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Álvaro Torralba PhD Defense June 2, 2015 1 / 54



1 Introduction
Cost-Optimal Planning

2 Symbolic Search
(Background) Symbolic Search
Image Computation
State Invariants

3 Abstraction Heuristics
(Background) Abstractions
Merge-and-Shrink for Symbolic Search
Symbolic Perimeter Merge-and-Shrink

4 Symbolic Bidirectional Heuristic Search

5 Conclusions
Final Results: IPC14
Conclusions
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Automated Planning

Given a planning task:

A logical description of the initial situation, goal condition and a set
of possible actions

A B

V = {at-T= {A, B}, at-P= {A, B, T} }
s0 = {at-T A, at-P A}
s? = {at-P B}
O = {move-T (A, B),

move-T (B, A), load-P(A), . . . }

→ Find a plan (sequence of actions)
→ Cost-optimal: plan of minimum cost (prove it)
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Empirical Evaluation Methods

PlannerSAS+ task Optimal plan

→ Domain independent!! a planner can deal with any task

Empirical evaluation methods:
I International Planning Competition: 1998, 2000, 2002, 2004, 2006,

2008, 2011, 2014, . . .
I Standard set of benchmark domains: 1998-2011
I Time limit: 30 minutes
I Memory limit: 4GB RAM
I Coverage: number of problems solved
I Time: solve problems faster
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Motivation of this Thesis

Improve state-of-the-art optimal planning
→ Efficiently solve optimal planning problems

Techniques considered
I Bidirectional search
I Symbolic search

⇒ GAMER: winner of IPC 2008

I Abstraction heuristics

⇒ Merge-and-shrink: runner-up and part of the winner of IPC 2011

Understand strengths/weaknesses
Understand relation between techniques
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State of the Art in Cost-Optimal Planning

Explicit search Symbolic search

A∗

Uniform-Cost

forward

backward

bidirectional

Algorithms

Delete-relaxation: hmax ,
h+

Landmarks: hLA, LM-cut

Abstractions: PDBs, M&S

Critical paths: hm

Flow

max add LP

Heuristics
State invariants

Symmetries

Partial-order pruning

Pruning techniques
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From Explicit to Symbolic Search

s0 s?

Reason with sets of states!Sg=1 Sg=2
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Binary Decision Diagrams (BDDs)

Sets of states represented with Binary Decision Diagrams
I Variable ordering
I Reduction rules

Possible exponential gain in memory/time
Efficient operations (polynomial in BDD size)

1 (at Truck A) (at Package A)
2 (at Truck A) (in Package Truck)
3 (at Truck B) (at Package A)

T at A

P in T P in T

P at A P at A

T F
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Image Computation

Expand a set of states and generate the successor states
Transition Relation: BDD that represents one or more planning
actions with the same cost

S

(move T1 A B)
(move T1 B A)
(load P T1 A)

. . .

S′

S′ ← image(S,T ) = ∃x . S(x) ∧ T (x , x ′)[x ′ ↔ x ]

Álvaro Torralba PhD Defense June 2, 2015 10 / 54



Symbolic Bidirectional Breadth-First Search

Decide forward or backward direction at each step

hg

s0

0

s?

0
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Álvaro Torralba PhD Defense June 2, 2015 12 / 54



Optimizing Image Computation
Image computation is the main bottleneck in symbolic search
How to represent the Transition Relation?

I Monolithic relation⇒ may use exponential memory
I Solution in GAMER ⇒ One TR for each action

Idea 1: Separate preconditions and effects
→ avoid using auxiliary variables!

