Qualitative 000	Quantitative	Finding Dominance	Action Selection Pruning	Experiments	Conclusions 00

From Qualitative to Quantitative Dominance Pruning for Optimal Planning

Álvaro Torralba Saarland University

HSDIP Workshop June 20, 2017

Álvaro Torralba

Qualitative ●○○	Quantitative	Finding Dominance	Action Selection Pruning	Experiments 0000	Conclusions
Outline	9				

- 2 From Qualitative to Quantitative Dominance
- 3 Finding Dominance
- Action Selection Pruning
- 5 Experiments
- 6 Conclusions

Qualitative o • o	Quantitative	Finding Dominance	Action Selection Pruning	Experiments 0000	Conclusions
Domina	ance				

Qualitative ○●○	Quantitative	Finding Dominance	Action Selection Pruning	Experiments 0000	Conclusions
Domin	ance				

Qualitative	Quantitative	Finding Dominance	Action Selection Pruning	Experiments 0000	Conclusions
Domir	nance				

 $\leq B$

$$A \preceq T$$

and and

Álvaro Torralba

Qualitative	Quantitative	Finding Dominance	Action Selection Pruning	Experiments 0000	Conclusions
Domir	nance				

В

$$\blacksquare: A \preceq T \preceq$$

t does not dominate s: $s \not\leq t$

Álvaro Torralba

1

Qualitative ○○●	Quantitative	Finding Dominance	Action Selection Pruning	Experiments	Conclusions
Qualita	tive Don	ninance			

Qualitative ○○●	ooo	Finding Dominance	Action Selection Pruning	oooo	00
Qualita	ative Do	minance			

Dominance Relation

If $s \leq t$, then $h^*(s) \geq h^*(t)$: *t* is at least as good as *s*

Qualitative ○○●	Quantitative	Finding Dominance	Action Selection Pruning	Experiments 0000	Conclusions 00
Qualita	ative Do	minance			

Dominance Relation

If $s \leq t$, then $h^*(s) \geq h^*(t)$: *t* is at least as good as *s*

Prune n_s if there exists n_t s.t. $g(n_t) \le g(n_s)$ and $s \le t$

Open or closed list

Álvaro Torralba

Qualitative ○○●	Quantitative	Finding Dominance	Action Selection Pruning	Experiments 0000	Conclusions
Qualita	ative Do	minance			

Dominance Relation

If $s \leq t$, then $h^*(s) \geq h^*(t)$: *t* is at least as good as *s*

Prune n_s if there exists n_t s.t.

$$g(n_t) \leq g(n_s)$$
 and $s \leq t$

- Open or closed list
- Closed list
- Parent →Never unload a package in any location other than its destination!

Álvaro Torralba

Qualitative	Quantitative	Finding Dominance	Action Selection Pruning	Experiments 0000	Conclusions
Outlin	۵				

Qualitative Dominance

Prom Qualitative to Quantitative Dominance

3 Finding Dominance

- Action Selection Pruning
- 5 Experiments

6 Conclusions

Álvaro Torralba From Qualitative to Quantitative Dominance Pruning for Optimal Planning

Qualitative	Quantitative oeo	Finding Dominance	Action Selection Pruning	Experiments 0000	Conclusions
Quant	itativo D	ominance			

By how much *t* dominates *s*? \rightarrow function $\mathcal{D} : S \times S \rightarrow \mathbb{R} \cup \{-\infty\}$

Qualitative	Quantitative	Finding Dominance	Action Selection Pruning	Experiments 0000	Conclusions
Quanti	tative Do	ominance			

By how much *t* dominates *s*? \rightarrow function $\mathcal{D} : S \times S \rightarrow \mathbb{R} \cup \{-\infty\}$

Dominance Function: $\mathcal{D}(s,t) \leq h^*(s) - h^*(t)$

O					
Qualitative	Quantitative oo	Finding Dominance	Action Selection Pruning	Experiments 0000	Conclusions 00

Quantitative Dominance

By how much *t* dominates *s*? \rightarrow function $\mathcal{D} : S \times S \rightarrow \mathbb{R} \cup \{-\infty\}$

