful and feasible

Algorithm

- Main idea:
(1) Start symbolic bidirectional uniform-cost search \star If it succeeds \rightarrow done!
(2) Detect when it is going to fail and activate heuristics
- Abstraction heuristics: Bidirectional, Partial, Perimeter
- Decide which search advance: useful and feasible

Algorithm

- Main idea:
(1) Start symbolic bidirectional uniform-cost search \star If it succeeds \rightarrow done!
(2) Detect when it is going to fail and activate heuristics
- Abstraction heuristics: Bidirectional, Partial, Perimeter
- Decide which search advance: useful and feasible

Empirical Results

Full SymBA*

Empirical Results

Full SymBA* No perimeter abstraction

Empirical Results

Summary

- Contributions:
- SymBA*: a symbolic bidirectional heuristic search algorithm
- Bidirectional search in abstract state spaces
- Synergy: Symbolic search + Bidirectional search + Perimeter abstractions
- Symbolic Bidirectional A^{*} is possible
- Future work: domain-independent abstraction strategies (better than a random selection)

Outline

(1) Introduction

- Cost-Optimal Planning
(2) Symbolic Search
- (Background) Symbolic Search
- Image Computation
- State Invariants
(3) Abstraction Heuristics
- (Background) Abstractions
- Merge-and-Shrink for Symbolic Search
- Symbolic Perimeter Merge-and-Shrink
(4) Symbolic Bidirectional Heuristic Search
(5) Conclusions
- Final Results: IPC14
- Conclusions

Final Results

Final Results

Final Results

Final Results

2014 International Planning Competition

- Submitted our planners to the 2014-IPC
(1) CGAMER: Symbolic Bidirectional uniform-cost search with image computation and state-invariant constraints
(2) SPM\&S: A^{*} with symbolic perimeter PDBs and M\&S
(3) SymBA*: Symbolic Bidirectional A* with SPM\&S
- Competed against:
- Gamer: baseline symbolic planner
- Top explicit-state search planners and portfolios
- Disclaimer: IPC results are not everything
- Domains/Instances selection, bugs, ...

2014 International Planning Competition

				$\begin{aligned} & \text { む̆ } \\ & \text { © } \end{aligned}$	$\begin{aligned} & \frac{0}{\bar{E}} \\ & \text { 흔 } \end{aligned}$	苞	$\begin{aligned} & \text { 을 } \\ & \text { 亲 } \end{aligned}$				$\frac{\stackrel{e}{E}}{\stackrel{\omega}{\omega}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{0} \end{aligned}$			\％
symba－2	6	3	4	18	20	20	20	4	20	0	10	10	9	7	151
symba－1	6	3	4	18	20	19	20	4	20	0	10	4	9	6	143
cgamer－bd	6	0	1	18	20	0	15	0	19	3	11	13	8	6	120
spmas	5	3	2	1	20	18	12	4	14	4	7	8	9	7	114
rida	0	3	0	16	5	19	17	5	3	6	8	8	8	15	113
dynamic－gamer	3	3	10	15	14	0	17	3	19	0	2	0	7	6	99
all－paca	0	7	0	17	6	15	13	5	8	6	3	1	5	12	98
cedalion	0	7	0	14	5	15	13	5	1	2	5	7	6	13	93
metis	3	7	6	0	8	15	13	5	3	4	8	7	6	6	91
nucelar	0	7	0	13	0	15	13	5	3	5	9	0	7	13	90
rlazya	0	7	0	17	5	15	9	5	2	4	6	7	6	5	88
gamer	3	3	2	18	13	0	14	0	16	0	3	0	6	5	83
hflow	0	3	0	0	3	7	4	5	1	0	10	0	5	15	53
miplan	0	7	0	11	0	0	10	5	0	1	0	0	0	13	47
dpmplan	0	7	0	8	0	0	0	5	0	5	0	0	6	12	43
hpp－ce	0	0	0	7	0	3	0	5	0	0	0	0	0	0	15
hpp	0	0	0	6	0	3	0	5	0	0	0	0	0	0	14

