Symbolic Search and Abstraction Heuristics for Cost-Optimal Planning

Álvaro Torralba Advisors: Daniel Borrajo and Carlos Linares López

Universidad Carlos III de Madrid - June 2, 2015

Álvaro Torralba

PhD Defense

June 2, 2015 1 / 54

Cost-Optimal Planning

Symbolic Search

- (Background) Symbolic Search
- Image Computation
- State Invariants

Abstraction Heuristics

- (Background) Abstractions
- Merge-and-Shrink for Symbolic Search
- Symbolic Perimeter Merge-and-Shrink

Symbolic Bidirectional Heuristic Search

Conclusions

- Final Results: IPC14
- Conclusions

Álvaro Torralba

Outline

Introduction

Cost-Optimal Planning

2 Symbolic Search

- (Background) Symbolic Search
- Image Computation
- State Invariants

3 Abstraction Heuristics

- (Background) Abstractions
- Merge-and-Shrink for Symbolic Search
- Symbolic Perimeter Merge-and-Shrink

Symbolic Bidirectional Heuristic Search

- 5 Conclusions
 - Final Results: IPC14
 - Conclusions

Automated Planning

Given a planning task:

 A logical description of the initial situation, goal condition and a set of possible actions

$$\mathcal{V} = \{ at-T = \{A, B\}, at-P = \{A, B, T\} \}$$

$$s_0 = \{ at-T A, at-P A \}$$

$$s_* = \{ at-P B \}$$

$$\mathcal{O} = \{ move-T (A, B), move-T (B, A), load-P(A), \dots \}$$

- \rightarrow Find a plan (sequence of actions)
- \rightarrow Cost-optimal: plan of minimum cost (prove it)

	Torral	

Empirical Evaluation Methods

 \rightarrow Domain independent!! a planner can deal with any task

	Tor	

A .

Empirical Evaluation Methods

 \rightarrow Domain independent!! a planner can deal with any task

- Empirical evaluation methods:
 - International Planning Competition: 1998, 2000, 2002, 2004, 2006, 2008, 2011, 2014, ...
 - Standard set of benchmark domains: 1998-2011
 - Time limit: 30 minutes
 - Memory limit: 4GB RAM
 - Coverage: number of problems solved
 - Time: solve problems faster

Motivation of this Thesis

- Improve state-of-the-art optimal planning
- \rightarrow Efficiently solve optimal planning problems
 - Techniques considered
 - Bidirectional search
 - Symbolic search
 - Abstraction heuristics
 - Understand strengths/weaknesses
 - Understand relation between techniques

Motivation of this Thesis

- Improve state-of-the-art optimal planning
- \rightarrow Efficiently solve optimal planning problems
 - Techniques considered
 - Bidirectional search
 - ► Symbolic search ⇒ GAMER: winner of IPC 2008
 - Abstraction heuristics
 - ⇒ Merge-and-shrink: runner-up and part of the winner of IPC 2011
 - Understand strengths/weaknesses
 - Understand relation between techniques

Pruning techniques

State invariants

Symmetries

Partial-order pruning

Outline

IntroductionCost-Optimal Planning

Symbolic Search

- (Background) Symbolic Search
- Image Computation
- State Invariants

3 Abstraction Heuristics

- (Background) Abstractions
- Merge-and-Shrink for Symbolic Search
- Symbolic Perimeter Merge-and-Shrink
- Symbolic Bidirectional Heuristic Search
- 5 Conclusions
 - Final Results: IPC14
 - Conclusions

S₀ •

• S*

varo		

イロト イヨト イヨト イヨト

Álvaro Torralba

PhD Defense

June 2, 2015 8 / 54

2

Reason with sets of states!

6

• S*

Binary Decision Diagrams (BDDs)

- Sets of states represented with Binary Decision Diagrams
 - Variable ordering
 - Reduction rules
- Possible exponential gain in memory/time
- Efficient operations (polynomial in BDD size)

- (at Truck A) (at Package A)
- 2 (at Truck A) (in Package Truck)
- (at Truck B) (at Package A)

Image Computation

- Expand a set of states and generate the successor states
- Transition Relation: BDD that represents one or more planning actions with the same cost

 $S' \leftarrow \textit{image}(S, T) = \exists x \ . \ S(x) \land T(x, x')[x' \leftrightarrow x]$

	Torral	

э

• • • • • • • • • • • •

varo [·]	