Dominance Function: $\mathcal{D}(s,t) \leq h^*(s) - h^*(t)$

$$\mathcal{D}(s,t) = \begin{cases} C & t \text{ is strictly closer to the goal than s (by at least C)} \\ 0 & t \text{ is at least as close as } s \\ -C & t \text{ is at most C units of cost farther than } s \\ -\infty & \text{we know nothing} \end{cases}$$

O					
Qualitative	Quantitative o e o	Finding Dominance	Action Selection Pruning	Experiments 0000	Conclusions

Quantitative Dominance

By how much *t* dominates *s*? \rightarrow function $\mathcal{D} : S \times S \rightarrow \mathbb{R} \cup \{-\infty\}$

Dominance Function: $\mathcal{D}(s, t) \leq h^*(s) - h^*(t)$

$$\mathcal{D}(s,t) = \begin{cases} C & t \text{ is strictly closer to the goal than s (by at least C)} \\ 0 & t \text{ is at least as close as } s \\ -C & t \text{ is at most C units of cost farther than } s \\ -\infty & \text{we know nothing} \end{cases}$$

ightarrow Qualitative dominance is a special case if we use only $0 ext{ or } -\infty$

Álvaro Torralba

 Qualitative
 Quantitative
 Finding Dominance
 Action Selection Pruning
 Experiments
 Conclusions

 Leveraging Quantitative Dominance
 Open Pruning
 Experiments
 Open Pruning
 Experiments
 Open Pruning
 Conclusions
 Open Pruning
 Experiments
 Conclusions
 Open Pruning
 Experiments
 Conclusions
 Open Pruning
 Experiments
 Conclusions
 Open Pruning
 Experiments
 Conclusions
 Open Pruning
 Conclusions
 Open Pruning
 Experiments
 Conclusions
 Open Pruning
 Conclus

Prune n_s if there exists n_t s.t. $g(n_t) \le g(n_s)$ and $s \le t$

Álvaro Torralba

Qualitative

Quantitative

Qualitative Quantitative **Finding Dominance** Action Selection Pruning Experiments Conclusions 000 Leveraging Quantitative Dominance

Qualitative

Prune n_s if there exists n_t s.t. $g(n_t) < g(n_s)$ and $s \prec t$ Quantitative $\mathcal{D}(s,t) + g(n_s) - g(n_t) > 0$ if $\mathcal{D}(s,t) > 0$

Álvaro Torralba

Qualitative Quantitative Finding Dominance Action Selection Pruning Experiments conclusions

Leveraging Quantitative Dominance

Qualitative Quantitative Prune n_s if there exists n_t s.t. $g(n_t) \le g(n_s)$ and $s \le t$ $\mathcal{D}(s,t) + g(n_s) - g(n_t) \ge 0$ if $\mathcal{D}(s,t) \ge 0$ $\mathcal{D}(s,t) + g(n_s) - g(n_t) > 0$ if $\mathcal{D}(s,t) < 0$

Álvaro Torralba

Qualitative 000	Quantitative	Finding Dominance ●○○○	Action Selection Pruning	Experiments 0000	Conclusions
Outlin	P				

- Qualitative Dominance
- 2 From Qualitative to Quantitative Dominance
- 3 Finding Dominance
- Action Selection Pruning
- 5 Experiments
- 6 Conclusions

0	المحد واللام و				
Qualitative	Quantitative	Finding Dominance	Action Selection Pruning	Experiments 0000	Conclusions

Compositional Approach

Consider a partition of the problem: $\Theta_1, \ldots, \Theta_k$

 $\{ \leq_1, \ldots, \leq_k \}$ is a label-dominance simulation if, whenever $s \leq_i t$:

- Goal-respecting: $s \in S_i^G$ implies that $t \in S_i^G$
- For all $s \xrightarrow{l} s'$ in Θ_i , there exists $t \xrightarrow{l'} t'$ in Θ_i s.t.:

$$\begin{array}{c} \mathbf{0} \quad s' \preceq_i t', \\ \mathbf{0} \quad s' \neq_i t', \\ \mathbf{0} \quad s' \in \mathbf{0} \quad s' \neq_i t', \\ \mathbf{0} \quad s' \in \mathbf{0} \quad s' \in$$