2014 International Planning Competition

				$\begin{aligned} & \text { 厄ू } \\ & \text { :̄ } \end{aligned}$	$\begin{aligned} & \text { oㄹ } \\ & \text { 흔 } \\ & \text { 흔 } \end{aligned}$	芋	$\begin{aligned} & \text { 은 } \\ & \text { 亲 } \end{aligned}$				$\begin{gathered} \stackrel{\text { g }}{\stackrel{\rightharpoonup}{\omega}} \\ \end{gathered}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \text { iे } \end{aligned}$		$\frac{\text { \％}}{\text { \％}}$	¢
symba－2	6	3	4	18	20	20	20	4	20	0	10	10	9	7	151
symba－1	6	3	4	18	20	19	20	4	20	0	10	4	9	6	143
cgamer－bd	6	0	1	18	20	0	15	0	19	3	11	13	8	6	120
spmas	5	3	2	1	20	18	12	4	14	4	7	8	9	7	114
rida	0	3	0	16	5	19	17	5	3	6	8	8	8	15	113
dynamic－gamer	3	3	10	15	14	0	17	3	19	0	2	0	7	6	99
all－paca	0	7	0	17	6	15	13	5	8	6	3	1	5	12	98
cedalion	0	7	0	14	5	15	13	5	1	2	5	7	6	13	93
metis	3	7	6	0	8	15	13	5	3	4	8	7	6	6	91
nucelar	0	7	0	13	0	15	13	5	3	5	9	0	7	13	90
rlazya	0	7	0	17	5	15	9	5	2	4	6	7	6	5	88
gamer	3	3	2	18	13	0	14	0	16	0	3	0	6	5	83
hflow	0	3	0	0	3	7	4	5	1	0	10	0	5	15	53
miplan	0	7	0	11	0	0	10	5	0	1	0	0	0	13	47
dpmplan	0	7	0	8	0	0	0	5	0	5	0	0	6	12	43
hpp－ce	0	0	0	7	0	3	0	5	0	0	0	0	0	0	15
hpp	0	0	0	6	0	3	0	5	0	0	0	0	0	0	14

2014 International Planning Competition

				$\begin{aligned} & \text { 厄ू } \\ & \text { À } \end{aligned}$	$\begin{aligned} & \text { 을 } \\ & \text { 흔 } \end{aligned}$	芋	$\begin{aligned} & \text { 은 } \\ & \text { 亲 } \end{aligned}$			$\begin{aligned} & \text { 이 } \\ & \text { 亮 } \\ & \text { In } \end{aligned}$	$\begin{gathered} \stackrel{\text { g }}{\stackrel{\rightharpoonup}{\omega}} \\ \end{gathered}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \text { iे } \end{aligned}$		$\frac{\text { \％}}{\text { \％}}$	¢
symba－2	6	3	4	18	20	20	20	4	20	0	10	10	9	7	151
symba－1	6	3	4	18	20	19	20	4	20	0	10	4	9	6	143
cgamer－bd	6	0	1	18	20	0	15	0	19	3	11	13	8	6	120
spmas	5	3	2	1	20	18	12	4	14	4	7	8	9	7	114
rida	0	3	0	16	5	19	17	5	3	6	8	8	8	15	113
dynamic－gamer	3	3	10	15	14	0	17	3	19	0	2	0	7	6	99
all－paca	0	7	0	17	6	15	13	5	8	6	3	1	5	12	98
cedalion	0	7	0	14	5	15	13	5	1	2	5	7	6	13	93
metis	3	7	6	0	8	15	13	5	3	4	8	7	6	6	91
nucelar	0	7	0	13	0	15	13	5	3	5	9	0	7	13	90
rlazya	0	7	0	17	5	15	9	5	2	4	6	7	6	5	88
gamer	3	3	2	18	13	0	14	0	16	0	3	0	6	5	83
hflow	0	3	0	0	3	7	4	5	1	0	10	0	5	15	53
miplan	0	7	0	11	0	0	10	5	0	1	0	0	0	13	47
dpmplan	0	7	0	8	0	0	0	5	0	5	0	0	6	12	43
hpp－ce	0	0	0	7	0	3	0	5	0	0	0	0	0	0	15
hpp	0	0	0	6	0	3	0	5	0	0	0	0	0	0	14