Idea 2: Conjunction Tree
→ check preconditions of all operators simultaneously

Idea 3: Aggregate TRs
→ different strategies to group the actions

move-T (A, B)

load-P (A)

move-T (B, A)

. . .
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Empirical Results

Compare image computation methods:
1 TR1: baseline approach
2 TR1+: avoid using x ′ variables
3 CT L

20: conjunction tree
4 T DT

100k : aggregate TRs

Total coverage of symbolic search algorithms over 1375 instances:

TR1 TR1+ CT L
20 T DT

100k
Forward uniform-cost search 699 676 724 742

Backward uniform-cost search 444 525 529 532
Bidirectional uniform-cost search 729 763 769 793

BDDA∗ with SPDBs 705 717 724 764

TR1 ≤ TR1+ ≤ CT L
20 ≤ T DT

100k
(across all domains)
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Time of Bidirectional Search
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Motivation: State Invariants in Symbolic Search

Invariant: holds in all states that may belong to a solution path
1 Mutex: pair of facts that cannot be true in the same state

→ a truck cannot be simultaneously at two locations
2 Invariant group: Set of facts such that exactly one is true

→ a truck must be somewhere

Generated computing h2 in both directions
Useful for:

1 Removing operators from the planning task
2 Pruning invalid states during the search
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Encoding Constraints with cBDD
cBDD: BDD that describes invalid states

1 Mutex: fi ∧ fj
2 “At-least-1” invariant: ¬(f1 ∨ f2 ∨ . . . ∨ fn)

Remove invalid states from Sg : Sg \ cBDD
v1

v2

T F

(c) cBDD

v1

v2 v2

v3 v3

T F

(d) Sg

v1

v2 v2

v3 v3

T F

(e) Sg \ cBDD

e-deletion: encode invariants in the TRs
→ no invalid states are generated
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Experimental Results

Constraints found in 35 out of 43 domains
10%-74% invalid operators found in 17 out of 43 domains
Mutex types:

I Baseline (B)
I Not pruning invalid states: M∅
I Pruning invalid states: cBDD or e-deletion (e-del)

Remove invalid ops
B M∅ cBDD e-del

Forward uniform-cost search 699 742 745 750
Backward uniform-cost search 509 532 677 696

Bidirectional uniform-cost search 765 793 836 841
BDDA∗ with SPDBs 736 764 777 781
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Time of Bidirectional Uniform-Cost Search
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Comparison with State-of-the-Art Planners
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Summary

1 Image computation
I Analyzed different methods for image computation
I Best method: aggregate TRs

2 State invariants
I Pruning invalid states (specially useful in bw search)
I Best encoding for symbolic search: e-edeletion

These significantly improved performance of symbolic planning
→ Symbolic bidirectional blind search is the current state-of-the-art

for cost-optimal planning
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Motivation: Heuristics in Symbolic Search

Delete-relaxation: hmax , h+

Landmarks: hLA, LM-cut

Abstractions: PDBs, M&S,
CEGAR, Fork

Critical paths: hm

Flow

max add LP

Heuristics

Challenge: How to evaluate h(s) on a set of states?
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Abstraction Heuristics
Abstraction: Mapping from states to abstract states

I Smaller abstract state space→ easier to search
I Use optimal distances in abstract state space as heuristic
I Preserve transitions→ admissible estimation
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Pattern Databases (PDBs)
I Ignore some variables in the problem
I Limitation: ignoring a single variable may relax too much
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Merge-and-Shrink Algorithm (M&S)

Algorithm 1: M&S
α1 ← Πυ1

foreach υ ∈ {υ2 . . . υn}:
if |α| > N:
shrink(αi−1)⊗ Πi

αi ← αi−1 ⊗ Πi

return α

Merge strategy: Linear
→ variable ordering

Shrink strategy
→ reduce abstraction

size

α1 = TA

A B

moveA,B

moveB,A

α3 = TA,PT ,PA

AA BA

Ac Bc

AB BB

moveA,B

moveB,A

moveA,B

moveB,A

moveA,B

moveB,A

load/unloadA

load/unloadB
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Merge-and-Shrink for Symbolic Search

Hypothesis: BDDA∗ lacks good heuristics
→ BDDA∗ + M&S can improve results

How to use M&S in symbolic search:

M&S algorithm

M&S heuristic to ADD

ADD to BDDs

BDDs to use in symbolic search
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Merge-and-Shrink as ADDs
α1 = TA

A B

moveA,B
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Theoretical Results

M&S to ADDs/BDDs in polynomial time
Related empirical results:

I ADD representation of heuristics reduces memory
I Variable ordering has a huge impact

ADD/BDD reduction rules may achieve exponential gain in
memory with respect to shrinking perfect strategies
→ shows potential of improvement for M&S strategies
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Empirical Results

Used M&S in symbolic search→Worse than symbolic PDBs
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I Contradicts our hypothesis
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Motivation: Combine Symbolic Search and M&S

1 Symbolic PDBs: larger abstract state spaces
2 M&S: flexible abstractions

Can we get the best of both worlds?

