
Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Decoupled Search: A New Form of
State-Space Exploration

Álvaro Torralba

Álvaro Torralba Decoupled Search 1

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

What’s this About
Decoupled Search:

New technique for state-space exploration in AI-planning
and model-checking

Daniel Gnad (Gnad (2021)) Joerg Hoffmann

Álvaro Torralba Decoupled Search 2

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

A Successful Approach in General: Heuristic Search

goalinit

distance estimate hdistance estimate h

distance estimate h

distance estimate h

→ State space search with heuristic function h maps states s to
an estimate h(s) of goal distance.

Álvaro Torralba Decoupled Search 3

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Heuristic Search – Limitations

goalinit

...

?...
...

State explosion problem:
State space of a planning task is exponential in the number of
variables.

Álvaro Torralba Decoupled Search 4

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Domain-independent planning versus
domain-dependent solvers

The dream: reduce the gap to a point where
domain-independent planners are as efficient than
domain-dependent solvers ().
Álvaro Torralba Decoupled Search 5

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Domain-independent vs domain-dependent

Running Example:

l1 l2 l3

V = {t , p1, . . . pN} with
Dt = {l1, l2, l3, l4} and Dpi = {t , l1, l2, l3, l4}.
I = {(t , l1), (p1, l1), (p2, l1), (p3, l3), (p4, l3)}
A = {load(pi , x), unload(pi , x), drive(x , x ′)},
where:
preload(pi ,x)

= {(t , x), (pi , x)} and
eff load(i,x) = {(pi , t)}
G = {(p1, l3), (p2, l3), (p3, l1), (p4, l1)}

State init (s)

→return I

set(A) applicable (s)

→return {a | s |= pre(a)}

State apply (s, a)

→return s[a]

bool isGoal (s)

→return s |= G

int heuristic (s)

→Any
domain-independent
planning heuristic

Álvaro Torralba Decoupled Search 6

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Domain-independent vs domain-dependent

Running Example:

l1 l2 l3

V = {t , p1, . . . pN} with
Dt = {l1, l2, l3, l4} and Dpi = {t , l1, l2, l3, l4}.
I = {(t , l1), (p1, l1), (p2, l1), (p3, l3), (p4, l3)}
A = {load(pi , x), unload(pi , x), drive(x , x ′)},
where:
preload(pi ,x)

= {(t , x), (pi , x)} and
eff load(i,x) = {(pi , t)}
G = {(p1, l3), (p2, l3), (p3, l1), (p4, l1)}

State init (s)

→return I

set(A) applicable (s)

→return {a | s |= pre(a)}

State apply (s, a)

→return s[a]

bool isGoal (s)

→return s |= G

int heuristic (s)

→Any
domain-independent
planning heuristic

Álvaro Torralba Decoupled Search 6

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Domain-independent vs domain-dependent

Running Example:

l1 l2 l3

V = {t , p1, . . . pN} with
Dt = {l1, l2, l3, l4} and Dpi = {t , l1, l2, l3, l4}.
I = {(t , l1), (p1, l1), (p2, l1), (p3, l3), (p4, l3)}
A = {load(pi , x), unload(pi , x), drive(x , x ′)},
where:
preload(pi ,x)

= {(t , x), (pi , x)} and
eff load(i,x) = {(pi , t)}
G = {(p1, l3), (p2, l3), (p3, l1), (p4, l1)}

State init (s)
→return I

set(A) applicable (s)
→return {a | s |= pre(a)}

State apply (s, a)
→return s[a]

bool isGoal (s)
→return s |= G

int heuristic (s)
→Any
domain-independent
planning heuristic

Álvaro Torralba Decoupled Search 6

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Exercise: Pick-up and Delivery
We have M trucks and N packages across L locations. Trucks drive
around to pick and deliver the packages. We want to compute a
(optimal) route. How do you design the search space? States? Actions?

Option 1: Planning

State: position of each package and truck
Actions: drive-to(t , l), pick(p, t), deliver(p, t)

Option 2: Package-centered

State: position of each package and truck
Actions: pick(p, t), deliver(p, t) (trucks move automatically)

Option 3: Truck-centered

State: truck routes, whether packages have been delivered
Actions: drive-to(t , l)

Álvaro Torralba Decoupled Search 7

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Exercise: Pick-up and Delivery
We have M trucks and N packages across L locations. Trucks drive
around to pick and deliver the packages. We want to compute a
(optimal) route. How do you design the search space? States? Actions?

Option 1: Planning

State: position of each package and truck
Actions: drive-to(t , l), pick(p, t), deliver(p, t)

Option 2: Package-centered

State: position of each package and truck
Actions: pick(p, t), deliver(p, t) (trucks move automatically)

Option 3: Truck-centered

State: truck routes, whether packages have been delivered
Actions: drive-to(t , l)

Álvaro Torralba Decoupled Search 7

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Exercise: Pick-up and Delivery
We have M trucks and N packages across L locations. Trucks drive
around to pick and deliver the packages. We want to compute a
(optimal) route. How do you design the search space? States? Actions?

Option 1: Planning

State: position of each package and truck
Actions: drive-to(t , l), pick(p, t), deliver(p, t)

Option 2: Package-centered

State: position of each package and truck
Actions: pick(p, t), deliver(p, t) (trucks move automatically)

Option 3: Truck-centered

State: truck routes, whether packages have been delivered
Actions: drive-to(t , l)

Álvaro Torralba Decoupled Search 7

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Exercise: Pick-up and Delivery
We have M trucks and N packages across L locations. Trucks drive
around to pick and deliver the packages. We want to compute a
(optimal) route. How do you design the search space? States? Actions?

Option 1: Planning

State: position of each package and truck
Actions: drive-to(t , l), pick(p, t), deliver(p, t)

Option 2: Package-centered

State: position of each package and truck
Actions: pick(p, t), deliver(p, t) (trucks move automatically)

Option 3: Truck-centered

State: truck routes, whether packages have been delivered
Actions: drive-to(t , l)

Álvaro Torralba Decoupled Search 7

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

State Explosion Problem – Example

l1 l2 l3 l4
. . .

Running Example:
V = {t ,p1, . . .pN}
with Dt = {l1, l2, l3, l4} and Dpi = {t , l1, l2, l3, l4}.
A = {load(pi , x),unload(pi , x),drive(x , x ′)}

Size of the state space (number of reachable states): 4 · 5N

How many different action permutations result from only
loading all packages at l1?
→ N! (2N different states)
Can this be avoided? What is the connection between the
packages?

Álvaro Torralba Decoupled Search 8

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

State Explosion Problem – Example

l1 l2 l3 l4
. . .

Running Example:
V = {t ,p1, . . .pN}
with Dt = {l1, l2, l3, l4} and Dpi = {t , l1, l2, l3, l4}.
A = {load(pi , x),unload(pi , x),drive(x , x ′)}

Size of the state space (number of reachable states):

4 · 5N

How many different action permutations result from only
loading all packages at l1?
→ N! (2N different states)
Can this be avoided? What is the connection between the
packages?

Álvaro Torralba Decoupled Search 8

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

State Explosion Problem – Example

l1 l2 l3 l4
. . .

Running Example:
V = {t ,p1, . . .pN}
with Dt = {l1, l2, l3, l4} and Dpi = {t , l1, l2, l3, l4}.
A = {load(pi , x),unload(pi , x),drive(x , x ′)}

Size of the state space (number of reachable states): 4 · 5N

How many different action permutations result from only
loading all packages at l1?
→ N! (2N different states)
Can this be avoided? What is the connection between the
packages?

Álvaro Torralba Decoupled Search 8

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

State Explosion Problem – Example

l1 l2 l3 l4
. . .

Running Example:
V = {t ,p1, . . .pN}
with Dt = {l1, l2, l3, l4} and Dpi = {t , l1, l2, l3, l4}.
A = {load(pi , x),unload(pi , x),drive(x , x ′)}

Size of the state space (number of reachable states): 4 · 5N

How many different action permutations result from only
loading all packages at l1?

→ N! (2N different states)
Can this be avoided? What is the connection between the
packages?

Álvaro Torralba Decoupled Search 8

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

State Explosion Problem – Example

l1 l2 l3 l4
. . .

Running Example:
V = {t ,p1, . . .pN}
with Dt = {l1, l2, l3, l4} and Dpi = {t , l1, l2, l3, l4}.
A = {load(pi , x),unload(pi , x),drive(x , x ′)}

Size of the state space (number of reachable states): 4 · 5N

How many different action permutations result from only
loading all packages at l1?
→ N! (2N different states)

Can this be avoided? What is the connection between the
packages?

Álvaro Torralba Decoupled Search 8

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

State Explosion Problem – Example

l1 l2 l3 l4
. . .

Running Example:
V = {t ,p1, . . .pN}
with Dt = {l1, l2, l3, l4} and Dpi = {t , l1, l2, l3, l4}.
A = {load(pi , x),unload(pi , x),drive(x , x ′)}

Size of the state space (number of reachable states): 4 · 5N

How many different action permutations result from only
loading all packages at l1?
→ N! (2N different states)
Can this be avoided?

What is the connection between the
packages?

Álvaro Torralba Decoupled Search 8

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

State Explosion Problem – Example

l1 l2 l3 l4
. . .

Running Example:
V = {t ,p1, . . .pN}
with Dt = {l1, l2, l3, l4} and Dpi = {t , l1, l2, l3, l4}.
A = {load(pi , x),unload(pi , x),drive(x , x ′)}

Size of the state space (number of reachable states): 4 · 5N

How many different action permutations result from only
loading all packages at l1?
→ N! (2N different states)
Can this be avoided? What is the connection between the
packages?
Álvaro Torralba Decoupled Search 8

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Exponential Reduction of the State Space

Reachable State Space. Right: Average over Instances Commonly Built
Success Representation Size (in Thousands)

Domain Std POR Unfold. Decoupled Std POR Decoupled
Solvable Benchmarks: From the International Planning Competition (IPC)

Depots 4 4 2 5 30,954.8 30,954.8 3,970.0
Driverlog 5 5 3 10 35,632.4 35,632.4 127.2
Elevators 21 17 3 41 22,652.1 22,651.1 186.7
Logistics 12 12 11 27 3,793.8 3,793.8 8.2
Miconic-STRIPS 50 45 30 145 52,728.9 52,673.1 2.4
Nomystery 11 11 7 40 29,459.3 25,581.5 10.0
Pathways 4 4 3 4 54,635.5 1,229.0 11,211.9
PSR 3 3 3 3 39.4 33.9 11.1
Rovers 5 6 4 5 98,051.6 6,534.4 4,032.9
Satellite 5 5 5 4 2,864.2 582.5 352.7
TPP 5 5 4 11 340,961.5 326,124.8 .8
Transport 28 23 11 34 4,958.6 4,958.5 173.3
Woodworking 11 20 22 16 438,638.5 226.8 9,688.9
Zenotravel 7 7 4 7 17,468.0 17,467.5 99.4

Unsolvable Benchmarks: Extended from Hoffmann and Nebel (2001)
Nomystery 9 8 4 40 85,254.2 65,878.2 3.8
Rovers 4 4 0 4 697,778.9 302,608.9 20,924.4∑

186 181 116 398

Álvaro Torralba Decoupled Search 9

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Agenda

1 Introduction

2 Factorings

3 Decoupled Search

4 Dominance Pruning

5 Decoupled Heuristics

6 Recharging Robots

7 Multi-Agent Pathfinding

8 Conclusion

Álvaro Torralba Decoupled Search 10

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Decoupled Search – Intuition

Running Example: l1 l2 l3

A = {load(pi , x),unload(pi , x),drive(x , x ′)}, where:
preload(pi ,x) = {(t , x), (pi , x)} and eff load(i,x) = {(pi , t)},
preunload(pi ,x) = {(t , x), (pi , t)} and eff unload(i,x) = {(pi , x)}.