э

• • • • • • • • • • • • •

Decide forward or backward direction at each step

	F orral	

Decide forward or backward direction at each step

Decide forward or backward direction at each step

Outline

Cost-Optimal Planning Symbolic Search (Background) Symbolic Search Image Computation ۲ (Background) Abstractions Merge-and-Shrink for Symbolic Search Symbolic Perimeter Merge-and-Shrink Final Results: IPC14

- Image computation is the main bottleneck in symbolic search
- How to represent the Transition Relation?
 - ► Monolithic relation ⇒ may use exponential memory
 - Solution in GAMER ⇒ One TR for each action

load-P (A)

move-T (B, A)

< ロ > < 同 > < 回 > < 回 >

- Image computation is the main bottleneck in symbolic search
- How to represent the Transition Relation?
 - Monolithic relation ⇒ may use exponential memory
 - Solution in GAMER ⇒ One TR for each action
- Idea 1: Separate preconditions and effects
 - \rightarrow avoid using auxiliary variables!

Álvaro Torralba	PhD Defense
-----------------	-------------

< ロ > < 同 > < 回 > < 回 >

- Image computation is the main bottleneck in symbolic search
- How to represent the Transition Relation?
 - Monolithic relation ⇒ may use exponential memory
 - Solution in GAMER ⇒ One TR for each action
- Idea 1: Separate preconditions and effects
 - \rightarrow avoid using auxiliary variables!
- Idea 2: Conjunction Tree
 - \rightarrow check preconditions of all operators simultaneously

- Image computation is the main bottleneck in symbolic search
- How to represent the Transition Relation?
 - Monolithic relation ⇒ may use exponential memory
 - Solution in GAMER ⇒ One TR for each action
- Idea 1: Separate preconditions and effects
 - \rightarrow avoid using auxiliary variables!
- Idea 2: Conjunction Tree
 - \rightarrow check preconditions of all operators simultaneously
- Idea 3: Aggregate TRs

 \rightarrow different strategies to group the actions

move-T (B, A)

< 回 > < 三 > < 三 >

Empirical Results

- Compare image computation methods:
 - TR¹: baseline approach
 - 2 TR^{1+} : avoid using x' variables
 - \bigcirc CT_{20}^{L} : conjunction tree
 - 4 $T_{100k}^{D\overline{T}}$: aggregate TRs

Total coverage of symbolic search algorithms over 1375 instances:

	TR^1	TR^{1+}	CT_{20}^{L}	T_{100k}^{DT}
Forward uniform-cost search	699	676	724	742
Backward uniform-cost search	444	525	529	532
Bidirectional uniform-cost search	729	763	769	793
BDDA* with SPDBs	705	717	724	764

$$TR^{1} \leq TR^{1+} \leq CT_{20}^{L} \leq T_{100k}^{DT}$$

(across all domains)

Time of Bidirectional Search

Outline

Introducti

Cost-Optimal Planning

Symbolic Search

- (Background) Symbolic Search
 Image Computation
- Image Computation
- State Invariants

Abstraction Heuristics

- (Background) Abstractions
- Merge-and-Shrink for Symbolic Search
- Symbolic Perimeter Merge-and-Shrink
- Symbolic Bidirectional Heuristic Search
- 5 Conclusions
 - Final Results: IPC14
 - Conclusions

Motivation: State Invariants in Symbolic Search

Invariant: holds in all states that may belong to a solution path
 Mutex: pair of facts that cannot be true in the same state

 → a truck cannot be simultaneously at two locations

 Invariant group: Set of facts such that exactly one is true

 → a truck must be somewhere

- Generated computing h^2 in both directions
- Useful for:
 - Removing operators from the planning task
 - Pruning invalid states during the search

Encoding Constraints with cBDD

- cBDD: BDD that describes invalid states
 - Mutex: $f_i \wedge f_j$
 - 2 "At-least-1" invariant: $\neg(f_1 \lor f_2 \lor \ldots \lor f_n)$
- Remove invalid states from S_g : $S_g \setminus cBDD$

e-deletion: encode invariants in the TRs

 \rightarrow no invalid states are generated

,		2 1 E 2 1 E 2	
Álvaro Torralba	PhD Defense	June 2, 2015	18 / 54

Experimental Results

- Constraints found in 35 out of 43 domains
- 10%-74% invalid operators found in 17 out of 43 domains
- Mutex types:
 - Baseline (B)
 - Not pruning invalid states: M₀
 - Pruning invalid states: cBDD or e-deletion (e-del)

