A Reminder about the Importance of Computing and Exploiting Invariants in Planning

Vidal Alcázar, Álvaro Torralba

PLG @ Universidad Carlos III de Madrid http://www.plg.inf.uc3m.es/~valcazar FAI @ Saarland University http://fai.cs.uni-saarland.de/torralba/

ICAPS - June 9, 2015

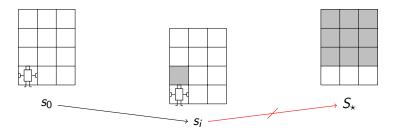
Motivation

Invariants are known to be useful:

- FDR representation, regression, partial-order planning, SAT,...
- Several methods proposed: here h^2

Some aspects have been overlooked and/or appear scattered in the literature:

- Implementation details of h^2
- Direction of the computation of the invariants
- Huge impact in some domains!


Background

State invariants:

- Mutexes: $\neg((at robot loc_1) \land (at robot loc_2))$
- "exactly-one" invariant groups:
 ((at robot loc₁) ∨···∨ (at robot loc_n)) + pairwise mutexes
- A (slightly) more general definition of spurious state:
 - State that cannot belong to a solution path
 - \Rightarrow instead of state unreachable from s_0
 - Detectable when they are inconsistent with invariants

Spurious State

Floortile domain: robots can only paint up or down

• s_i is a forward dead end, and hence spurious

• ... but does it violate some invariant?

How does h^2 work?

Reachability analysis in P²: with conjunctions of two original atoms

- Unreachable h² atoms are mutexes
 - (at robot loc1) \wedge (at robot loc2) is an unreachable h^2 atom
- Unreachable actions in P² are spurious!
 - Spurious actions are never applicable in progression, but can be (wrongly) used in regression, abstractions, heuristics...
 - Kind of obvious, but not highlighted/evaluated yet

Negated atoms in h^2

 h^2 was originally described in STRIPS, atoms are propositions

• Negated propositions matter, though. See *Matching-Blocksworld:*

Mutex {(on a b), \neg (solid b)} not found by h²!

• Negated atoms must be explicitly represented, unless they belong to an "exactly-one" invariant group

Encoding extra information in actions

Disambiguate implicit preconditions and effects

- \rightarrow find the value of some variables
- ightarrow Use mutexes in h^2 propagation

It may allow finding more mutexes and spurious actions!

Example: Throw-paint pre {}, eff {(painted loc4), (low-battery) } If you know that (at-robot loc1) and (low-battery) are mutex then

- \neg (at-robot loc1) is a precondition of throw-paint
- and (painted loc4), (at-robot loc1) may be a mutex now

- 4 同 ト 4 ヨ ト 4 ヨ ト

h² in regression

h^2 is a reachability analysis on P^2

- It can be done on a reversed version of P² too!!
 - **()** Disambiguate S_{\star} , assume unknown atoms are true
 - 2 Perform h^2 with reversed and disambiguated actions

• Already implemented by Petterson(2005) and Haslum(2008)

→ Ξ →

h² in regression

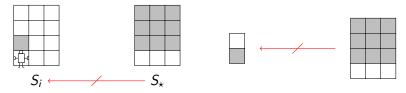
h^2 is a reachability analysis on P^2

- It can be done on a reversed version of P^2 too!!
 - **()** Disambiguate S_{\star} , assume unknown atoms are true
 - $\textcircled{\label{eq:perform} \textbf{0}} \textbf{Perform } h^2 \textbf{ with reversed and disambiguated actions}$
- Already implemented by Petterson(2005) and Haslum(2008)

Reason for a more general definition of spurious state

- Doesn't always depend on s₀
- Other invariants are used to enrich h²

h² in regression: trucks with fuel


- S_{\star} is (at-truck goal)
- The pairs (at-truck goal) \land (fuel n) are assumed to be true

 $(at-truck \text{ goal}) \land (fuel n) \xrightarrow{regression} (at-truck locx) \land (fuel n+1)$

- Unreachable pairs in regression are mutex: {(at-truck distance2toGoal), (fuel level1)}
- If encountered forward, the state is a dead end
- move (locx locDistance2toGoal fuel2 fuel1) is spurious

向下 イヨト イヨト

h² in regression: Floortile

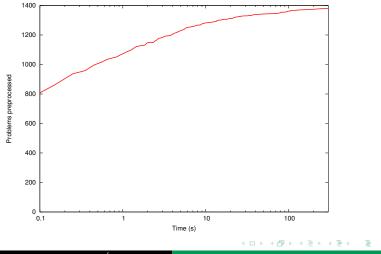
- Disambiguate goal: robot in bottom row
- Q Run bw-h2:
 - All the *paint-down* actions are discarded by bw-h² in Floortile!

• *S_i* contains binary mutexes (painted tile1-2) ∧ (not-painted tile1-3)

Our algorithm

- ${\small \bigcirc} \ \ {\rm Fw-h2} \rightarrow {\rm find} \ \, {\rm mutexes} \ \, {\rm and} \ \, {\rm spurious} \ \, {\rm actions}$
- Oisambiguate actions and goal
- $\textcircled{O} \text{ Bw-h2} \rightarrow \text{find mutexes and spurious actions}$
- If bw-h2 found something new: disambiguate and repeat fw-h2
- If fw-h2 found something new: disambiguate and repeat bw-h2

Return set of valid operators, fw-mutexes and bw-mutexes


State invariants in benchmark domains

- Low overhead: 300s threshold enough except in 3 domains
- h2 fw-mutexes: 33 out of 44 domains
- h2 bw-mutexes: 16 out of 44 domains
- Multiple iterations in 11 out of 44 domains

Domain	% Facts	% Ops	Domain	% Facts	% Ops
Tidybot	31	85	Scan-08	0	43
Airport	38	73	Pegsol-08	14	30
Parc-11	28	68	Floortile	18	38
Woodw-11	4	52	Nomystery	6	38
Trucks	5	46	Sokoban-11	22	24
TPP	12	45	Mystery	6	23

A B K A B K

Time: (optimal benchmarks)

Vidal Alcázar, Álvaro Torralba A Reminder about Invariants

Coverage: Highlighted Domains

		Optimal				Satisficing				
		Blind			LM-cut		FD		LAMA	
Domain	#	-	h^2	h^2 +mut	-	h^2	-	h^2	-	h ²
Airport	50	22	+5		28	+1	37	+2	35	+3
Floortile-11	20	2	+6	(+12)	7	+7	7	+13	6	+14
Parcprinter-11	20	6	+10		13	+4	3	+15	14	+6
Pipes-notank	50	17	0		17	0	44	-2	43	+1
Sokoban-08	30	22	+5	(+6)	30	0	28	0	29	0
Tidybot-11	20	12	0		14	+3	15	+2	16	+3
Woodwork-11	20	3	+1		12	+3	20	0	20	0
\sum	1396	533	+41	(+49)	747	+30	1138	+35	1296	+30

<ロト <回ト < 三ト < 三ト

Э

Conclusions

- Computing h^2 invariants is very helpful!
 - Both forward and backward
 - Simply remove operators inconsistent with invariants
 - Increases coverage for different optimal and satisficing planners

- Important implementation details
 - Disambiguation
 - Negated propositions
 - Spurious actions

Thanks for your attention

Questions?

Vidal Alcázar, Álvaro Torralba A Reminder about Invariants

< ∃ >

æ