Causal Graph: Dependencies across (components of) state variables.

precondition precondition

precondition precondition

Decomposition: “Instantiate center to break the conditional
dependencies”.
Search over global actions; handle each leaf component separately.

Álvaro Torralba Decoupled Search 11

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Decoupled Search – Intuition

Running Example: l1 l2 l3

A = {load(pi , x),unload(pi , x),drive(x , x ′)}, where:
preload(pi ,x) = {(t , x), (pi , x)} and eff load(i,x) = {(pi , t)},
preunload(pi ,x) = {(t , x), (pi , t)} and eff unload(i,x) = {(pi , x)}.

Causal Graph: Dependencies across (components of) state variables.

precondition precondition

precondition precondition

Decomposition: “Instantiate center to break the conditional
dependencies”.

Search over global actions; handle each leaf component separately.

Álvaro Torralba Decoupled Search 11

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Decoupled Search – Intuition

Running Example: l1 l2 l3

A = {load(pi , x),unload(pi , x),drive(x , x ′)}, where:
preload(pi ,x) = {(t , x), (pi , x)} and eff load(i,x) = {(pi , t)},
preunload(pi ,x) = {(t , x), (pi , t)} and eff unload(i,x) = {(pi , x)}.

Causal Graph: Dependencies across (components of) state variables.

precondition precondition

precondition precondition

Decomposition: “Instantiate center to break the conditional
dependencies”.
Search over global actions; handle each leaf component separately.
Álvaro Torralba Decoupled Search 11

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

How to Decompose a Planning Task?
Definition (Factoring). Let Π be a planning task with variables V . A
factoring F is a partitioning of V into non-empty subsets.

→ Each of the variable sub-sets if called a factor:
One center factor (possibly empty)
A set of leaf factors (typically two or more)

Álvaro Torralba Decoupled Search 12

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

How to Decompose a Planning Task?
Definition (Factoring). Let Π be a planning task with variables V . A
factoring F is a partitioning of V into non-empty subsets.
→ Each of the variable sub-sets if called a factor:

One center factor (possibly empty)
A set of leaf factors (typically two or more)

Álvaro Torralba Decoupled Search 12

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

How to Decompose a Planning Task?
Definition (Factoring). Let Π be a planning task with variables V . A
factoring F is a partitioning of V into non-empty subsets.
→ Each of the variable sub-sets if called a factor:

One center factor (possibly empty)
A set of leaf factors (typically two or more)

Álvaro Torralba Decoupled Search 12

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

How to Decompose a Planning Task?
Definition (Factoring). Let Π be a planning task with variables V . A
factoring F is a partitioning of V into non-empty subsets.
→ Each of the variable sub-sets if called a factor:

One center factor (possibly empty)
A set of leaf factors (typically two or more)

Álvaro Torralba Decoupled Search 12

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

How to Decompose a Planning Task?
Definition (Factoring). Let Π be a planning task with variables V . A
factoring F is a partitioning of V into non-empty subsets.
→ Each of the variable sub-sets if called a factor:

One center factor (possibly empty)
A set of leaf factors (typically two or more)

Álvaro Torralba Decoupled Search 12

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Factorings – Special Cases
Definition (Interaction Graph) The interaction graph of Π given F is the
directed graph IGΠ(F), with vertices F , and an arc F → F ′ if F ̸= F ′, and
there exist v ∈ F and v ′ ∈ F ′, s.t. v → v ′ is an arc in CG(Π).

The interaction graph is the quotient of CG(Π) over F .
Definition A factoring F = {C} ∪ L is a:

fork factoring: all arcs in IGΠ(F) are of the form C → L,
inverted-fork factoring: all arcs in IGΠ(F) are of the form L → C,
strict-star factoring: all arcs in IGΠ(F) are incident to C.

Examples:

C

L1 L2

L3 L4

C

L1 L2

L3 L4

C

L1 L2

L3 L4

C

L1 L2

L3 L4

Fork Inverted-Fork Strict-Star Star

Álvaro Torralba Decoupled Search 13

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Factorings – Special Cases
Definition (Interaction Graph) The interaction graph of Π given F is the
directed graph IGΠ(F), with vertices F , and an arc F → F ′ if F ̸= F ′, and
there exist v ∈ F and v ′ ∈ F ′, s.t. v → v ′ is an arc in CG(Π).
The interaction graph is the quotient of CG(Π) over F .

Definition A factoring F = {C} ∪ L is a:
fork factoring: all arcs in IGΠ(F) are of the form C → L,
inverted-fork factoring: all arcs in IGΠ(F) are of the form L → C,
strict-star factoring: all arcs in IGΠ(F) are incident to C.

Examples:

C

L1 L2

L3 L4

C

L1 L2

L3 L4

C

L1 L2

L3 L4

C

L1 L2

L3 L4

Fork Inverted-Fork Strict-Star Star

Álvaro Torralba Decoupled Search 13

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Factorings – Special Cases
Definition (Interaction Graph) The interaction graph of Π given F is the
directed graph IGΠ(F), with vertices F , and an arc F → F ′ if F ̸= F ′, and
there exist v ∈ F and v ′ ∈ F ′, s.t. v → v ′ is an arc in CG(Π).
The interaction graph is the quotient of CG(Π) over F .
Definition A factoring F = {C} ∪ L is a:

fork factoring: all arcs in IGΠ(F) are of the form C → L,

inverted-fork factoring: all arcs in IGΠ(F) are of the form L → C,
strict-star factoring: all arcs in IGΠ(F) are incident to C.

Examples:

C

L1 L2

L3 L4

C

L1 L2

L3 L4

C

L1 L2

L3 L4

C

L1 L2

L3 L4

Fork Inverted-Fork Strict-Star Star

Álvaro Torralba Decoupled Search 13

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Factorings – Special Cases
Definition (Interaction Graph) The interaction graph of Π given F is the
directed graph IGΠ(F), with vertices F , and an arc F → F ′ if F ̸= F ′, and
there exist v ∈ F and v ′ ∈ F ′, s.t. v → v ′ is an arc in CG(Π).
The interaction graph is the quotient of CG(Π) over F .
Definition A factoring F = {C} ∪ L is a:

fork factoring: all arcs in IGΠ(F) are of the form C → L,
inverted-fork factoring: all arcs in IGΠ(F) are of the form L → C,

strict-star factoring: all arcs in IGΠ(F) are incident to C.
Examples:

C

L1 L2

L3 L4

C

L1 L2

L3 L4

C

L1 L2

L3 L4

C

L1 L2

L3 L4

Fork Inverted-Fork Strict-Star Star

Álvaro Torralba Decoupled Search 13

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Factorings – Special Cases
Definition (Interaction Graph) The interaction graph of Π given F is the
directed graph IGΠ(F), with vertices F , and an arc F → F ′ if F ̸= F ′, and
there exist v ∈ F and v ′ ∈ F ′, s.t. v → v ′ is an arc in CG(Π).
The interaction graph is the quotient of CG(Π) over F .
Definition A factoring F = {C} ∪ L is a:

fork factoring: all arcs in IGΠ(F) are of the form C → L,
inverted-fork factoring: all arcs in IGΠ(F) are of the form L → C,
strict-star factoring: all arcs in IGΠ(F) are incident to C.

Examples:

C

L1 L2

L3 L4

C

L1 L2

L3 L4

C

L1 L2

L3 L4

C

L1 L2

L3 L4

Fork Inverted-Fork Strict-Star Star

Álvaro Torralba Decoupled Search 13

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Factorings – Special Cases
Definition (Interaction Graph) The interaction graph of Π given F is the
directed graph IGΠ(F), with vertices F , and an arc F → F ′ if F ̸= F ′, and
there exist v ∈ F and v ′ ∈ F ′, s.t. v → v ′ is an arc in CG(Π).
The interaction graph is the quotient of CG(Π) over F .
Definition A factoring F = {C} ∪ L is a:

fork factoring: all arcs in IGΠ(F) are of the form C → L,
inverted-fork factoring: all arcs in IGΠ(F) are of the form L → C,
strict-star factoring: all arcs in IGΠ(F) are incident to C.

Examples:

C

L1 L2

L3 L4

C

L1 L2

L3 L4

C

L1 L2

L3 L4

C

L1 L2

L3 L4

Fork Inverted-Fork Strict-Star Star
Álvaro Torralba Decoupled Search 13

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Dividing the Actions
Given a Factoring F = {C,L1, . . . ,Ln}, the set of actions is
divided into n + 1subsets:

Internal (leaf-only) Actions AL: affect only one leaf L ∈ L,
a ∈ AL ⇔ V [eff a] ⊆ L ∧ V [prea] ∪ V [eff a] ⊆ C ∪ L.
Global Actions AC : those that are not leaf actions, e.g.:

have an effect on a center variable
have effects and/or preconditions on two leaves

drive

load/unload

drive

load/unload

Álvaro Torralba Decoupled Search 14

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Dividing the Actions
Given a Factoring F = {C,L1, . . . ,Ln}, the set of actions is
divided into n + 1subsets:

Internal (leaf-only) Actions AL: affect only one leaf L ∈ L,
a ∈ AL ⇔ V [eff a] ⊆ L ∧ V [prea] ∪ V [eff a] ⊆ C ∪ L.
Global Actions AC : those that are not leaf actions, e.g.:

have an effect on a center variable
have effects and/or preconditions on two leaves

drive

load/unload

drive

load/unload

Álvaro Torralba Decoupled Search 14

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Dividing the Actions
Given a Factoring F = {C,L1, . . . ,Ln}, the set of actions is
divided into n + 1subsets:

Internal (leaf-only) Actions AL: affect only one leaf L ∈ L,
a ∈ AL ⇔ V [eff a] ⊆ L ∧ V [prea] ∪ V [eff a] ⊆ C ∪ L.
Global Actions AC : those that are not leaf actions, e.g.:

have an effect on a center variable
have effects and/or preconditions on two leaves

drive

load/unload

drive

load/unload

Álvaro Torralba Decoupled Search 14

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Applying a Factoring to a Planning Task

Given a Factoring F = {C,L1, . . . ,Ln}, we define
Center States sC ∈ SC : complete assignment to C
Leaf States sL ∈ SL: complete assignment to an L ∈ L

t1=a,t2=b,t3=a

p1=a p2=b p3=a p4=ap1=a,p2=b,p3=a,p4=a

t1=a t2=b t3=a

Álvaro Torralba Decoupled Search 15

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Applying a Factoring to a Planning Task

Given a Factoring F = {C,L1, . . . ,Ln}, we define
Center States sC ∈ SC : complete assignment to C
Leaf States sL ∈ SL: complete assignment to an L ∈ L

t1=a,t2=b,t3=a

p1=a p2=b p3=a p4=a

p1=a,p2=b,p3=a,p4=a

t1=a t2=b t3=a

Álvaro Torralba Decoupled Search 15

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Applying a Factoring to a Planning Task

Given a Factoring F = {C,L1, . . . ,Ln}, we define
Center States sC ∈ SC : complete assignment to C
Leaf States sL ∈ SL: complete assignment to an L ∈ L

t1=a,t2=b,t3=a

p1=a p2=b p3=a p4=a

p1=a,p2=b,p3=a,p4=a

t1=a t2=b t3=a

Álvaro Torralba Decoupled Search 15

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Decoupled Search – Intuition II

l1 l2 l3

Center path:

l1 l2 l3 l2 l1
drive(l1, l2) drive(l2, l3) drive(l3, l2) drive(l2, l1)

:
(a) l1 t l2

load(p1, l1) unload(p1, l2)

(b) l1 t l3
load(p1, l1) unload(p1, l3)

:
(a) l3 t l2

load(p3, l3) unload(p3, l2)

(b) l3 t l1
load(p3, l3) unload(p3, l1)

We can choose (a) or (b) for each of p1 and p3 independently
=⇒ Maintain the compliant paths for each leaf separately.