		Remove invalid ops		
	В	\mathcal{M}_{\emptyset}	cBDD	e-del
Forward uniform-cost search	699	742	745	750
Backward uniform-cost search	509	532	677	696
Bidirectional uniform-cost search	765	793	836	841
BDDA* with SPDBs	736	764	777	781

Time of Bidirectional Uniform-Cost Search

Álvaro Torralba

PhD Defense

a

June 2, 2015 21 / 54

June 2, 2015 21 / 54

-

Summary

Image computation

- Analyzed different methods for image computation
- Best method: aggregate TRs
- State invariants
 - Pruning invalid states (specially useful in bw search)
 - Best encoding for symbolic search: e-edeletion

These significantly improved performance of symbolic planning

→ Symbolic bidirectional blind search is the current state-of-the-art for cost-optimal planning

Outline

Cost-Optimal Planning (Background) Symbolic Search Abstraction Heuristics (Background) Abstractions Merge-and-Shrink for Symbolic Search Symbolic Perimeter Merge-and-Shrink Final Results: IPC14

Motivation: Heuristics in Symbolic Search

He	euristics
	Delete-relaxation: h ^{max} , h ⁺
	Landmarks: h ^{LA} , LM-cut
	Abstractions: PDBs, M&S, CEGAR, Fork
	Critical paths: h ^m
	Flow
	max add LP

	Torral	

크

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Motivation: Heuristics in Symbolic Search

Challenge: How to evaluate h(s) on a set of states?

Motivation: Heuristics in Symbolic Search

Challenge: How to evaluate h(s) on a set of states?

- Abstraction: Mapping from states to abstract states
 - Smaller abstract state space \rightarrow easier to search
 - Use optimal distances in abstract state space as heuristic
 - $\blacktriangleright \ \ \, \text{Preserve transitions} \rightarrow \text{admissible estimation}$

伺 ト イ ヨ ト イ ヨ

- Abstraction: Mapping from states to abstract states
 - Smaller abstract state space \rightarrow easier to search
 - Use optimal distances in abstract state space as heuristic
 - $\blacktriangleright \ \ \, \text{Preserve transitions} \rightarrow \text{admissible estimation}$

伺 ト イ ヨ ト イ ヨ

- Abstraction: Mapping from states to abstract states
 - \blacktriangleright Smaller abstract state space \rightarrow easier to search
 - Use optimal distances in abstract state space as heuristic
 - ► Preserve transitions → admissible estimation

- Pattern Databases (PDBs)
 - Ignore some variables in the problem
 - Limitation: ignoring a single variable may relax too much

Álvaro Torralba

PhD Defense

★ ∃ > < ∃ >

- Abstraction: Mapping from states to abstract states
 - \blacktriangleright Smaller abstract state space \rightarrow easier to search
 - Use optimal distances in abstract state space as heuristic
 - Preserve transitions \rightarrow admissible estimation

- Pattern Databases (PDBs)
 - Ignore some variables in the problem
 - Limitation: ignoring a single variable may relax too much

Álvaro Torralba

PhD Defense

June 2, 2015 25 / 54

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Algorithm 1: M&S

 $\begin{array}{l} \alpha_{1} \leftarrow \Pi_{v_{1}} \\ \text{foreach } v \in \{v_{2} \dots v_{n}\} \text{:} \\ \text{if } |\alpha| > N \text{:} \\ \text{shrink}(\alpha_{i-1}) \otimes \Pi_{i} \\ \alpha_{i} \leftarrow \alpha_{i-1} \otimes \Pi_{i} \end{array}$

return α

- Merge strategy: Linear
 - \rightarrow variable ordering
- Shrink strategy
 - $\rightarrow\,$ reduce abstraction size

Algorithm 1: M&S

$$\alpha_{1} \leftarrow \Pi_{v_{1}}$$
foreach $v \in \{v_{2} \dots v_{n}\}$:
if $|\alpha| > N$:
shrink $(\alpha_{i-1}) \otimes \Pi_{i}$
 $\alpha_{i} \leftarrow \alpha_{i-1} \otimes \Pi_{i}$

return α

- Merge strategy: Linear
 - $\rightarrow \,$ variable ordering
- Shrink strategy
 - $\rightarrow\,$ reduce abstraction size