2014 International Planning Competition

				$\begin{aligned} & \text { 厄ू } \\ & \text { :̄ } \end{aligned}$	$\begin{aligned} & \text { oㄹ } \\ & \text { 흔 } \\ & \text { 흔 } \end{aligned}$	芋	$\begin{aligned} & \text { 은 } \\ & \text { 亲 } \end{aligned}$				$\stackrel{\stackrel{\text { g }}{\stackrel{\Delta}{\omega}}}{\substack{2}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \text { iे } \end{aligned}$		$\frac{\text { \％}}{\text { \％}}$	¢
symba－2	6	3	4	18	20	20	20	4	20	0	10	10	9	7	151
symba－1	6	3	4	18	20	19	20	4	20	0	10	4	9	6	143
cgamer－bd	6	0	1	18	20	0	15	0	19	3	11	13	8	6	120
spmas	5	3	2	1	20	18	12	4	14	4	7	8	9	7	114
rida	0	3	0	16	5	19	17	5	3	6	8	8	8	15	113
dynamic－gamer	3	3	10	15	14	0	17	3	19	0	2	0	7	6	99
all－paca	0	7	0	17	6	15	13	5	8	6	3	1	5	12	98
cedalion	0	7	0	14	5	15	13	5	1	2	5	7	6	13	93
metis	3	7	6	0	8	15	13	5	3	4	8	7	6	6	91
nucelar	0	7	0	13	0	15	13	5	3	5	9	0	7	13	90
rlazya	0	7	0	17	5	15	9	5	2	4	6	7	6	5	88
gamer	3	3	2	18	13	0	14	0	16	0	3	0	6	5	83
hflow	0	3	0	0	3	7	4	5	1	0	10	0	5	15	53
miplan	0	7	0	11	0	0	10	5	0	1	0	0	0	13	47
dpmplan	0	7	0	8	0	0	0	5	0	5	0	0	6	12	43
hpp－ce	0	0	0	7	0	3	0	5	0	0	0	0	0	0	15
hpp	0	0	0	6	0	3	0	5	0	0	0	0	0	0	14

Outline

(1) Introduction

- Cost-Optimal Planning
(2) Symbolic Search
- (Background) Symbolic Search
- Image Computation
- State Invariants
(3) Abstraction Heuristics
- (Background) Abstractions
- Merge-and-Shrink for Symbolic Search
- Symbolic Perimeter Merge-and-Shrink
(4) Symbolic Bidirectional Heuristic Search
(5) Conclusions
- Final Results: IPC14
- Conclusions

Conclusions

- Symbolic search for cost-optimal planning:
- Analysis of image computation
- State-invariant pruning
- M\&S heuristics in symbolic search planning
- SPM\&S: new perimeter abstraction heuristic based in symbolic search and M\&S
- Big question: can we use heuristics in symbolic planning?
(1) Used M\&S and SPM\&S in BDDA*
(2) SymBA*: symbolic bidirectional search + perimeter abstractions

Conclusions

- Symbolic bidirectional blind search
\rightarrow Currently, the best method for cost-optimal planning (only beaten by heuristics in domains where the heuristics are very precise).
- SPM\&S: state-of-the-art heuristic
- Highlighted the relevance of symbolic search and regression
- Synergy of symbolic bidirectional search and perimeter abstractions

List of Publications

Álvaro Torralba, Stefan Edelkamp, and Peter Kissmann. Transition trees for cost-optimal symbolic planning.
In ICAPS, 2013
Álvaro Torralba and Vidal Alcázar. Constrained symbolic search: On mutexes, BDD minimization and more.
In SoCS, 2013
Stefan Edelkamp, Peter Kissmann, and Álvaro Torralba. Symbolic A* search with pattern databases and the merge-and-shrink abstraction. In ECAI, 2012
Álvaro Torralba, Carlos Linares López, and Daniel Borrajo. Symbolic merge-and-shrink for cost-optimal planning.
In IJCAI, 2013

Thank you for your attention!

Questions?