Álvaro Torralba Decoupled Search 16

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Decoupled Search – Intuition II

l1 l2 l3Center path:

l1 l2 l3 l2 l1
drive(l1, l2) drive(l2, l3) drive(l3, l2) drive(l2, l1)

:
(a) l1 t l2

load(p1, l1) unload(p1, l2)

(b) l1 t l3
load(p1, l1) unload(p1, l3)

:
(a) l3 t l2

load(p3, l3) unload(p3, l2)

(b) l3 t l1
load(p3, l3) unload(p3, l1)

We can choose (a) or (b) for each of p1 and p3 independently
=⇒ Maintain the compliant paths for each leaf separately.

Álvaro Torralba Decoupled Search 16

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Decoupled Search – Intuition II

l1 l2 l3Center path:

l1 l2 l3 l2 l1
drive(l1, l2) drive(l2, l3) drive(l3, l2) drive(l2, l1)

:
(a) l1 t l2

load(p1, l1) unload(p1, l2)

(b) l1 t l3
load(p1, l1) unload(p1, l3)

:
(a) l3 t l2

load(p3, l3) unload(p3, l2)

(b) l3 t l1
load(p3, l3) unload(p3, l1)

We can choose (a) or (b) for each of p1 and p3 independently
=⇒ Maintain the compliant paths for each leaf separately.

Álvaro Torralba Decoupled Search 16

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Decoupled Search – Intuition II

l1 l2 l3Center path:

l1 l2 l3 l2 l1
drive(l1, l2) drive(l2, l3) drive(l3, l2) drive(l2, l1)

:
(a) l1 t l2

load(p1, l1) unload(p1, l2)

(b) l1 t l3
load(p1, l1) unload(p1, l3)

:
(a) l3 t l2

load(p3, l3) unload(p3, l2)

(b) l3 t l1
load(p3, l3) unload(p3, l1)

We can choose (a) or (b) for each of p1 and p3 independently
=⇒ Maintain the compliant paths for each leaf separately.

Álvaro Torralba Decoupled Search 16

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Decoupled Search – Intuition II

l1 l2 l3Center path:

l1 l2 l3 l2 l1
drive(l1, l2) drive(l2, l3) drive(l3, l2) drive(l2, l1)

:
(a) l1 t l2

load(p1, l1) unload(p1, l2)

(b) l1 t l3
load(p1, l1) unload(p1, l3)

:
(a) l3 t l2

load(p3, l3) unload(p3, l2)

(b) l3 t l1
load(p3, l3) unload(p3, l1)

We can choose (a) or (b) for each of p1 and p3 independently
=⇒ Maintain the compliant paths for each leaf separately.

Álvaro Torralba Decoupled Search 16

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Decoupled Search – Intuition II

l1 l2 l3Center path:

l1 l2 l3 l2 l1
drive(l1, l2) drive(l2, l3) drive(l3, l2) drive(l2, l1)

:
(a) l1 t l2

load(p1, l1) unload(p1, l2)

(b) l1 t l3
load(p1, l1) unload(p1, l3)

:
(a) l3 t l2

load(p3, l3) unload(p3, l2)

(b) l3 t l1
load(p3, l3) unload(p3, l1)

We can choose (a) or (b) for each of p1 and p3 independently
=⇒ Maintain the compliant paths for each leaf separately.

Álvaro Torralba Decoupled Search 16

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Decoupled Search – Intuition II

l1 l2 l3Center path:

l1 l2 l3 l2 l1
drive(l1, l2) drive(l2, l3) drive(l3, l2) drive(l2, l1)

:
(a) l1 t l2

load(p1, l1) unload(p1, l2)

(b) l1 t l3
load(p1, l1) unload(p1, l3)

:
(a) l3 t l2

load(p3, l3) unload(p3, l2)

(b) l3 t l1
load(p3, l3) unload(p3, l1)

We can choose (a) or (b) for each of p1 and p3 independently
=⇒ Maintain the compliant paths for each leaf separately.

Álvaro Torralba Decoupled Search 16

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Decoupled Search – Intuition III

t = l3

l1 t l2 l3 l4
p1 0 1 2 2 ∞

l1 t l2 l3 l4
p2 0 1 ∞ 2 2

l1 t l2 l3 l4
p3 ∞ 1 ∞ 2 0

l1 t l2 l3 l4
p4 ∞ 1 ∞ 2 0

tl3, p1t , p2l3, p3l3, p4l37
tl3, p1l3, p2l3, p3t , p4t6

tl3, p1t , p2t , p3t , p4l35
tl3, p1l3, p2t , p3t , p4l36

tl3, p1t , p2l3, p3t , p4t5. . .

Decoupled State sF

Hypercube [sF] (144 member states!)

Every member state annotated with its price in sF .

Hypercube dimensions = Leaves; Axis values = Leaf States.

Álvaro Torralba Decoupled Search 17

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Decoupled Search – Intuition III

t = l3

l1 t l2 l3 l4
p1 0 1 2 2 ∞

l1 t l2 l3 l4
p2 0 1 ∞ 2 2

l1 t l2 l3 l4
p3 ∞ 1 ∞ 2 0

l1 t l2 l3 l4
p4 ∞ 1 ∞ 2 0

tl3, p1t , p2l3, p3l3, p4l37
tl3, p1l3, p2l3, p3t , p4t6

tl3, p1t , p2t , p3t , p4l35
tl3, p1l3, p2t , p3t , p4l36

tl3, p1t , p2l3, p3t , p4t5. . .

Decoupled State sF Hypercube [sF] (144 member states!)

Every member state annotated with its price in sF .

Hypercube dimensions = Leaves; Axis values = Leaf States.

Álvaro Torralba Decoupled Search 17

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Decoupled Search – Intuition III

t = l3

l1 t l2 l3 l4
p1 0 1 2 2 ∞

l1 t l2 l3 l4
p2 0 1 ∞ 2 2

l1 t l2 l3 l4
p3 ∞ 1 ∞ 2 0

l1 t l2 l3 l4
p4 ∞ 1 ∞ 2 0

tl3, p1t , p2l3, p3l3, p4l37
tl3, p1l3, p2l3, p3t , p4t6

tl3, p1t , p2t , p3t , p4l35
tl3, p1l3, p2t , p3t , p4l36

tl3, p1t , p2l3, p3t , p4t5. . .

Decoupled State sF Hypercube [sF] (144 member states!)

Every member state annotated with its price in sF .

Hypercube dimensions = Leaves; Axis values = Leaf States.

Álvaro Torralba Decoupled Search 17

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Examples

Logistics

Álvaro Torralba Decoupled Search 18

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Examples

Logistics

Álvaro Torralba Decoupled Search 18

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Examples

TPP

Álvaro Torralba Decoupled Search 18

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Examples

TPP

Álvaro Torralba Decoupled Search 18

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Examples

Visit-All

Álvaro Torralba Decoupled Search 18

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Examples

Visit-All

Álvaro Torralba Decoupled Search 18

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Examples

Openstacks

Álvaro Torralba Decoupled Search 18

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Examples

Openstacks

Álvaro Torralba Decoupled Search 18

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Initial Decoupled State
Center variables get their value from the explicit state

Set price of 0 for the leaf state that holds in the initial state
Saturate the leaves: reachability analysis (Dijkstra) on each
leaf using leaf-only actions whose center preconditions hold

Example:

l1 l2 l3 t = l1

l1 t l2 l3
p1 ∞∞∞∞

l1 t l2 l3
p2 ∞∞∞∞

l1 t l2 l3
p3 ∞∞∞∞

l1 t l2 l3
p4 ∞∞∞∞

Explicit initial state Decoupled initial state

l1 l2 l3 l4

t0

Álvaro Torralba Decoupled Search 19

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Initial Decoupled State
Center variables get their value from the explicit state
Set price of 0 for the leaf state that holds in the initial state

Saturate the leaves: reachability analysis (Dijkstra) on each
leaf using leaf-only actions whose center preconditions hold

Example:

l1 l2 l3 t = l1

l1 t l2 l3
p1 0 ∞∞∞

l1 t l2 l3
p2 0 ∞∞∞

l1 t l2 l3
p3 ∞∞∞ 0

l1 t l2 l3
p4 ∞∞∞ 0

Explicit initial state Decoupled initial state

l1 l2 l3 l4

t0

Álvaro Torralba Decoupled Search 19

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Initial Decoupled State
Center variables get their value from the explicit state
Set price of 0 for the leaf state that holds in the initial state
Saturate the leaves: reachability analysis (Dijkstra) on each
leaf using leaf-only actions whose center preconditions hold

Example:

l1 l2 l3 t = l1

l1 t l2 l3
p1 0 ∞∞∞

l1 t l2 l3
p2 0 ∞∞∞

l1 t l2 l3
p3 ∞∞∞ 0

l1 t l2 l3
p4 ∞∞∞ 0

Explicit initial state Decoupled initial state

l1 l2 l3 l4

t0

Álvaro Torralba Decoupled Search 19

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Initial Decoupled State
Center variables get their value from the explicit state
Set price of 0 for the leaf state that holds in the initial state
Saturate the leaves: reachability analysis (Dijkstra) on each
leaf using leaf-only actions whose center preconditions hold

Example:

l1 l2 l3 t = l1

l1 t l2 l3
p1 0 1 ∞∞

l1 t l2 l3
p2 0 1 ∞∞

l1 t l2 l3
p3 ∞∞∞ 0

l1 t l2 l3
p4 ∞∞∞ 0

Explicit initial state Decoupled initial state

l1 l2 l3 l4

t0 1

Álvaro Torralba Decoupled Search 19

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

High-level Idea

Decoupled state space is a transition system (TS) where:

States: decoupled states (saturated w.r.t. reachable leaf states),
Transitions: induced only by center actions, saturate successor,
Initial state: saturated explicit initial state,
Goal states: all goals are reached in decoupled state (goal
member state).