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Algorithm 1: M&S

$$\alpha_{1} \leftarrow \Pi_{v_{1}}$$
foreach $v \in \{v_{2} \dots v_{n}\}$:
if $|\alpha| > N$:
shrink $(\alpha_{i-1}) \otimes \Pi_{i}$
 $\alpha_{i} \leftarrow \alpha_{i-1} \otimes \Pi_{i}$

return α

- Merge strategy: Linear
 - $\rightarrow \,$ variable ordering
- Shrink strategy
 - \rightarrow reduce abstraction size

Algorithm 1: M&S

$$\alpha_{1} \leftarrow \Pi_{v_{1}}$$
foreach $v \in \{v_{2} \dots v_{n}\}$:
if $|\alpha| > N$:
shrink $(\alpha_{i-1}) \otimes \Pi_{i}$
 $\alpha_{i} \leftarrow \alpha_{i-1} \otimes \Pi_{i}$

return α

- Merge strategy: Linear
 - $\rightarrow \,$ variable ordering
- Shrink strategy
 - \rightarrow reduce abstraction size

Outline

Cost-Optimal Planning (Background) Symbolic Search Abstraction Heuristics (Background) Abstractions Merge-and-Shrink for Symbolic Search Symbolic Perimeter Merge-and-Shrink Final Results: IPC14

Merge-and-Shrink for Symbolic Search

Hypothesis: BDDA* lacks good heuristics

- \rightarrow BDDA^{*} + M&S can improve results
- How to use M&S in symbolic search:

Alvaro	

э

イロト イヨト イヨト イヨト

Álvaro Torralba

PhD Defense

June 2, 2015 29 / 54

Álvaro Torralba

PhD Defense

June 2, 2015 29 / 54

Álvaro Torralba

Álvaro Torralba

Álvaro Torralba

Theoretical Results

- M&S to ADDs/BDDs in polynomial time
- Related empirical results:
 - ADD representation of heuristics reduces memory
 - Variable ordering has a huge impact

- ADD/BDD reduction rules may achieve exponential gain in memory with respect to shrinking perfect strategies
 - $\rightarrow\,$ shows potential of improvement for M&S strategies

Empirical Results

 $\bullet~$ Used M&S in symbolic search \rightarrow Worse than symbolic PDBs

Contradicts our hypothesis

	4		596
Álvaro Torralba	PhD Defense	June 2, 2015	31 / 54

Outline

Cost-Optimal Planning (Background) Symbolic Search Abstraction Heuristics (Background) Abstractions Merge-and-Shrink for Symbolic Search Symbolic Perimeter Merge-and-Shrink Final Results: IPC14

Motivation: Combine Symbolic Search and M&S

- Symbolic PDBs: larger abstract state spaces
- 2 M&S: flexible abstractions

Can we get the best of both worlds?

Motivation: Combine Symbolic Search and M&S

- Symbolic PDBs: larger abstract state spaces
- 2 M&S: flexible abstractions

Can we get the best of both worlds?

 \rightarrow Use symbolic search to search M&S abstractions!

Symbolic Perimeter M&S:

- Symbolic M&S abstractions: larger M&S abstract state spaces
- Perimeter abstractions

SM&S Hierarchy

Enlarged M&S abstractions: to perform symbolic search

	Torra	

SM&S Hierarchy

Enlarged M&S abstractions: to perform symbolic search

A (1) > A (2) > A

SM&S Hierarchy

Enlarged M&S abstractions: to perform symbolic search

	Torral	

SM&S Hierarchy

Enlarged M&S abstractions: to perform symbolic search

• • • • • • • • • • • •

SM&S Hierarchy

Enlarged M&S abstractions: to perform symbolic search

• • • • • • • • • • • •

SM&S Hierarchy

Enlarged M&S abstractions: to perform symbolic search

var		

• • • • • • • • • • • • •

Perimeter Abstractions

- Challenges addressed with symbolic search
 - Regression
 - 2 Expensive operations:
 - ★ membership in perimeter
 - frontier mapping
 - Set perimeter radius
- Contributions
 - Multiple abstraction levels
 - Improved initialization of abstract searches

Perimeter Abstractions

- Challenges addressed with symbolic search
 - Regression
 - 2 Expensive operations:
 - ★ membership in perimeter
 - ★ frontier mapping
 - Set perimeter radius
- Contributions
 - Multiple abstraction levels
 - Improved initialization of abstract searches

	Torral	

	alba

	Torral	

	Torral	

э

• • • • • • • • • •

Empirical Results: Expanded Nodes

Álvaro Torralba

PhD Defense

June 2, 2015 38 / 54

Empirical Results: Expanded Nodes

Álvaro Torralba

PhD Defense

June 2, 2015 39 / 54

Summary

Symbolic Perimeter M&S

- Combines M&S, perimeter abstractions and symbolic search
- Improvements to perimeter abstractions
- Synergy between symbolic search and perimeter abstractions
- More accurate heuristic than both!