2
$$c(l') \leq c(l)$$
, and

l' dominates *l* elsewhere

<u> </u>		Λ Ι			
Qualitative	Quantitative	Finding Dominance	Action Selection Pruning	Experiments 0000	Conclusions

Compositional Approach

Consider a partition of the problem: $\Theta_1, \ldots, \Theta_k$

 $\{ \leq_1, \ldots, \leq_k \}$ is a label-dominance simulation if, whenever $s \leq_i t$:

- Goal-respecting: $s \in S_i^G$ implies that $t \in S_i^G$
- For all $s \xrightarrow{l} s'$ in Θ_i , there exists $t \xrightarrow{l'} t'$ in Θ_i s.t.:
 - $\begin{array}{ccc} \bullet & s' \preceq_i t', \\ \bullet & c(l') \leq c(l), \text{ and} \end{array}$
 - \bigcirc *l'* dominates *l* elsewhere

0000	000			0000	00
Qualitative	Quantitative	Finding Dominance	Action Selection Pruning	Experiments	Conclusions

Compositional Approach

Consider a partition of the problem: $\Theta_1, \ldots, \Theta_k$

 $\{ \leq_1, \ldots, \leq_k \}$ is a label-dominance simulation if, whenever $s \leq_i t$:

- Goal-respecting: $s \in S_i^G$ implies that $t \in S_i^G$
- For all $s \xrightarrow{l} s'$ in Θ_i , there exists $t \xrightarrow{l'} t'$ in Θ_i s.t.:
 - $\begin{array}{ccc} \bullet & s' \preceq_i t', \\ \bullet & c(l') \leq c(l), \text{ and} \end{array}$
 - I dominates l elsewhere

$$\rightarrow s \preceq t \text{ iff } \forall i \in [1,k] \ s_i \preceq_i t_i$$

Álvaro Torralba

Qualitative	Quantitative	Finding Dominance	Action Selection Pruning	Experiments	Conclusions
		0000			

Quantifying Label-Dominance Simulation

For all $s \xrightarrow{l} s'$ in Θ_i , there exists $t \xrightarrow{l'} t'$ in Θ_i s.t.:

- $\bigcirc s' \preceq_i t',$
- 2 $c(l') \leq c(l)$, and
- *l'* dominates *l* elsewhere

Qualitative	Quantitative	Finding Dominance	Action Selection Pruning	Experiments	Conclusions
		0000			

Quantifying Label-Dominance Simulation

For all
$$s \xrightarrow{l} s'$$
 in Θ_i , there exists $t \xrightarrow{l'} t'$ in Θ_i s.t.:

- $1 s' \preceq_i t',$
- 2 $c(l') \leq c(l)$, and
- *l'* dominates *l* elsewhere

 $\{\mathcal{D}_1, \dots, \mathcal{D}_k\}$ is a quantitative LD simulation for $\{\Theta_1, \dots, \Theta_k\}$ if:

$$\mathcal{D}_i(s,t) \le \min_{s \xrightarrow{l} s'} \max_{t \xrightarrow{l'} t'} \mathcal{D}_i(s',t') + c(l) - c(l') + \sum_{j \ne i} \mathcal{D}_j^L(l,l')$$

$$\mathcal{D}(s,t) = \sum_{i \in [1,k]} \mathcal{D}_i(s_i,t_i)$$

Álvaro Torralba

 Qualitative
 Quantitative
 Finding Dominance
 Action Selection Pruning
 Experiments
 Conclusions

 000
 000
 000
 000
 000
 000
 000

Discovering negative dominance

We can always drive between *s* and *t*: D(t, s) = D(s, t) = -1

 Qualitative
 Quantitative
 Finding Dominance
 Action Selection Pruning
 Experiments
 Conclusions

 000
 000
 000
 000
 000
 000
 000

Discovering negative dominance

We can always drive between *s* and *t*: D(t, s) = D(s, t) = -1

 τ -label: no preconditions or negative side effects elsewhere

 $s \xrightarrow{l} s'$ can be simulated by a path $t \xrightarrow{\tau} u' \xrightarrow{\tau} t'$

$$\mathcal{D}_P(A,T) = \mathcal{D}_P(T,B) = +1$$
$$\mathcal{D}_T(A,B) = \mathcal{D}_T(B,A) = -1$$