→ Run – in principle – any (heuristic) search algorithm on this TS.
(Optimal planning: minor modifications required)

Álvaro Torralba Decoupled Search 20

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

High-level Idea

Decoupled state space is a transition system (TS) where:

States: decoupled states (saturated w.r.t. reachable leaf states),

Transitions: induced only by center actions, saturate successor,
Initial state: saturated explicit initial state,
Goal states: all goals are reached in decoupled state (goal
member state).

→ Run – in principle – any (heuristic) search algorithm on this TS.
(Optimal planning: minor modifications required)

Álvaro Torralba Decoupled Search 20

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

High-level Idea

Decoupled state space is a transition system (TS) where:

States: decoupled states (saturated w.r.t. reachable leaf states),
Transitions: induced only by center actions, saturate successor,

Initial state: saturated explicit initial state,
Goal states: all goals are reached in decoupled state (goal
member state).

→ Run – in principle – any (heuristic) search algorithm on this TS.
(Optimal planning: minor modifications required)

Álvaro Torralba Decoupled Search 20

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

High-level Idea

Decoupled state space is a transition system (TS) where:

States: decoupled states (saturated w.r.t. reachable leaf states),
Transitions: induced only by center actions, saturate successor,
Initial state: saturated explicit initial state,

Goal states: all goals are reached in decoupled state (goal
member state).

→ Run – in principle – any (heuristic) search algorithm on this TS.
(Optimal planning: minor modifications required)

Álvaro Torralba Decoupled Search 20

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

High-level Idea

Decoupled state space is a transition system (TS) where:

States: decoupled states (saturated w.r.t. reachable leaf states),
Transitions: induced only by center actions, saturate successor,
Initial state: saturated explicit initial state,
Goal states: all goals are reached in decoupled state (goal
member state).

→ Run – in principle – any (heuristic) search algorithm on this TS.
(Optimal planning: minor modifications required)

Álvaro Torralba Decoupled Search 20

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

High-level Idea

Decoupled state space is a transition system (TS) where:

States: decoupled states (saturated w.r.t. reachable leaf states),
Transitions: induced only by center actions, saturate successor,
Initial state: saturated explicit initial state,
Goal states: all goals are reached in decoupled state (goal
member state).

→ Run – in principle – any (heuristic) search algorithm on this TS.

(Optimal planning: minor modifications required)

Álvaro Torralba Decoupled Search 20

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

High-level Idea

Decoupled state space is a transition system (TS) where:

States: decoupled states (saturated w.r.t. reachable leaf states),
Transitions: induced only by center actions, saturate successor,
Initial state: saturated explicit initial state,
Goal states: all goals are reached in decoupled state (goal
member state).

→ Run – in principle – any (heuristic) search algorithm on this TS.
(Optimal planning: minor modifications required)

Álvaro Torralba Decoupled Search 20

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Decoupled Search – Fork (Truck-centered)

l1 l2 l3
t = l1

l1 t l2 l3
p1 0 1 ∞ ∞

l1 t l2 l3
p2 0 1 ∞ ∞

l1 t l2 l3
p3 ∞ ∞ ∞ 0

l1 t l2 l3
p4 ∞ ∞ ∞ 0 drive(l1, l2)

t = l2

l1 t l2 l3
p1 0 1 2 ∞

l1 t l2 l3
p2 0 1 2 ∞

l1 t l2 l3
p3 ∞ ∞ ∞ 0

l1 t l2 l3
p4 ∞ ∞ ∞ 0 drive(l2, l3)

drive(l2, l1)

t = l3

l1 t l2 l3
p1 0 1 2 2

l1 t l2 l3
p2 0 1 2 2

l1 t l2 l3
p3 ∞ 1 ∞ 0

l1 t l2 l3
p4 ∞ 1 ∞ 0

t = l1

l1 t l2 l3
p1 0 1 2 ∞

l1 t l2 l3
p2 0 1 2 ∞

l1 t l2 l3
p3 ∞ ∞ ∞ 0

l1 t l2 l3
p4 ∞ ∞ ∞ 0

Álvaro Torralba Decoupled Search 21

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Solution Reconstruction

For every member state s ∈ [sF] of a decoupled state sF , we can
construct a global plan reaching s from the initial state I.

Approach:
(1) Extract global plan following parent pointers

(2) For every step in the global plan, each leaf adds actions (by
independence, actions of different leaves can be applied in any
order)

t = l1

l1 t l2 l3
p1 0 1 ∞ ∞

l1 t l2 l3
p2 0 1 ∞ ∞

l1 t l2 l3
p3 ∞ ∞ ∞ 0

l1 t l2 l3
p4 ∞ ∞ ∞ 0

drive(l1, l2)
t = l2

l1 t l2 l3
p1 0 1 2 ∞

l1 t l2 l3
p2 0 1 2 ∞

l1 t l2 l3
p3 ∞ ∞ ∞ 0

l1 t l2 l3
p4 ∞ ∞ ∞ 0

drive(l2, l3)
t = l3

l1 t l2 l3
p1 0 1 2 2

l1 t l2 l3
p2 0 1 2 2

l1 t l2 l3
p3 ∞ 1 ∞ 0

l1 t l2 l3
p4 ∞ 1 ∞ 0

Álvaro Torralba Decoupled Search 22

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Solution Reconstruction

For every member state s ∈ [sF] of a decoupled state sF , we can
construct a global plan reaching s from the initial state I.
Approach:

(1) Extract global plan following parent pointers

(2) For every step in the global plan, each leaf adds actions (by
independence, actions of different leaves can be applied in any
order)

t = l1

l1 t l2 l3
p1 0 1 ∞ ∞

l1 t l2 l3
p2 0 1 ∞ ∞

l1 t l2 l3
p3 ∞ ∞ ∞ 0

l1 t l2 l3
p4 ∞ ∞ ∞ 0

drive(l1, l2)
t = l2

l1 t l2 l3
p1 0 1 2 ∞

l1 t l2 l3
p2 0 1 2 ∞

l1 t l2 l3
p3 ∞ ∞ ∞ 0

l1 t l2 l3
p4 ∞ ∞ ∞ 0

drive(l2, l3)
t = l3

l1 t l2 l3
p1 0 1 2 2

l1 t l2 l3
p2 0 1 2 2

l1 t l2 l3
p3 ∞ 1 ∞ 0

l1 t l2 l3
p4 ∞ 1 ∞ 0

Álvaro Torralba Decoupled Search 22

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Solution Reconstruction

For every member state s ∈ [sF] of a decoupled state sF , we can
construct a global plan reaching s from the initial state I.
Approach:

(1) Extract global plan following parent pointers

(2) For every step in the global plan, each leaf adds actions (by
independence, actions of different leaves can be applied in any
order)

t = l1

l1 t l2 l3
p1 0 1 ∞ ∞

l1 t l2 l3
p2 0 1 ∞ ∞

l1 t l2 l3
p3 ∞ ∞ ∞ 0

l1 t l2 l3
p4 ∞ ∞ ∞ 0

drive(l1, l2)
t = l2

l1 t l2 l3
p1 0 1 2 ∞

l1 t l2 l3
p2 0 1 2 ∞

l1 t l2 l3
p3 ∞ ∞ ∞ 0

l1 t l2 l3
p4 ∞ ∞ ∞ 0

drive(l2, l3)
t = l3

l1 t l2 l3
p1 0 1 2 2

l1 t l2 l3
p2 0 1 2 2

l1 t l2 l3
p3 ∞ 1 ∞ 0

l1 t l2 l3
p4 ∞ 1 ∞ 0

Álvaro Torralba Decoupled Search 22

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Solution Reconstruction
For every member state s ∈ [sF] of a decoupled state sF , we can
construct a global plan reaching s from the initial state I.
Approach:

(1) Extract global plan following parent pointers
(2) For every step in the global plan, each leaf adds actions (by

independence, actions of different leaves can be applied in any
order)

t = l1

l1 t l2 l3
p1 0 1 ∞ ∞

l1 t l2 l3
p2 0 1 ∞ ∞

l1 t l2 l3
p3 ∞ ∞ ∞ 0

l1 t l2 l3
p4 ∞ ∞ ∞ 0

drive(l1, l2)
t = l2

l1 t l2 l3
p1 0 1 2 ∞

l1 t l2 l3
p2 0 1 2 ∞

l1 t l2 l3
p3 ∞ ∞ ∞ 0

l1 t l2 l3
p4 ∞ ∞ ∞ 0

drive(l2, l3)
t = l3

l1 t l2 l3
p1 0 1 2 2

l1 t l2 l3
p2 0 1 2 2

l1 t l2 l3
p3 ∞ 1 ∞ 0

l1 t l2 l3
p4 ∞ 1 ∞ 0

unload(p1, l3)

unload(p2, l3)

load(p3, l3)

load(p4, l3)
Álvaro Torralba Decoupled Search 22

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Solution Reconstruction
For every member state s ∈ [sF] of a decoupled state sF , we can
construct a global plan reaching s from the initial state I.
Approach:

(1) Extract global plan following parent pointers
(2) For every step in the global plan, each leaf adds actions (by

independence, actions of different leaves can be applied in any
order)

t = l1

l1 t l2 l3
p1 0 1 ∞ ∞

l1 t l2 l3
p2 0 1 ∞ ∞

l1 t l2 l3
p3 ∞ ∞ ∞ 0

l1 t l2 l3
p4 ∞ ∞ ∞ 0

drive(l1, l2)
t = l2

l1 t l2 l3
p1 0 1 2 ∞

l1 t l2 l3
p2 0 1 2 ∞

l1 t l2 l3
p3 ∞ ∞ ∞ 0

l1 t l2 l3
p4 ∞ ∞ ∞ 0

drive(l2, l3)
t = l3

l1 t l2 l3
p1 0 1 2 2

l1 t l2 l3
p2 0 1 2 2

l1 t l2 l3
p3 ∞ 1 ∞ 0

l1 t l2 l3
p4 ∞ 1 ∞ 0

unload(p1, l3)

unload(p2, l3)

load(p3, l3)

load(p4, l3)

load(p1, l1)

load(p2, l1)

Álvaro Torralba Decoupled Search 22

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Initial Decoupled State – Inv Fork (Package–centered)

Center variables get their value from the explicit state

Set price of 0 for the leaf state that holds in the initial state
Saturate the leaves: reachability analysis (Dijkstra) on each
leaf using leaf-only actions whose center preconditions hold

Example:

l1 l2 l3

p1 = l1,p2 = l1

l1 l2 l3
t1 ∞∞∞

l1 l2 l3
t2 ∞∞∞

Explicit initial state Decoupled initial state

Álvaro Torralba Decoupled Search 23

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Initial Decoupled State – Inv Fork (Package–centered)

Center variables get their value from the explicit state
Set price of 0 for the leaf state that holds in the initial state

Saturate the leaves: reachability analysis (Dijkstra) on each
leaf using leaf-only actions whose center preconditions hold

Example:

l1 l2 l3

p1 = l1,p2 = l1

l1 l2 l3
t1 0 ∞∞

l1 l2 l3
t2 ∞∞ 0

Explicit initial state Decoupled initial state

Álvaro Torralba Decoupled Search 23

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Initial Decoupled State – Inv Fork (Package–centered)

Center variables get their value from the explicit state
Set price of 0 for the leaf state that holds in the initial state
Saturate the leaves: reachability analysis (Dijkstra) on each
leaf using leaf-only actions whose center preconditions hold