But...

Results still worse than symbolic bidirectional uniform-cost search

Outline

Cost-Optimal Planning (Background) Symbolic Search (Background) Abstractions Merge-and-Shrink for Symbolic Search Symbolic Perimeter Merge-and-Shrink Symbolic Bidirectional Heuristic Search Final Results: IPC14

Motivation: Heuristics in Symbolic Bidirectional Search

Observations

- Bidirectional brute-force search is a state-of-the-art technique
- 2 Good symbolic abstraction heuristics

Motivation: Heuristics in Symbolic Bidirectional Search

Observations

- Bidirectional brute-force search is a state-of-the-art technique
- Good symbolic abstraction heuristics

• Use abstraction heuristics in symbolic bidirectional search!

Motivation: Heuristics in Symbolic Bidirectional Search

Observations

- Bidirectional brute-force search is a state-of-the-art technique
- Good symbolic abstraction heuristics

• Use abstraction heuristics in symbolic bidirectional search!

- However, bidirectional heuristic search is not so easy:
 - Very promising since years ago
 - Never really able to outperform A* or bidirectional uniform-cost search

- Main idea:
 - Start symbolic bidirectional uniform-cost search
 - $\bigstar \ \ \, \text{If it succeeds} \to \text{done!}$
 - 2 Detect when it is going to fail and activate heuristics
- Abstraction heuristics: Bidirectional, Partial, Perimeter

- Main idea:
 - Start symbolic bidirectional uniform-cost search
 - $\bigstar \ \ \, \text{If it succeeds} \to \text{done!}$
 - 2 Detect when it is going to fail and activate heuristics
- Abstraction heuristics: Bidirectional, Partial, Perimeter
- Decide which search advance: useful and feasible

- Main idea:
 - Start symbolic bidirectional uniform-cost search
 - $\bigstar \ \ \, \text{If it succeeds} \to \text{done!}$
 - 2 Detect when it is going to fail and activate heuristics
- Abstraction heuristics: Bidirectional, Partial, Perimeter
- Decide which search advance: useful and feasible

- Main idea:
 - Start symbolic bidirectional uniform-cost search
 - $\bigstar \ \ \, \text{If it succeeds} \to \text{done!}$
 - 2 Detect when it is going to fail and activate heuristics
- Abstraction heuristics: Bidirectional, Partial, Perimeter
- Decide which search advance: useful and feasible

- Main idea:
 - Start symbolic bidirectional uniform-cost search
 - $\bigstar \ \ \, \text{If it succeeds} \to \text{done!}$
 - 2 Detect when it is going to fail and activate heuristics
- Abstraction heuristics: Bidirectional, Partial, Perimeter
- Decide which search advance: useful and feasible

Summary

Contributions:

- SymBA*: a symbolic bidirectional heuristic search algorithm
- Bidirectional search in abstract state spaces
- Synergy: Symbolic search + Bidirectional search + Perimeter abstractions

- Symbolic Bidirectional A* is possible
 - Future work: domain-independent abstraction strategies (better than a random selection)

(4) (5) (4) (5)

Outline

Cost-Optimal Planning (Background) Symbolic Search (Background) Abstractions Merge-and-Shrink for Symbolic Search Symbolic Perimeter Merge-and-Shrink Conclusions Final Results: IPC14

June 2, 2015 47 / 54

2

< 6 b

June 2, 2015 47 / 54

2

< 61

June 2, 2015 47 / 54

크

▲ 伊 ▶ ▲ 臣 ▶

June 2, 2015 47 / 54

크

- Submitted our planners to the 2014-IPC
 - CGAMER: Symbolic Bidirectional uniform-cost search with image computation and state-invariant constraints
 - SPM&S: A* with symbolic perimeter PDBs and M&S
 - SymBA*: Symbolic Bidirectional A* with SPM&S
- Competed against:
 - GAMER: baseline symbolic planner
 - Top explicit-state search planners and portfolios
- Disclaimer: IPC results are not everything
 - Domains/Instances selection, bugs,

