Focusing on What Really Matters: Irrelevance Pruning in M&S

Álvaro Torralba, Peter Kissmann Saarland University, Germany

SoCS 2015, June 11 Session with ICAPS 2015

Motivation: Irrelevance Pruning

- Last Tuesday: *h*²-based preprocessor
 - Simplify the task in a preprocessing step
 - Remove operators that cannot possibly belong to any plan
 - Very useful!!!!
- Today: Can we simplify the tasks even further?

Motivation: Irrelevance Pruning

- Last Tuesday: h²-based preprocessor
 - Simplify the task in a preprocessing step
 - Remove operators that cannot possibly belong to any plan
 - Very useful!!!!
- Today: Can we simplify the tasks even further?

A (10) F (10)

Motivation: Irrelevance Pruning

- Last Tuesday: h²-based preprocessor
 - Simplify the task in a preprocessing step
 - Remove operators that cannot possibly belong to any plan
 - Very useful!!!!
- Today: Can we simplify the tasks even further?

A (10) F (10)

An admissible abstraction heuristic for cost-optimal planning

- **1** Start with the projection over variables: v_1 , v_2 , v_3 , v_4
- 2 Merge: replace Θ_i and Θ_j by their product
- Shrink: replace Θ_i by its abstraction $\alpha(\Theta_i)$

< 🗇 🕨 < 🖃 >

An admissible abstraction heuristic for cost-optimal planning

- **1** Start with the projection over variables: v_1 , v_2 , v_3 , v_4
- 2 Merge: replace Θ_i and Θ_j by their product
- Shrink: replace Θ_i by its abstraction $\alpha(\Theta_i)$

- E - N

An admissible abstraction heuristic for cost-optimal planning

- **1** Start with the projection over variables: v_1 , v_2 , v_3 , v_4
- 2 Merge: replace Θ_i and Θ_j by their product
- Shrink: replace Θ_i by its abstraction $\alpha(\Theta_i)$

- ∢ ∃ ▶

An admissible abstraction heuristic for cost-optimal planning

- **1** Start with the projection over variables: v_1 , v_2 , v_3 , v_4
- 2 Merge: replace Θ_i and Θ_j by their product
- Shrink: replace Θ_i by its abstraction $\alpha(\Theta_i)$

< 🗇 🕨 < 🖃 >

An admissible abstraction heuristic for cost-optimal planning

- Start with the projection over variables: v_1 , v_2 , v_3 , v_4
- 2 Merge: replace Θ_i and Θ_j by their product
- Shrink: replace Θ_i by its abstraction $\alpha(\Theta_i)$

Simulation-Based Dominance Pruning

Label-dominance simulation (Torralba and Hoffmann, IJCAI 2015):

- **O** Use M&S to compute a partition of the problem: $\{\Theta_1, \ldots, \Theta_k\}$
- 2 Compute label-dominance simulation relation: $\{ \leq_1, \ldots, \leq_k \}$
 - Label dominance: *I* dominates *I'* in Θ_i if for any s → t exists s → t' s.t. t ∠ t'
 - State dominance $s \leq t$: For any $s \stackrel{l}{\rightarrow} s'$, exists $t \stackrel{l'}{\rightarrow} t'$ s.t.:
 - $t \leq t'$
 - $c(l') \leq c(l)$
 - I' dominates I in the rest of the problem
- **③** In A^{*}, prune any *s* s.t. *s* \leq *t*, *g*(*s*) ≥ *g*(*t*) for some *t*

FDR task: $\langle \mathcal{V}, \mathcal{O}, \mathcal{I}, \mathcal{G} \rangle$ V_2 V_4 V_1 V3

A (10) A (10) A (10)

M&S: Framework for transformation of planning tasks

Operation	
Merge	
Shrink	
Exact Label Reduction	
Bisimulation shrinking	
Reachability pruning	

M&S: Framework for transformation of planning tasks

Operation	Transformation to global LTS
Merge	None
Shrink	Abstraction
Exact Label Reduction	Change labels
Bisimulation shrinking	Preserves <i>h</i> *
Reachability pruning	Keeps reachable/solvable part

M&S: Framework for transformation of planning tasks

Operation	Transformation to global LTS
Merge	None
Shrink	Abstraction
Exact Label Reduction	Change labels
Bisimulation shrinking	Preserves h*
Reachability pruning	Keeps reachable/solvable part
Subsumed transition pruning	Preserves <i>h</i> *

Plan Preserving Transformations of Planning Tasks

- Plan preserving:
 - Does not add any new optimal plan to the task
 - 2 At least one optimal plan for the original task is preserved $(h^*(\mathcal{I}))$
- Unreachable/dead-end pruning is plan preserving
- In this paper: subsumed transition pruning
 - \rightarrow remove transitions from M&S transition systems
 - \rightarrow globally *h*-preserving (*h**(*s*) for every *s*)

A (10) A (10) A (10)

Definition (Subsumed transition)

$$s_i \xrightarrow{l} t_i$$
 is **subsumed** by $s_i \xrightarrow{l'} t'_i$ if:

- $t_i \leq t'_i$ and
- 2 $c(l') \leq c(l)$ and
- **3** I' dominates I in all Θ_j for $j \neq i$.

Thm: Remove subsumed transitions is globally *h*-preserving

< 同 > < 回 > .

Definition (Subsumed transition)

$$s_i \xrightarrow{l} t_i$$
 is **subsumed** by $s_i \xrightarrow{l'} t'_i$ if:

- $t_i \leq t'_i$ and
- 2 $c(l') \leq c(l)$ and
- **3** I' dominates I in all Θ_j for $j \neq i$.