Example:

l1 l2 l3

p1 = l1,p2 = l1

l1 l2 l3
t1 0 1

l1 l2 l3
t2 1 0

Explicit initial state Decoupled initial state

Álvaro Torralba Decoupled Search 23

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Initial Decoupled State – Inv Fork (Package–centered)

Center variables get their value from the explicit state
Set price of 0 for the leaf state that holds in the initial state
Saturate the leaves: reachability analysis (Dijkstra) on each
leaf using leaf-only actions whose center preconditions hold

Example:

l1 l2 l3

p1 = l1,p2 = l1

l1 l2 l3
t1 0 1 2

l1 l2 l3
t2 2 1 0

Explicit initial state Decoupled initial state

Álvaro Torralba Decoupled Search 23

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Decoupled Search – InvFork (Package-centered)

l1 l2 l3
p1 = l1, p2 = l1

l1 l2 l3
t1 0 1 2

l1 l2 l3
t2 2 1 0

load(p1, t2, l1)

p1 = t2, p2 = l1

l1 l2 l3
t1 0 1 2

l1 l2 l3
t2 2 1 0

Álvaro Torralba Decoupled Search 24

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Decoupled Search – InvFork (Package-centered)

l1 l2 l3
p1 = l1, p2 = l1

l1 l2 l3
t1 0 1 2

l1 l2 l3
t2 2 1 0

load(p1, t2, l1)

p1 = t2, p2 = l1

l1 l2 l3
t1 0 1 2

l1 l2 l3
t2 2 1 0

Álvaro Torralba Decoupled Search 24

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Decoupled Search – InvFork (Package-centered)

l1 l2 l3
p1 = l1, p2 = l1

l1 l2 l3
t1 0 1 2

l1 l2 l3
t2 2 1 0

load(p1, t2, l1)

p1 = t2, p2 = l1

l1 l2 l3
t1 0 1 2

l1 l2 l3
t2 2 ∞ ∞

Álvaro Torralba Decoupled Search 24

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Decoupled Search – InvFork (Package-centered)

l1 l2 l3
p1 = l1, p2 = l1

l1 l2 l3
t1 0 1 2

l1 l2 l3
t2 2 1 0

load(p1, t2, l1)

p1 = t2, p2 = l1

l1 l2 l3
t1 0 1 2

l1 l2 l3
t2 2 3 4

Álvaro Torralba Decoupled Search 24

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Decoupled Search – InvFork (Package-centered)

l1 l2 l3
p1 = l1, p2 = l1

l1 l2 l3
t1 0 1 2

l1 l2 l3
t2 2 1 0

load(p1, t2, l1)cost=3

p1 = t2, p2 = l1

l1 l2 l3
t1 0 1 2

l1 l2 l3
t2 0 1 2

Álvaro Torralba Decoupled Search 24

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Ensuring optimallity

All search algorithms can directly be applied in the decoupled
search space

Complete
Optimal

Minor technical detail: in optimal planning, stop when minf open
≥ current solution cost

A∗ cannot stopped when expanding a goal decoupled state

Reason: decoupled states contain multiple states, so the state
with minimum f and the goal state could be two different ones

Álvaro Torralba Decoupled Search 25

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Ensuring optimallity

All search algorithms can directly be applied in the decoupled
search space

Complete
Optimal

Minor technical detail: in optimal planning, stop when minf open
≥ current solution cost
A∗ cannot stopped when expanding a goal decoupled state

Reason: decoupled states contain multiple states, so the state
with minimum f and the goal state could be two different ones

Álvaro Torralba Decoupled Search 25

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Ensuring optimallity

All search algorithms can directly be applied in the decoupled
search space

Complete
Optimal

Minor technical detail: in optimal planning, stop when minf open
≥ current solution cost
A∗ cannot stopped when expanding a goal decoupled state

Reason: decoupled states contain multiple states, so the state
with minimum f and the goal state could be two different ones

Álvaro Torralba Decoupled Search 25

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

How to Eliminate Previously Seen States?

s0

init

s1

2

s2

1

s11 X

O

goal
s0

init s1

s2

2

s2

s3

s4

1

s5

s3

s6

0
2

1

1
0

1

1
1

3

How powerful is exact duplicate checking for decoupled
search?

Álvaro Torralba Decoupled Search 26

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

How to Eliminate Previously Seen States?

s0

init

s1

2

s2

1 s11

X

O

goal
s0

init s1

s2

2

s2

s3

s4

1

s5

s3

s6

0
2

1

1
0

1

1
1

3

How powerful is exact duplicate checking for decoupled
search?

Álvaro Torralba Decoupled Search 26

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

How to Eliminate Previously Seen States?

s0

init

s1

2

s2

1 s11 X

O

goal
s0

init s1

s2

2

s2

s3

s4

1

s5

s3

s6

0
2

1

1
0

1

1
1

3

How powerful is exact duplicate checking for decoupled
search?

Álvaro Torralba Decoupled Search 26

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

How to Eliminate Previously Seen States?

s0

init

s1

2

s2

1 s11 X

O

goal
s0

init s1

s2

2
s2

s3

s4

1
s5

s3

s6

0
2

1

1
0

1

1
1

3

How powerful is exact duplicate checking for decoupled
search?

Álvaro Torralba Decoupled Search 26

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

How to Eliminate Previously Seen States?

s0

init

s1

2

s2

1 s11 X

O

goal
s0

init s1

s2

2
s2

s3

s4

1
s5

s3

s6

0
2

1

1
0

1

1
1

3

How powerful is exact duplicate checking for decoupled
search?

Álvaro Torralba Decoupled Search 26

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

How to Eliminate Previously Seen States?

s0

init

s1

2

s2

1 s11 X

O

goal
s0

init s1

s2

2
s2

s3

s4

1
s5

s3

s6

0
2

1

1
0

1

1
1

3

How powerful is exact duplicate checking for decoupled
search?

Álvaro Torralba Decoupled Search 26

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

How to Eliminate Previously Seen States?

s0

init

s1

2

s2

1 s11 X

O

goal
s0

init s1

s2

2
s2

s3

s4

1
s5

s3

s6

0
2

1

1
0

1

1
1

3

How powerful is exact duplicate checking for decoupled
search?

Álvaro Torralba Decoupled Search 26

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

How to Eliminate Previously Seen States?

s0

init

s1

2

s2

1 s11 X

O

goal
s0

init s1

s2

2
s2

s3

s4

1
s5

s3

s6

0
2

1

1
0

1

1
1

3

How powerful is exact duplicate checking for decoupled
search?

Álvaro Torralba Decoupled Search 26

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

How to Eliminate Previously Seen States?

s0

init

s1

2

s2

1 s11 X

O

goal
s0

init s1

s2

2
s2

s3

s4

1
s5

s3

s6

0
2

1

1
0

1

1
1

3

How powerful is exact duplicate checking for decoupled
search?

Álvaro Torralba Decoupled Search 26

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Dominance Pruning for Decoupled States
Definition Dominance Pruning. A decoupled state sF dominates
another state tF , denoted tF ⪯ sF , if the center state is the same,
i.e. sC(sF) = sC(tF), and for all leaf states sL:
prices(sF)[sL] ≤ prices(tF)[sL].

1 Dominance pruning can be exponentially stronger than
exact duplicate checking.

2 Optimality is preserved when comparing new state tF only
to other states with lower g-value (A∗).

Practical Issues?
Exact duplicate checking is extremely efficient → hashing.
→ For dominance pruning, we need to compare a new
decoupled state to all previously seen states with the same
center state.

Álvaro Torralba Decoupled Search 27

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Dominance Pruning for Decoupled States
Definition Dominance Pruning. A decoupled state sF dominates
another state tF , denoted tF ⪯ sF , if the center state is the same,
i.e. sC(sF) = sC(tF), and for all leaf states sL:
prices(sF)[sL] ≤ prices(tF)[sL].

1 Dominance pruning can be exponentially stronger than
exact duplicate checking.

2 Optimality is preserved when comparing new state tF only
to other states with lower g-value (A∗).

Practical Issues?
Exact duplicate checking is extremely efficient → hashing.
→ For dominance pruning, we need to compare a new
decoupled state to all previously seen states with the same
center state.

Álvaro Torralba Decoupled Search 27

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Dominance Pruning for Decoupled States
Definition Dominance Pruning. A decoupled state sF dominates
another state tF , denoted tF ⪯ sF , if the center state is the same,
i.e. sC(sF) = sC(tF), and for all leaf states sL:
prices(sF)[sL] ≤ prices(tF)[sL].

1 Dominance pruning can be exponentially stronger than
exact duplicate checking.

2 Optimality is preserved when comparing new state tF only
to other states with lower g-value (A∗).

Practical Issues?

Exact duplicate checking is extremely efficient → hashing.
→ For dominance pruning, we need to compare a new
decoupled state to all previously seen states with the same
center state.

Álvaro Torralba Decoupled Search 27

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Dominance Pruning for Decoupled States
Definition Dominance Pruning. A decoupled state sF dominates
another state tF , denoted tF ⪯ sF , if the center state is the same,
i.e. sC(sF) = sC(tF), and for all leaf states sL:
prices(sF)[sL] ≤ prices(tF)[sL].

1 Dominance pruning can be exponentially stronger than
exact duplicate checking.

2 Optimality is preserved when comparing new state tF only
to other states with lower g-value (A∗).

Practical Issues?
Exact duplicate checking is extremely efficient → hashing.

→ For dominance pruning, we need to compare a new
decoupled state to all previously seen states with the same
center state.

Álvaro Torralba Decoupled Search 27

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Dominance Pruning for Decoupled States
Definition Dominance Pruning. A decoupled state sF dominates
another state tF , denoted tF ⪯ sF , if the center state is the same,
i.e. sC(sF) = sC(tF), and for all leaf states sL:
prices(sF)[sL] ≤ prices(tF)[sL].

1 Dominance pruning can be exponentially stronger than
exact duplicate checking.

2 Optimality is preserved when comparing new state tF only
to other states with lower g-value (A∗).

Practical Issues?
Exact duplicate checking is extremely efficient → hashing.
→ For dominance pruning, we need to compare a new
decoupled state to all previously seen states with the same
center state.
Álvaro Torralba Decoupled Search 27

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Heuristics for Decoupled States
Heuristic: h(s) : S 7→ R+

0 ∪ {∞}

t = l3

l1 t l2 l3 l4
p1 0 1 2 2 ∞

l1 t l2 l3 l4
p2 0 1 ∞ 2 2

l1 t l2 l3 l4
p3 ∞ 1 ∞ 2 0

l1 t l2 l3 l4
p4 ∞ 1 ∞ 2 0

tl3, p1t , p2l3, p3l3, p4l37
tl3, p1l3, p2l3, p3t , p4t6

tl3, p1t , p2t , p3t , p4l35
tl3, p1l3, p2t , p3t , p4l36

tl3, p1t , p2l3, p3t , p4t5. . .

Decoupled State sF

Hypercube [sF] (144 member states!)

Definition (Decoupled Heuristic). h : SF 7→ R ∪ {∞}
Star-perfect heuristic: h∗

F (s
F) := mins∈[sF] prices(sF , s) + h∗(s)

hF is star-admissible if hF ≤ h∗
F

→ Pricing function is taken into account.