	Barman	Cave	Childsnack	Citycar	Floortile	GED	Hiking	Maintenan	Openstack	Parking	Tetris	Tidybot	Transport	Visitall	Total
symba-2	6	3	4	18	20	20	20	4	20	0	10	10	9	7	151
symba-1	6	3	4	18	20	19	20	4	20	0	10	4	9	6	143
cgamer-bd	6	0	1	18	20	0	15	0	19	3	11	13	8	6	120
spmas	5	3	2	1	20	18	12	4	14	4	7	8	9	7	114
rida	0	3	0	16	5	19	17	5	3	6	8	8	8	15	113
dynamic-gamer	3	3	10	15	14	0	17	3	19	0	2	0	7	6	99
all-paca	0	7	0	17	6	15	13	5	8	6	3	1	5	12	98
cedalion	0	7	0	14	5	15	13	5	1	2	5	7	6	13	93
metis	3	7	6	0	8	15	13	5	3	4	8	7	6	6	91
nucelar	0	7	0	13	0	15	13	5	3	5	9	0	7	13	90
rlazya	0	7	0	17	5	15	9	5	2	4	6	7	6	5	88
gamer	3	3	2	18	13	0	14	0	16	0	3	0	6	5	83
hflow	0	3	0	0	3	7	4	5	1	0	10	0	5	15	53
miplan	0	7	0	11	0	0	10	5	0	1	0	0	0	13	47
dpmplan	0	7	0	8	0	0	0	5	0	5	0	0	6	12	43
hpp-ce	0	0	0	7	0	3	0	5	0	0	0	0	0	0	15
hpp	0	0	0	6	0	3	0	5	0	0	0	0	0	0	14

	Barman	Cave	Childsnack	Citycar	Floortile	GED	Hiking	Maintenan	Openstack	Parking	Tetris	Tidybot	Transport	Visitall	Total
symba-2	6	3	4	18	20	20	20	4	20	0	10	10	9	7	151
symba-1	6	3	4	18	20	19	20	4	20	0	10	4	9	6	143
cgamer-bd	6	0	1	18	20	0	15	0	19	3	11	13	8	6	120
spmas	5	3	2	1	20	18	12	4	14	4	7	8	9	7	114
rida	0	3	0	16	5	19	17	5	3	6	8	8	8	15	113
dynamic-gamer	3	3	10	15	14	0	17	3	19	0	2	0	7	6	99
all-paca	0	7	0	17	6	15	13	5	8	6	3	1	5	12	98
cedalion	0	7	0	14	5	15	13	5	1	2	5	7	6	13	93
metis	3	7	6	0	8	15	13	5	3	4	8	7	6	6	91
nucelar	0	7	0	13	0	15	13	5	3	5	9	0	7	13	90
rlazya	0	7	0	17	5	15	9	5	2	4	6	7	6	5	88
gamer	3	3	2	18	13	0	14	0	16	0	3	0	6	5	83
hflow	0	3	0	0	3	7	4	5	1	0	10	0	5	15	53
miplan	0	7	0	11	0	0	10	5	0	1	0	0	0	13	47
dpmplan	0	7	0	8	0	0	0	5	0	5	0	0	6	12	43
hpp-ce	0	0	0	7	0	3	0	5	0	0	0	0	0	0	15
hpp	0	0	0	6	0	3	0	5	0	0	0	0	0	0	14