→Use symbolic search to search M&S abstractions!

Symbolic Perimeter M&S:
1 Symbolic M&S abstractions: larger M&S abstract state spaces
2 Perimeter abstractions
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SM&S Hierarchy

Enlarged M&S abstractions: to perform symbolic search
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4 (M&S abstraction)
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Perimeter Abstractions

Challenges addressed with
symbolic search

1 Regression
2 Expensive operations:

F membership in perimeter
F frontier mapping

3 Set perimeter radius

Contributions
1 Multiple abstraction levels
2 Improved initialization of

abstract searches

S?
Exp(α0)

Exp(α1)
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Symbolic Perimeter Merge-and-Shrink
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Empirical Results
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Empirical Results: Expanded Nodes
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Summary

Symbolic Perimeter M&S
Combines M&S, perimeter abstractions and symbolic search
Improvements to perimeter abstractions
Synergy between symbolic search and perimeter abstractions
More accurate heuristic than both!

But...

Results still worse than symbolic bidirectional uniform-cost search
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Motivation: Heuristics in Symbolic Bidirectional Search

Observations
1 Bidirectional brute-force search is a state-of-the-art technique
2 Good symbolic abstraction heuristics

Use abstraction heuristics in symbolic bidirectional search!

However, bidirectional heuristic search is not so easy:
I Very promising since years ago
I Never really able to outperform A∗ or bidirectional uniform-cost

search
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Algorithm

Main idea:
1 Start symbolic bidirectional uniform-cost search

F If it succeeds → done!
2 Detect when it is going to fail and activate heuristics

Abstraction heuristics: Bidirectional, Partial, Perimeter

Decide which search advance: useful and feasible

s0 s?
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Empirical Results

820 840 860 880

BD (∅)

PDBcgl

PDBran

SM&S

Best

842

842

844

840

873

Coverage

Full SymBA∗
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Summary

Contributions:
I SymBA∗: a symbolic bidirectional heuristic search algorithm
I Bidirectional search in abstract state spaces
I Synergy: Symbolic search + Bidirectional search + Perimeter

abstractions

Symbolic Bidirectional A∗ is possible
I Future work: domain-independent abstraction strategies (better

than a random selection)
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Final Results
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2014 International Planning Competition

Submitted our planners to the 2014-IPC
1 CGAMER: Symbolic Bidirectional uniform-cost search with image

computation and state-invariant constraints
2 SPM&S: A∗ with symbolic perimeter PDBs and M&S
3 SymBA∗: Symbolic Bidirectional A∗ with SPM&S

Competed against:
I GAMER: baseline symbolic planner
I Top explicit-state search planners and portfolios

Disclaimer: IPC results are not everything
I Domains/Instances selection, bugs, . . .
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Conclusions

Symbolic search for cost-optimal planning:
I Analysis of image computation
I State-invariant pruning

M&S heuristics in symbolic search planning
SPM&S: new perimeter abstraction heuristic based in symbolic
search and M&S
Big question: can we use heuristics in symbolic planning?

1 Used M&S and SPM&S in BDDA∗
2 SymBA∗: symbolic bidirectional search + perimeter abstractions
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Conclusions

Symbolic bidirectional blind search
→ Currently, the best method for cost-optimal planning (only beaten by

heuristics in domains where the heuristics are very precise).

SPM&S: state-of-the-art heuristic

Highlighted the relevance of symbolic search and regression

Synergy of symbolic bidirectional search and perimeter
abstractions
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Thank you for your attention!

Questions?
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