Álvaro Torralba

Qualitative	Quantitative	Finding Dominance	Action Selection Pruning ●○	Experiments 0000	Conclusions
Outlin	e				

- Qualitative Dominance
- 2 From Qualitative to Quantitative Dominance
- 3 Finding Dominance
- 4 Action Selection Pruning
- 5 Experiments
- 6 Conclusions

Qualitative	Quantitative	Finding Dominance	oooo	00
Action	Selectio	on Pruning		

000	000	0000	●	0000	00
Action	Selection	n Prunina			

Álvaro Torralba

- Prune every other successor
- Reduce branching factor to 1!

Álvaro Torralba

- Prune every other successor
- Reduce branching factor to 1!
- In our example. If possible:
 - load a package
 - unload a package in its destination

 \rightarrow Branch only over drive actions!

000	000	0000	00	0000	00

- Qualitative Dominance
- 2 From Qualitative to Quantitative Dominance
- 3 Finding Dominance
- Action Selection Pruning
- 5 Experiments
- 6 Conclusions

From Qualitative to Quantitative Dominance Pruning for Optimal Planning

15/19

From Qualitative to Quantitative Dominance Pruning for Optimal Planning

15/19

943 **396**

91

40

2.618

204

2820

1627

Rovers

Satellite

Woodworking

Álvaro Torralba

Pruning Ratio wrt. baseline

From Qualitative to Quantitative Dominance Pruning for Optimal Planning

143

1065

10795

143

 Qualitative
 Quantitative
 Finding Dominance
 Action Selection Pruning
 Experiments
 Conclusions

 000
 000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00

Great Pruning Power in LM-Cut!

 Qualitative
 Quantitative
 Finding Dominance
 Action Selection Pruning
 Experiments
 Conclusions

 000
 000
 000
 00
 00
 00
 00

Great Pruning Power in LM-Cut!

 Qualitative
 Quantitative
 Finding Dominance
 Action Selection Pruning
 Experiments
 Conclusions

 000
 000
 000
 00
 00
 00
 00

Great Pruning Power in LM-Cut!

Álvaro Torralba

Qualitative	e Quantitative	Findin	g Domir	nance	Action : 00	Selection	Pruning	(=xperiments ⊃oo●	00	onclusions
Cov	erage										
				1	Blind			L	M-cut		
			В	\preceq	AS + p	POR	В	\preceq	AS + p	POR	
	Driverlog	20	7	9	10	7	13	13	13	13	•
	Floortile	40	2	11	16	2	13	16	16	13	
	Logistics	63	12	21	27	12	26	26	33	27	
	Miconic	150	55	60	77	50	141	141	142	141	
	Nomystery	20	8	16	20	8	14	20	20	14	
	Openstacks	100	49	51	55	50	47	51	52	49	
	Parcprinter	50	16	32	44	50	31	35	48	50	
	Pathwaysnoneg	30	4	4	5	4	5	5	5	5	
	Rovers	40	6	8	8	7	7	9	10	10	
	Satellite	36	6	6	6	6	7	10	12	12	
	Sokoban	50	41	43	43	39	50	49	49	50	
	TPP	30	6	6	6	6	7	7	8	6	
	Trucksstrips	30	6	8	8	6	10	10	10	10	
	Visitall	40	12	13	12	12	15	16	15	15	
	Woodworking	50	11	30	38	24	29	48	50	46	
	Zenotravel	20	8	9	9	8	13	13	13	13	
	Total	1612	610	659	738	613	835	856	896	881	•

Qualitative 000	Quantitative	Finding Dominance	Action Selection Pruning	Experiments 0000	Conclusions ●○
Outlin	е				

- Qualitative Dominance
- 2 From Qualitative to Quantitative Dominance
- 3 Finding Dominance
- Action Selection Pruning
- 5 Experiments

Conclu	aiana	0000		0000				
Conclusions								

- Quantitative Dominance:
 - Bound difference in goal distance between states
 - Useful for dominance and action selection pruning
 - Good results and even more potential to be unleashed!
- Future work:
 - New ways to discover (quantitative) dominance
 - More efficient ways to perform dominance pruning
 - New uses for dominance