Thm: Remove subsumed transitions is globally *h*-preserving

A D A D A D A

Definition (Subsumed transition)

$$s_i \xrightarrow{l} t_i$$
 is **subsumed** by $s_i \xrightarrow{l'} t'_i$ if:

- $t_i \leq t'_i$ and
- 2 $c(l') \leq c(l)$ and
- I' dominates I in all Θ_j for $j \neq i$.

Thm: Remove subsumed transitions is globally h-preserving

 $\begin{array}{l} \mathcal{I} \to \textit{A} \text{ is subsumed by } \mathcal{I} \to \textit{E} \\ \mathcal{G} \to \textit{D} \text{ is subsumed by } \mathcal{G} \to \textit{E} \end{array}$

< 回 > < 三 > < 三 >

Definition (Subsumed transition)

$$s_i \xrightarrow{l} t_i$$
 is **subsumed** by $s_i \xrightarrow{l'} t'_i$ if:

- $t_i \leq t'_i$ and
- 2 $c(l') \leq c(l)$ and
- I' dominates I in all Θ_j for $j \neq i$.

Thm: Remove subsumed transitions is globally h-preserving

 $\mathcal{I} \to A$ is subsumed by $\mathcal{I} \to E$ $\mathcal{G} \to D$ is subsumed by $\mathcal{G} \to E$ A, B, C, D become unreachable

A (10) A (10) A (10) A

★ 문 ▶ 문 • ○ Q ○ SoCS 2015 8 / 16

• $s_1 \xrightarrow{l} t_1$ is subsumed by $s_1 \xrightarrow{l'} t_1$

• $s_1 \xrightarrow{l} t_1$ is subsumed by $s_1 \xrightarrow{l'} t_1$ • $s_2 \xrightarrow{l'} t_2$ is subsumed by $s_2 \xrightarrow{l} t_2$

• $s_1 \xrightarrow{l} t_1$ is subsumed by $s_1 \xrightarrow{l'} t_1$

• $s_2 \stackrel{l'}{\rightarrow} t_2$ is subsumed by $s_2 \stackrel{l}{\rightarrow} t_2$

Don't remove a transition if the label dominance changes!

- Search task Π['] instead of Π
 - implementation overhead (future work)

< 6 b

- Search task Π' instead of Π
 - implementation overhead (future work)
- 2 Remove dead operators:
 - after subsumed transition and unreachability pruning

- Search task Π' instead of Π
 - implementation overhead (future work)
- 2 Remove dead operators:
 - after subsumed transition and unreachability pruning
- M&S heuristics: If Θ' is a plan-preserving transformation of Θ, abstractions of Θ' are not admissible for Θ

- Search task Π' instead of Π
 - implementation overhead (future work)
- 2 Remove dead operators:
 - after subsumed transition and unreachability pruning
- M&S heuristics: If Θ' is a plan-preserving transformation of Θ, abstractions of Θ' are not admissible for Θ
 - $\bullet~$ It's not a bug, it's a feature!!! \rightarrow less expanded states
 - **globally admissible** (preserve h^* in at least one optimal plan) \Rightarrow A*returns optimal solutions

Subsumed transition pruning + unreachability analysis must be applied before any shrinking (except bisimulation)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Similarity Shrinking

- Shrink s, t iff $s \leq t$ and $t \leq s$
- Globally *h*-preserving ⇒ derives perfect heuristics
- Coarser than bisimulation (*s* and *s'* are similar but not bisimilar)

Redundant with subsumed transition pruning (mod label reduction)

Experiments

- Configuration *Pⁱ*:
 - Incremental computation: recompute simulation after each merge
 - No label reduction, no shrinking

- Preprocess successful in 1463 of 1612 tasks
- Takes around 100s but up to 500-1000s in larger tasks
 - \Rightarrow Suitable for optimal but not for satisficing planning

Experiments: M&S Heuristic

イロト イヨト イヨト イヨト

Experiments: Removing Irrelevant Operators

	% pruned operators			Coverage LM-cut			
Domain	P ⁱ	h ²	$h^2 + P^i$	-	P^i	h ²	$h^2 + P^i$
Floortile11	28	38	38	7	+1	+7	+7
Logistics00	67	0	67	20	+1	0	+1
NoMystery	49	23	49	14	+4	0	+4
ParcPrint11	77	70	79	13	+6	+4	+6
Rovers	71	0	71	7	+3	0	+2
Satellite	50	0	50	7	+2	0	+2
TPP	25	56	61	6	+1	0	+1
Trucks	90	38	90	10	+1	0	+1
Woodwk11	89	51	88	12	+8	+3	+8
Total (1612)	32	23	42	833	+29	+46	+65

+13 problems for symbolic bidirectional uniform-cost search (over 964)

Experiments: Comparison with State of the Art

HHJ (Haslum, Helmert, and Jonsson ICAPS 2013)

- Analyzes path subsumption in DTGs
- Current implementation only applicable to unary domains

	Oper	ators	LM-Cut		
Domain	P ⁱ	HHJ	-	P^i	HHJ
Blocksworld	0.01	0.81	28	28	35
Driverlog	0.05	0.05	13	13	14
Logistics00	0.65	0.52	20	21	21
Logistics98	0.38	0.09	6	6	6
Miconic	0.58	0.57	141	142	142
Total			208	210	218

Conclusions

Take home messages:

- M&S is suitable for transformation of planning tasks
- ② Simulation relations useful for:
 - Subsumed transition pruning \rightarrow very good in practice!
 - Similarity shrinking:
 - perfect shrinking better than bisimulation but...
 - redundant with subsumed transition pruning + bisimulation
- Irrelevance pruning greatly simplifies planning tasks

Future work:

- Extensions of label-dominance simulation
- Path subsumption
- More types of problem transformations

Thanks for your attention!

Questions?

Torralba, Kissmann

From Dominance to Irrelevance Pruning