Álvaro Torralba Decoupled Search 28

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Heuristics for Decoupled States
Heuristic: h(s) : S 7→ R+

0 ∪ {∞}

t = l3

l1 t l2 l3 l4
p1 0 1 2 2 ∞

l1 t l2 l3 l4
p2 0 1 ∞ 2 2

l1 t l2 l3 l4
p3 ∞ 1 ∞ 2 0

l1 t l2 l3 l4
p4 ∞ 1 ∞ 2 0

tl3, p1t , p2l3, p3l3, p4l37
tl3, p1l3, p2l3, p3t , p4t6

tl3, p1t , p2t , p3t , p4l35
tl3, p1l3, p2t , p3t , p4l36

tl3, p1t , p2l3, p3t , p4t5. . .

Decoupled State sF Hypercube [sF] (144 member states!)

Definition (Decoupled Heuristic). h : SF 7→ R ∪ {∞}
Star-perfect heuristic: h∗

F (s
F) := mins∈[sF] prices(sF , s) + h∗(s)

hF is star-admissible if hF ≤ h∗
F

→ Pricing function is taken into account.

Álvaro Torralba Decoupled Search 28

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Heuristics for Decoupled States
Heuristic: h(s) : S 7→ R+

0 ∪ {∞}

t = l3

l1 t l2 l3 l4
p1 0 1 2 2 ∞

l1 t l2 l3 l4
p2 0 1 ∞ 2 2

l1 t l2 l3 l4
p3 ∞ 1 ∞ 2 0

l1 t l2 l3 l4
p4 ∞ 1 ∞ 2 0

tl3, p1t , p2l3, p3l3, p4l37
tl3, p1l3, p2l3, p3t , p4t6

tl3, p1t , p2t , p3t , p4l35
tl3, p1l3, p2t , p3t , p4l36

tl3, p1t , p2l3, p3t , p4t5. . .

Decoupled State sF Hypercube [sF] (144 member states!)

Definition (Decoupled Heuristic). h : SF 7→ R ∪ {∞}
Star-perfect heuristic: h∗

F (s
F) := mins∈[sF] prices(sF , s) + h∗(s)

hF is star-admissible if hF ≤ h∗
F

→ Pricing function is taken into account.

Álvaro Torralba Decoupled Search 28

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Heuristics for Decoupled States
Heuristic: h(s) : S 7→ R+

0 ∪ {∞}

t = l3

l1 t l2 l3 l4
p1 0 1 2 2 ∞

l1 t l2 l3 l4
p2 0 1 ∞ 2 2

l1 t l2 l3 l4
p3 ∞ 1 ∞ 2 0

l1 t l2 l3 l4
p4 ∞ 1 ∞ 2 0

tl3, p1t , p2l3, p3l3, p4l37
tl3, p1l3, p2l3, p3t , p4t6

tl3, p1t , p2t , p3t , p4l35
tl3, p1l3, p2t , p3t , p4l36

tl3, p1t , p2l3, p3t , p4t5. . .

Decoupled State sF Hypercube [sF] (144 member states!)

Definition (Decoupled Heuristic). h : SF 7→ R ∪ {∞}
Star-perfect heuristic: h∗

F (s
F) := mins∈[sF] prices(sF , s) + h∗(s)

hF is star-admissible if hF ≤ h∗
F

→ Pricing function is taken into account.
Álvaro Torralba Decoupled Search 28

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Planning Heuristics I: Naive Method

Given any planning heuristic hΠ(s) : S 7→ R+
0 ∪ {∞},

How to use hΠ(s) to compute hF (sF)?

min
s∈[sF]

prices(sF , s) + h(s)

Pros:
As informative as it gets (makes the most out of h)

Cons:
Decompresses the decoupled state, losing all the gains that
decoupled search has

→ So, we need better ways to compute or approximate this

Álvaro Torralba Decoupled Search 29

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Planning Heuristics I: Naive Method

Given any planning heuristic hΠ(s) : S 7→ R+
0 ∪ {∞},

How to use hΠ(s) to compute hF (sF)?

min
s∈[sF]

prices(sF , s) + h(s)

Pros:
As informative as it gets (makes the most out of h)

Cons:
Decompresses the decoupled state, losing all the gains that
decoupled search has

→ So, we need better ways to compute or approximate this

Álvaro Torralba Decoupled Search 29

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Planning Heuristics I: Naive Method

Given any planning heuristic hΠ(s) : S 7→ R+
0 ∪ {∞},

How to use hΠ(s) to compute hF (sF)?

min
s∈[sF]

prices(sF , s) + h(s)

Pros:
As informative as it gets (makes the most out of h)

Cons:
Decompresses the decoupled state, losing all the gains that
decoupled search has

→ So, we need better ways to compute or approximate this

Álvaro Torralba Decoupled Search 29

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Planning Heuristics I: Naive Method

Given any planning heuristic hΠ(s) : S 7→ R+
0 ∪ {∞},

How to use hΠ(s) to compute hF (sF)?

min
s∈[sF]

prices(sF , s) + h(s)

Pros:
As informative as it gets (makes the most out of h)

Cons:
Decompresses the decoupled state, losing all the gains that
decoupled search has

→ So, we need better ways to compute or approximate this

Álvaro Torralba Decoupled Search 29

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Planning Heuristics I: Naive Method

Given any planning heuristic hΠ(s) : S 7→ R+
0 ∪ {∞},

How to use hΠ(s) to compute hF (sF)?

min
s∈[sF]

prices(sF , s) + h(s)

Pros:
As informative as it gets (makes the most out of h)

Cons:
Decompresses the decoupled state, losing all the gains that
decoupled search has

→ So, we need better ways to compute or approximate this

Álvaro Torralba Decoupled Search 29

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Planning Heuristics II: Buy-leaves compilation
Buy-Leaves compilation: compute hΠ′(s) on a different planning
task Π′, which is equal to Π but with additional actions:

t = l3

l1 t l2 l3 l4
p1 0 1 2 2∞

l1 t l2 l3 l4
p2 0 1∞ 2 2

l1 t l2 l3 l4
p3 ∞ 1∞ 2 0

l1 t l2 l3 l4
p4 ∞ 1∞ 2 0

buy-p1-l1: eff: p1 = l1, cost=0,
buy-p1-t: eff: p1 = t , cost=1,
buy-p1-l2: eff: p1 = l2, cost=2,
. . .

plus additional machinery so that exactly one leaf state is
bought per leaf

Pros:
Limited overhead (the new task is not much bigger)
Can use any admissible heuristic (e.g., LM-cut)

Cons:
Buy-actions change per state, so h cannot be precomputed
(huge overhead for abstraction heuristics, PDBs, etc.)
Heuristic may approximate buying leaf states

Álvaro Torralba Decoupled Search 30

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Planning Heuristics II: Buy-leaves compilation
Buy-Leaves compilation: compute hΠ′(s) on a different planning
task Π′, which is equal to Π but with additional actions:

t = l3

l1 t l2 l3 l4
p1 0 1 2 2∞

l1 t l2 l3 l4
p2 0 1∞ 2 2

l1 t l2 l3 l4
p3 ∞ 1∞ 2 0

l1 t l2 l3 l4
p4 ∞ 1∞ 2 0

buy-p1-l1: eff: p1 = l1, cost=0,
buy-p1-t: eff: p1 = t , cost=1,
buy-p1-l2: eff: p1 = l2, cost=2,
. . .

plus additional machinery so that exactly one leaf state is
bought per leaf
Pros:

Limited overhead (the new task is not much bigger)
Can use any admissible heuristic (e.g., LM-cut)

Cons:
Buy-actions change per state, so h cannot be precomputed
(huge overhead for abstraction heuristics, PDBs, etc.)
Heuristic may approximate buying leaf states

Álvaro Torralba Decoupled Search 30

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Planning Heuristics II: Buy-leaves compilation
Buy-Leaves compilation: compute hΠ′(s) on a different planning
task Π′, which is equal to Π but with additional actions:

t = l3

l1 t l2 l3 l4
p1 0 1 2 2∞

l1 t l2 l3 l4
p2 0 1∞ 2 2

l1 t l2 l3 l4
p3 ∞ 1∞ 2 0

l1 t l2 l3 l4
p4 ∞ 1∞ 2 0

buy-p1-l1: eff: p1 = l1, cost=0,
buy-p1-t: eff: p1 = t , cost=1,
buy-p1-l2: eff: p1 = l2, cost=2,
. . .

plus additional machinery so that exactly one leaf state is
bought per leaf
Pros:

Limited overhead (the new task is not much bigger)
Can use any admissible heuristic (e.g., LM-cut)

Cons:
Buy-actions change per state, so h cannot be precomputed
(huge overhead for abstraction heuristics, PDBs, etc.)

Heuristic may approximate buying leaf states

Álvaro Torralba Decoupled Search 30

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Planning Heuristics II: Buy-leaves compilation
Buy-Leaves compilation: compute hΠ′(s) on a different planning
task Π′, which is equal to Π but with additional actions:

t = l3

l1 t l2 l3 l4
p1 0 1 2 2∞

l1 t l2 l3 l4
p2 0 1∞ 2 2

l1 t l2 l3 l4
p3 ∞ 1∞ 2 0

l1 t l2 l3 l4
p4 ∞ 1∞ 2 0

buy-p1-l1: eff: p1 = l1, cost=0,
buy-p1-t: eff: p1 = t , cost=1,
buy-p1-l2: eff: p1 = l2, cost=2,
. . .

plus additional machinery so that exactly one leaf state is
bought per leaf
Pros:

Limited overhead (the new task is not much bigger)
Can use any admissible heuristic (e.g., LM-cut)

Cons:
Buy-actions change per state, so h cannot be precomputed
(huge overhead for abstraction heuristics, PDBs, etc.)
Heuristic may approximate buying leaf states

Álvaro Torralba Decoupled Search 30

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Heuristics Part III: Precomputed heuristics

Given a precomputed abstraction heuristic (PDB, ADD, M&S)
can we compute hF (sF) efficiently?

Single PDBs: yes

ADDs/M&S: not in general (NP-complete), but yes for
compliant data-structures (Gnad et al. (2023))

→ align data-structure with the factoring has no cost

Multiple PDBs (max or sum): not in general (NP-complete)
→ For PDBs that only affect a single leaf, we can
approximate their sum (Sievers et al. (2022))

Open Question: How to approximate additive abstractions in
more general ways?

Álvaro Torralba Decoupled Search 31

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Heuristics Part III: Precomputed heuristics

Given a precomputed abstraction heuristic (PDB, ADD, M&S)
can we compute hF (sF) efficiently?

Single PDBs: yes

ADDs/M&S: not in general (NP-complete), but yes for
compliant data-structures (Gnad et al. (2023))

→ align data-structure with the factoring has no cost

Multiple PDBs (max or sum): not in general (NP-complete)
→ For PDBs that only affect a single leaf, we can
approximate their sum (Sievers et al. (2022))

Open Question: How to approximate additive abstractions in
more general ways?

Álvaro Torralba Decoupled Search 31

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Heuristics Part III: Precomputed heuristics

Given a precomputed abstraction heuristic (PDB, ADD, M&S)
can we compute hF (sF) efficiently?