	Barman	Cave	Childsnack	Citycar	Floortile	GED	Hiking	Maintenan	Openstack	Parking	Tetris	Tidybot	Transport	Visitall	Total
symba-2	6	3	4	18	20	20	20	4	20	0	10	10	9	7	151
symba-1	6	3	4	18	20	19	20	4	20	0	10	4	9	6	143
cgamer-bd	6	0	1	18	20	0	15	0	19	3	11	13	8	6	120
spmas	5	3	2	1	20	18	12	4	14	4	7	8	9	7	114
rida	0	3	0	16	5	19	17	5	3	6	8	8	8	15	113
dynamic-gamer	3	3	10	15	14	0	17	3	19	0	2	0	7	6	99
all-paca	0	7	0	17	6	15	13	5	8	6	3	1	5	12	98
cedalion	0	7	0	14	5	15	13	5	1	2	5	7	6	13	93
metis	3	7	6	0	8	15	13	5	3	4	8	7	6	6	91
nucelar	0	7	0	13	0	15	13	5	3	5	9	0	7	13	90
rlazya	0	7	0	17	5	15	9	5	2	4	6	7	6	5	88
gamer	3	3	2	18	13	0	14	0	16	0	3	0	6	5	83
hflow	0	3	0	0	3	7	4	5	1	0	10	0	5	15	53
miplan	0	7	0	11	0	0	10	5	0	1	0	0	0	13	47
dpmplan	0	7	0	8	0	0	0	5	0	5	0	0	6	12	43
hpp-ce	0	0	0	7	0	3	0	5	0	0	0	0	0	0	15
hpp	0	0	0	6	0	3	0	5	0	0	0	0	0	0	14

	Barman	Cave	Childsnack	Citycar	Floortile	GED	Hiking	Maintenan	Openstack	Parking	Tetris	Tidybot	Transport	Visitall	Total
symba-2	6	3	4	18	20	20	20	4	20	0	10	10	9	7	151
symba-1	6	3	4	18	20	19	20	4	20	0	10	4	9	6	143
cgamer-bd	6	0	1	18	20	0	15	0	19	3	11	13	8	6	120
spmas	5	3	2	1	20	18	12	4	14	4	7	8	9	7	114
rida	0	3	0	16	5	19	17	5	3	6	8	8	8	15	113
dynamic-gamer	3	3	10	15	14	0	17	3	19	0	2	0	7	6	99
all-paca	0	7	0	17	6	15	13	5	8	6	3	1	5	12	98
cedalion	0	7	0	14	5	15	13	5	1	2	5	7	6	13	93
metis	3	7	6	0	8	15	13	5	3	4	8	7	6	6	91
nucelar	0	7	0	13	0	15	13	5	3	5	9	0	7	13	90
rlazya	0	7	0	17	5	15	9	5	2	4	6	7	6	5	88
gamer	3	3	2	18	13	0	14	0	16	0	3	0	6	5	83
hflow	0	3	0	0	3	7	4	5	1	0	10	0	5	15	53
miplan	0	7	0	11	0	0	10	5	0	1	0	0	0	13	47
dpmplan	0	7	0	8	0	0	0	5	0	5	0	0	6	12	43
hpp-ce	0	0	0	7	0	3	0	5	0	0	0	0	0	0	15
hpp	0	0	0	6	0	3	0	5	0	0	0	0	0	0	14

Outline

Cost-Optimal Planning (Background) Symbolic Search (Background) Abstractions Merge-and-Shrink for Symbolic Search Symbolic Perimeter Merge-and-Shrink Conclusions Final Results: IPC14 Conclusions

Conclusions

- Symbolic search for cost-optimal planning:
 - Analysis of image computation
 - State-invariant pruning
- M&S heuristics in symbolic search planning
- SPM&S: new perimeter abstraction heuristic based in symbolic search and M&S
- Big question: can we use heuristics in symbolic planning?
 - Used M&S and SPM&S in BDDA*
 - SymBA*: symbolic bidirectional search + perimeter abstractions

Conclusions

- Symbolic bidirectional blind search
 - → Currently, the best method for cost-optimal planning (only beaten by heuristics in domains where the heuristics are very precise).

- SPM&S: state-of-the-art heuristic
- Highlighted the relevance of symbolic search and regression
- Synergy of symbolic bidirectional search and perimeter abstractions

	F orral	

List of Publications

Álvaro Torralba, Stefan Edelkamp, and Peter Kissmann. Transition trees for cost-optimal symbolic planning. In *ICAPS*, 2013

Álvaro Torralba and Vidal Alcázar. Constrained symbolic search: On mutexes, BDD minimization and more. In *SoCS*, 2013

Stefan Edelkamp, Peter Kissmann, and Álvaro Torralba. Symbolic A* search with pattern databases and the merge-and-shrink abstraction. In *ECAI*, 2012

Álvaro Torralba, Carlos Linares López, and Daniel Borrajo. Symbolic merge-and-shrink for cost-optimal planning. In *IJCAI*, 2013

Thank you for your attention!

Questions?

	Torra	

• • • • • • • • • • • •