Single PDBs: yes

ADDs/M&S: not in general (NP-complete), but yes for
compliant data-structures (Gnad et al. (2023))

→ align data-structure with the factoring has no cost

Multiple PDBs (max or sum): not in general (NP-complete)
→ For PDBs that only affect a single leaf, we can
approximate their sum (Sievers et al. (2022))

Open Question: How to approximate additive abstractions in
more general ways?

Álvaro Torralba Decoupled Search 31

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Heuristics Part III: Precomputed heuristics

Given a precomputed abstraction heuristic (PDB, ADD, M&S)
can we compute hF (sF) efficiently?

Single PDBs: yes

ADDs/M&S: not in general (NP-complete), but yes for
compliant data-structures (Gnad et al. (2023))

→ align data-structure with the factoring has no cost

Multiple PDBs (max or sum): not in general (NP-complete)
→ For PDBs that only affect a single leaf, we can
approximate their sum (Sievers et al. (2022))

Open Question: How to approximate additive abstractions in
more general ways?

Álvaro Torralba Decoupled Search 31

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Pruning Methods

Symmetry breaking (Gnad et al. (2017))
→ Permute prices and/or center state
Dominance pruning with dominance analysis (for
forks) (Torralba et al. (2016))
→ Propagate prices from better to worse leaf states
Partial order reduction (Gnad et al. (2019))
→ over global actions

Álvaro Torralba Decoupled Search 32

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Recharging Robots

Running Example from (Gnad et al. (2022))

Submitted to the International Planning Competition
IPC Organizers improved the domain (so, the version here is
substantially different from the IPC version).

Álvaro Torralba Decoupled Search 33

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Decoupled Search – The Story so far..

Beating LM-cut with hmax (Sometimes) – Fork-Decoupled
State-Space Search
G, Hoffmann, ICAPS’15. C

L1 L2 L3

From Fork Decoupling to Star-Topology Decoupling
G, Hoffmann, Domshlak, SOCS’15.

C

L1 L2

L3 L4

How to obtain Star Factorings? IJCAI’17, ICAPS’19.

Álvaro Torralba Decoupled Search 34

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Decoupled Search – The Story so far..

Beating LM-cut with hmax (Sometimes) – Fork-Decoupled
State-Space Search
G, Hoffmann, ICAPS’15. C

L1 L2 L3

From Fork Decoupling to Star-Topology Decoupling
G, Hoffmann, Domshlak, SOCS’15.

C

L1 L2

L3 L4

How to obtain Star Factorings? IJCAI’17, ICAPS’19.

Álvaro Torralba Decoupled Search 34

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Decoupled Search – The Story so far..

Beating LM-cut with hmax (Sometimes) – Fork-Decoupled
State-Space Search
G, Hoffmann, ICAPS’15. C

L1 L2 L3

From Fork Decoupling to Star-Topology Decoupling
G, Hoffmann, Domshlak, SOCS’15.

C

L1 L2

L3 L4

How to obtain Star Factorings? IJCAI’17, ICAPS’19.

Álvaro Torralba Decoupled Search 34

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Collaborative Robots – Where is the center?

Causal Graph:
R1↔B1

R2↔B2 R3↔B3

R4↔B4

Robots (Ri) move freely in world, no collisions, battery usage (Bi).

Actions: move(Ri ,Bi , lx , ly): moving consumes battery;
robots can charge(Ri ,Bi ,Rj ,Bj) each other.

Álvaro Torralba Decoupled Search 35

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Collaborative Robots – Where is the center?

Causal Graph:
R1↔B1

R2↔B2 R3↔B3

R4↔B4

Robots (Ri) move freely in world, no collisions, battery usage (Bi).
Actions: move(Ri ,Bi , lx , ly): moving consumes battery;
robots can charge(Ri ,Bi ,Rj ,Bj) each other.

Álvaro Torralba Decoupled Search 35

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Collaborative Robots – Where is the center?

Causal Graph:
R1↔B1

R2↔B2 R3↔B3

R4↔B4

Robots (Ri) move freely in world, no collisions, battery usage (Bi).
Actions: move(Ri ,Bi , lx , ly): moving consumes battery;
robots can charge(Ri ,Bi ,Rj ,Bj) each other.

Álvaro Torralba Decoupled Search 35

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Factoring in the Recharging Robots

move(Ri ,Bi , lx , ly):

→ internal(leaf-only) actions

pre = {Ri = lx ,Bi = b},
eff = {Ri = ly ,Bi = b − 1}

charge(Ri ,Bi ,Rj ,Bj):

→ global actions

pre = {Ri = Rj = lx ,Bi = b,Bj = c},
eff = {Bi = b − 1,Bj = c + 1}

R1↔B1

R2↔B2 R3↔B3

R4↔B4

L1

L2 L3

L4

C = ∅

Álvaro Torralba Decoupled Search 36

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Factoring in the Recharging Robots

move(Ri ,Bi , lx , ly): → internal(leaf-only) actions
pre = {Ri = lx ,Bi = b},
eff = {Ri = ly ,Bi = b − 1}

charge(Ri ,Bi ,Rj ,Bj): → global actions
pre = {Ri = Rj = lx ,Bi = b,Bj = c},
eff = {Bi = b − 1,Bj = c + 1}

R1↔B1

R2↔B2 R3↔B3

R4↔B4

L1

L2 L3

L4

C = ∅

Álvaro Torralba Decoupled Search 36

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Finding Generalized Factorings

Formulate factoring process as integer linear program (ILP).

Any partition of the state variables is a valid factoring.

Optimize important properties of the factoring:

Number of leaves,
Mobility: number of leaf-only actions (sum over leaves),
Balanced mobility: # leaf-only actions (product over leaves),
Flexibility: ratio of leaf-only actions (sum over facts).

Require minimum flexibility {0%,5%, . . .100%}.

Leaf candidates: action effect schemas vars(eff a) and
SCCs of CG.

Álvaro Torralba Decoupled Search 37

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Finding Generalized Factorings

Formulate factoring process as integer linear program (ILP).

Any partition of the state variables is a valid factoring.

Optimize important properties of the factoring:

Number of leaves,
Mobility: number of leaf-only actions (sum over leaves),
Balanced mobility: # leaf-only actions (product over leaves),
Flexibility: ratio of leaf-only actions (sum over facts).

Require minimum flexibility {0%,5%, . . .100%}.

Leaf candidates: action effect schemas vars(eff a) and
SCCs of CG.

Álvaro Torralba Decoupled Search 37

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Finding Generalized Factorings

Formulate factoring process as integer linear program (ILP).

Any partition of the state variables is a valid factoring.

Optimize important properties of the factoring:

Number of leaves,
Mobility: number of leaf-only actions (sum over leaves),
Balanced mobility: # leaf-only actions (product over leaves),
Flexibility: ratio of leaf-only actions (sum over facts).

Require minimum flexibility {0%,5%, . . .100%}.

Leaf candidates: action effect schemas vars(eff a) and
SCCs of CG.

Álvaro Torralba Decoupled Search 37

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Finding Generalized Factorings

Formulate factoring process as integer linear program (ILP).

Any partition of the state variables is a valid factoring.

Optimize important properties of the factoring:

Number of leaves,
Mobility: number of leaf-only actions (sum over leaves),
Balanced mobility: # leaf-only actions (product over leaves),
Flexibility: ratio of leaf-only actions (sum over facts).

Require minimum flexibility {0%,5%, . . .100%}.

Leaf candidates: action effect schemas vars(eff a) and
SCCs of CG.

Álvaro Torralba Decoupled Search 37

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Finding Generalized Factorings

Formulate factoring process as integer linear program (ILP).

Any partition of the state variables is a valid factoring.

Optimize important properties of the factoring:

Number of leaves,
Mobility: number of leaf-only actions (sum over leaves),
Balanced mobility: # leaf-only actions (product over leaves),
Flexibility: ratio of leaf-only actions (sum over facts).

Require minimum flexibility {0%,5%, . . .100%}.

Leaf candidates: action effect schemas vars(eff a) and
SCCs of CG.

Álvaro Torralba Decoupled Search 37

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Factoring Properties

What are important properties of a factoring that influence
search-space reduction?

Number of leaf factors:
2N different states resulting from only loading all packages at l1!

→ This is a single decoupled state.

l1 l2 l3 l4
. . .

The reduction is exponential in the number of leaves. (Gnad and
Hoffmann (2018))

Leaf mobility:
A leaf factor L ∈ L is mobile, if it has only-leaf actions
→ Leaves that are not mobile do not contribute to the
search-space reduction

Álvaro Torralba Decoupled Search 38

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Factoring Properties

What are important properties of a factoring that influence
search-space reduction?

Number of leaf factors:

2N different states resulting from only loading all packages at l1!

→ This is a single decoupled state.

l1 l2 l3 l4
. . .

The reduction is exponential in the number of leaves. (Gnad and
Hoffmann (2018))

Leaf mobility:
A leaf factor L ∈ L is mobile, if it has only-leaf actions
→ Leaves that are not mobile do not contribute to the
search-space reduction

Álvaro Torralba Decoupled Search 38

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Factoring Properties

What are important properties of a factoring that influence
search-space reduction?

Number of leaf factors:
2N different states resulting from only loading all packages at l1!

→ This is a single decoupled state.

l1 l2 l3 l4
. . .

The reduction is exponential in the number of leaves. (Gnad and
Hoffmann (2018))

Leaf mobility:
A leaf factor L ∈ L is mobile, if it has only-leaf actions
→ Leaves that are not mobile do not contribute to the
search-space reduction

Álvaro Torralba Decoupled Search 38

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Factoring Properties

What are important properties of a factoring that influence
search-space reduction?

Number of leaf factors:
2N different states resulting from only loading all packages at l1!
→ This is a single decoupled state.

l1 l2 l3 l4
. . .

The reduction is exponential in the number of leaves. (Gnad and
Hoffmann (2018))

Leaf mobility:
A leaf factor L ∈ L is mobile, if it has only-leaf actions
→ Leaves that are not mobile do not contribute to the
search-space reduction

Álvaro Torralba Decoupled Search 38

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Factoring Properties

What are important properties of a factoring that influence
search-space reduction?

Number of leaf factors:
2N different states resulting from only loading all packages at l1!
→ This is a single decoupled state.

l1 l2 l3 l4
. . .

The reduction is exponential in the number of leaves. (Gnad and
Hoffmann (2018))

Leaf mobility:
A leaf factor L ∈ L is mobile, if it has only-leaf actions
→ Leaves that are not mobile do not contribute to the
search-space reduction

Álvaro Torralba Decoupled Search 38

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Maximizing the Number of Leaves – Complexity

Theorem (Maximize Number of Leaf Factors). Given a planning task Π,
it is NP-hard to decide if there exists a factoring with N leaves.

Proof sketch. Reduction from maximum independent set (MIS)
Compute a MIS of CG(Π). By construction, no connection between
variables in the maximum independent set.
→ Each of these variables forms a leaf factor, the rest is the center.
Practical Approaches:

Compute MIS of CG → strict-star factorings,
Analyze strongly-connected components in CG
→ (inverted-)fork factorings,
Greedy selection of center variables based on CG connectivity
→ strict-star factorings,
Encode factoring as Integer Linear Program → star factorings.

Álvaro Torralba Decoupled Search 39

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Maximizing the Number of Leaves – Complexity

Theorem (Maximize Number of Leaf Factors). Given a planning task Π,
it is NP-hard to decide if there exists a factoring with N leaves.

Proof sketch. Reduction from maximum independent set (MIS)
Compute a MIS of CG(Π). By construction, no connection between
variables in the maximum independent set.
→ Each of these variables forms a leaf factor, the rest is the center.

Practical Approaches:
Compute MIS of CG → strict-star factorings,
Analyze strongly-connected components in CG
→ (inverted-)fork factorings,
Greedy selection of center variables based on CG connectivity
→ strict-star factorings,
Encode factoring as Integer Linear Program → star factorings.

Álvaro Torralba Decoupled Search 39

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Maximizing the Number of Leaves – Complexity

Theorem (Maximize Number of Leaf Factors). Given a planning task Π,
it is NP-hard to decide if there exists a factoring with N leaves.

Proof sketch. Reduction from maximum independent set (MIS)
Compute a MIS of CG(Π). By construction, no connection between
variables in the maximum independent set.
→ Each of these variables forms a leaf factor, the rest is the center.
Practical Approaches:

Compute MIS of CG → strict-star factorings,
Analyze strongly-connected components in CG
→ (inverted-)fork factorings,
Greedy selection of center variables based on CG connectivity
→ strict-star factorings,
Encode factoring as Integer Linear Program → star factorings.

Álvaro Torralba Decoupled Search 39

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Enforce minimum Leaf Fact Flexibility

0% 20% 40% 60% 80% 100%

740

760

780

800

820

840
Fork

IFork

Base

A∗ + hLM-cut

L Ls
bM bMs
M Ms
F Fs

Fork: fork factorings, IFork: inverted-forks, Base: explicit-state
search.
Álvaro Torralba Decoupled Search 40

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Enforce minimum Leaf Fact Flexibility

0% 20% 40% 60% 80% 100%

1,250

1,300

1,350

1,400

1,450

Fork
IFork

Base

GBFS + hFF + PO

L Ls
bM bMs
M Ms
F Fs

Fork: fork factorings, IFork: inverted-forks, Base: explicit-state
search.
Álvaro Torralba Decoupled Search 41

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Runtime Scatterplot – LM-cut

10−2 10−1 100 101 102 103
10−2

10−1

100

101

102

103
O

ra
cle

(n
ew

)
A∗ + hLM-cut

Base

Álvaro Torralba Decoupled Search 42

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Collaborative Robots – Deja vu?

Robots (Ri) move freely in world, no collisions, battery usage (Bi).

Actions: move(Ri ,Bi , lx , ly): moving consumes battery;
robots can charge(Ri ,Bi ,Rj ,Bj) each other.

Álvaro Torralba Decoupled Search 43

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Collaborative Robots – Deja vu?

Robots (Ri) move freely in world, no collisions, battery usage (Bi).
Actions: move(Ri ,Bi , lx , ly): moving consumes battery;
robots can charge(Ri ,Bi ,Rj ,Bj) each other.
Álvaro Torralba Decoupled Search 43

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Multi-Agent Pathfinding

Actions: move(Ri , lx , ly)
Constraint: Two agents cannot be in the same cell at the
same time
Metric: Minimize Makespan

Álvaro Torralba Decoupled Search 44

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Conflict-Based Search(Sharon et al. (2015))

1 Each agent plans their own shortest path
2 If there is no conflict, done

3 If there is a conflict, branch adding constraints that resolve it

∅

R1 cannot be at (3,2) at t = 2

R2 cannot be at (3,2) at t = 2

Álvaro Torralba Decoupled Search 45

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Conflict-Based Search(Sharon et al. (2015))

1 Each agent plans their own shortest path
2 If there is no conflict, done
3 If there is a conflict, branch adding constraints that resolve it

∅

R1 cannot be at (3,2) at t = 2

R2 cannot be at (3,2) at t = 2

Álvaro Torralba Decoupled Search 45

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Questions

Can decoupled search be applied to multi-agent
pathfinding?
What is the relation to Conflict-based Search (CBS)?

Challenge: Representing MAPF as a Planning Task is not
Straightforward

How to represent the constraint that two robots cannot be
in the same cell at the same time?
How to make sure that robots move simultaneously?

→ Let’s Ignore the Details

Álvaro Torralba Decoupled Search 46

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Questions

Can decoupled search be applied to multi-agent
pathfinding?
What is the relation to Conflict-based Search (CBS)?

Challenge: Representing MAPF as a Planning Task is not
Straightforward

How to represent the constraint that two robots cannot be
in the same cell at the same time?
How to make sure that robots move simultaneously?

→ Let’s Ignore the Details

Álvaro Torralba Decoupled Search 46

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Questions

Can decoupled search be applied to multi-agent
pathfinding?
What is the relation to Conflict-based Search (CBS)?

Challenge: Representing MAPF as a Planning Task is not
Straightforward

How to represent the constraint that two robots cannot be
in the same cell at the same time?
How to make sure that robots move simultaneously?

→ Let’s Ignore the Details

Álvaro Torralba Decoupled Search 46

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Let’s Ignore the Details

move(Ri ,Bi , lx , ly): → internal(leaf-only) actions
book space(Ri , ly , t): → global actions

R1

R2 R3

R4

C = ∅ L1

L2 L3

L4

R1

R2 R3

R4

C

L1

L2 L3

L4

Álvaro Torralba Decoupled Search 47

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Parallels between Decoupled Search and CBS

Decoupled Search for planning: CBS for MAPF:
Leafs are conditionally indepen-
dent

Agents are conditionally inde-
pendent

Search over center actions Search over conflict resolution
Handle conflicts eagerly Handle conflicts lazily

Typically more conflicts in planning
Conflicts in planning are more complex to represent and resolve
(e.g. the plans of the leaves may need to be interleaved in a
specific way)
Extensions of CBS handle conflicts more eagerly when needed

→ Can we transfer ideas?

Álvaro Torralba Decoupled Search 48

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Parallels between Decoupled Search and CBS

Decoupled Search for planning: CBS for MAPF:
Leafs are conditionally indepen-
dent

Agents are conditionally inde-
pendent

Search over center actions Search over conflict resolution
Handle conflicts eagerly Handle conflicts lazily

Typically more conflicts in planning
Conflicts in planning are more complex to represent and resolve
(e.g. the plans of the leaves may need to be interleaved in a
specific way)
Extensions of CBS handle conflicts more eagerly when needed

→ Can we transfer ideas?

Álvaro Torralba Decoupled Search 48

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Parallels between Decoupled Search and CBS

Decoupled Search for planning: CBS for MAPF:
Leafs are conditionally indepen-
dent

Agents are conditionally inde-
pendent

Search over center actions Search over conflict resolution
Handle conflicts eagerly Handle conflicts lazily

Typically more conflicts in planning
Conflicts in planning are more complex to represent and resolve
(e.g. the plans of the leaves may need to be interleaved in a
specific way)
Extensions of CBS handle conflicts more eagerly when needed

→ Can we transfer ideas?

Álvaro Torralba Decoupled Search 48

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Conclusion

The success of heuristic search heavily depends on the
definition of the search space

Decoupled Search:
State-space reduction method (reduce the search space by
orders of magnitude)
Define the search space
Exploit the task structure (conditional independence)
Each search node in the new search space represents many
states of the planning task

Properties:
captures the reachability of all states of a planning task and
preserves optimality for any optimal search algorithm
Decoupled search can be combined with (in principle) any
known AI Planning heuristic, making available highly
informed search guidance techniques for decoupled states.

Still lots of things to do!

Álvaro Torralba Decoupled Search 49

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

Conclusion

The success of heuristic search heavily depends on the
definition of the search space
Decoupled Search:

State-space reduction method (reduce the search space by
orders of magnitude)
Define the search space
Exploit the task structure (conditional independence)
Each search node in the new search space represents many
states of the planning task

Properties:
captures the reachability of all states of a planning task and
preserves optimality for any optimal search algorithm
Decoupled search can be combined with (in principle) any
known AI Planning heuristic, making available highly
informed search guidance techniques for decoupled states.

Still lots of things to do!
Álvaro Torralba Decoupled Search 49

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

References I

Daniel Gnad and Jörg Hoffmann. Star-topology decoupled state space search.
Artificial Intelligence, 257:24–60, 2018.

Daniel Gnad, Álvaro Torralba, Alexander Shleyfman, and Jörg Hoffmann.
Symmetry breaking in star-topology decoupled search. In Laura Barbulescu,
Jeremy Frank, Mausam, and Stephen F. Smith, editors, Proceedings of the
Twenty-Seventh International Conference on Automated Planning and
Scheduling (ICAPS 2017), pages 125–134. AAAI Press, 2017.

Daniel Gnad, Jörg Hoffmann, and Martin Wehrle. Strong stubborn set pruning
for star-topology decoupled state space search. Journal of Artificial
Intelligence Research, 65:343–392, 2019.

Daniel Gnad, Álvaro Torralba, and Daniel Fišer. Beyond stars - generalized
topologies for decoupled search. In Sylvie Thiébaux and William Yeoh,
editors, Proceedings of the Thirty-Second International Conference on
Automated Planning and Scheduling (ICAPS 2022), pages 110–118. AAAI
Press, 2022.

Álvaro Torralba Decoupled Search 50

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

References II

Daniel Gnad, Silvan Sievers, and Álvaro Torralba. Efficient evaluation of large
abstractions for decoupled search: Merge-and-shrink and symbolic pattern
databases. In Sven Koenig, Roni Stern, and Mauro Vallati, editors,
Proceedings of the Thirty-Third International Conference on Automated
Planning and Scheduling (ICAPS 2023). AAAI Press, 2023.

Daniel Gnad. Star-Topology Decoupled State-Space Search in AI Planning and
Model Checking. PhD thesis, Saarland University, 2021.

Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan
generation through heuristic search. Journal of Artificial Intelligence
Research, 14:253–302, 2001.

Guni Sharon, Roni Stern, Ariel Felner, and Nathan Sturtevant. Conflict-based
search for optimal multi-agent pathfinding. Artificial Intelligence,
219:40–66, 2015.

Silvan Sievers, Daniel Gnad, and Álvaro Torralba. Additive pattern databases
for decoupled search. In Proceedings of the 15th Annual Symposium on
Combinatorial Search (SoCS 2022), pages 180–189. AAAI Press, 2022.

Álvaro Torralba Decoupled Search 51

Introduction Factorings Decoupled Search Pruning Heuristics Recharging Robots MAPF Conclusion References

References III

Álvaro Torralba, Daniel Gnad, Patrick Dubbert, and Jörg Hoffmann. On
state-dominance criteria in fork-decoupled search. In Subbarao
Kambhampati, editor, Proceedings of the 25th International Joint Conference
on Artificial Intelligence (IJCAI 2016), pages 3265–3271. AAAI Press, 2016.

Álvaro Torralba Decoupled Search 52

	Introduction
	Factorings
	Decoupled Search
	Dominance Pruning
	Decoupled Heuristics
	Recharging Robots
	Multi-Agent Pathfinding
	Conclusion
	
	References

