Simulation-Based Admissible Dominance Pruning

Álvaro Torralba, Jörg Hoffmann

HSDIP Workshop at ICAPS June 8th, 2015

Motivation

- Cost-optimal planning: $(\mathcal{V}, \mathcal{O}, \mathcal{I}, \mathcal{G})$
- $\mathrm{A}^{*}+$ admissible heuristic $\mathrm{h}(\mathrm{s})$: estimates distance to goal
- Pruning methods:
(1) Partial-order pruning
(2) Symmetries
(3) Dominance pruning

Dominance Pruning

I'm
Happy

I'm
okay

I'm
sad

Dominance Pruning

- Detect "better than" states

$$
\begin{aligned}
\mathcal{V}= & \{\text { at }-T=\{A, B\}, \text { at }-P=\{A, B, T\}\} \\
\mathcal{I}= & \{\text { at-T } A, \text { at-P } A\} \\
\mathcal{G}= & \{\text { at }-P B\} \\
\mathcal{O}= & \{\text { move }-T(A, B), \\
& \text { move }-T(B, A), \operatorname{load}-P(A), \ldots\}
\end{aligned}
$$

Dominance Pruning

- Detect "better than" states

$$
\begin{aligned}
\mathcal{V}= & \{\text { at }-T=\{A, B\}, \text { at }-P=\{A, B, T\}\} \\
\mathcal{I}= & \{\text { at- } T A, \text { at-P } A\} \\
\mathcal{G}= & \{\text { at }-P B\} \\
\mathcal{O}= & \{\text { move }-T(A, B), \\
& \text { move- }-T(B, A), \text { load }-P(A), \ldots\}
\end{aligned}
$$

- What do you prefer?

Dominance Pruning

- Detect "better than" states

$$
\begin{aligned}
\mathcal{V}= & \{\text { at }-T=\{A, B\}, \text { at }-P=\{A, B, T\}\} \\
\mathcal{I}= & \{\text { at- }-\mathrm{A}, \text { at }-\mathrm{P} A\} \\
\mathcal{G}= & \{\text { at }-\mathrm{P} B\} \\
\mathcal{O}= & \{\operatorname{move}-\mathrm{T}(\mathrm{~A}, \mathrm{~B}), \\
& \text { move }-\mathrm{T}(\mathrm{~B}, \mathrm{~A}), \operatorname{load}-\mathrm{P}(\mathrm{~A}), \ldots\}
\end{aligned}
$$

- What do you prefer?

- Formally: relation of pair of states $s \preceq t$

Admissible Pruning

- t simulates $s(s \preceq t) \Longrightarrow t$ is at least as good as s :

$$
h^{*}(s) \geq h^{*}(t)
$$

- If $g(t) \leq g(s)$ and $s \preceq t$ then s can be discarded

Admissible Pruning

- t simulates $s(s \preceq t) \Longrightarrow t$ is at least as good as s :

$$
h^{*}(s) \geq h^{*}(t)
$$

- If $g(t) \leq g(s)$ and $s \preceq t$ then s can be discarded

Admissible Pruning

- t simulates $s(s \preceq t) \Longrightarrow t$ is at least as good as s :

$$
h^{*}(s) \geq h^{*}(t)
$$

- If $g(t) \leq g(s)$ and $s \preceq t$ then s can be discarded

Admissible Pruning

- t simulates $s(s \preceq t) \Longrightarrow t$ is at least as good as s :

$$
h^{*}(s) \geq h^{*}(t)
$$

- If $g(t) \leq g(s)$ and $s \preceq t$ then s can be discarded

$$
\begin{gathered}
s_{1} \preceq s_{3} \\
s_{1}
\end{gathered}
$$

Admissible Pruning

- t simulates $s(s \preceq t) \Longrightarrow t$ is at least as good as s :

$$
h^{*}(s) \geq h^{*}(t)
$$

- If $g(t) \leq g(s)$ and $s \preceq t$ then s can be discarded

$$
s_{1} \preceq s_{3}
$$

Challenges:
(1) How to find good dominance relations?
(2) How to efficiently check dominance?

Simulation Relation

Definition (Simulation)

A binary relation $\preceq \subseteq S \times S$ is a simulation for Θ if, whenever $s \preceq t$, for every transition $s \xrightarrow{\prime} s^{\prime}$ there exists $t \xrightarrow{\prime} t^{\prime}$ s.t. $s^{\prime} \preceq t^{\prime}$. We call \preceq goal-respecting for Θ if, whenever $s \preceq t, s \in S_{G}$ implies that $t \in S_{G}$.

$D \preceq B$
Thm: A unique coarsest goal-respecting simulation always exists and can be computed in time polynomial in the size of Θ

Simulation Relation

Definition (Simulation)

A binary relation $\preceq \subseteq S \times S$ is a simulation for Θ if, whenever $s \preceq t$, for every transition $s \xrightarrow{\prime} s^{\prime}$ there exists $t^{\prime} t^{\prime}$ s.t. $s^{\prime} \preceq t^{\prime}$. We call \preceq goal-respecting for Θ if, whenever $s \preceq t, s \in S_{G}$ implies that $t \in S_{G}$.

Cost-simulation: replace labels by their cost
\rightarrow A cost-simulation on the state space of the planning task is a dominance relation

Thm: A unique coarsest goal-respecting simulation always exists and can be computed in time polynomial in the size of Θ

Compositional Approach

(1) Consider a partition of the problem: $\Theta_{1}, \ldots, \Theta_{k}$
(2) Compute a simulation for each part: $\preceq_{1}, \ldots, \preceq_{k}$
(3) $\preceq: s \preceq t$ iff $\forall i \in[1, k] s_{i} \preceq_{i} t_{i}$
\preceq is a cost-simulation

Compositional Approach

(1) Consider a partition of the problem: $\Theta_{1}, \ldots, \Theta_{k}$
(2) Compute a simulation for each part: $\preceq_{1}, \ldots, \preceq_{k}$
(3) $\preceq: s \preceq t$ iff $\forall i \in[1, k] s_{i} \preceq_{i} t_{i}$
\preceq is a cost-simulation
In our example:
$\Theta^{1}:$
(truck)
$\Theta^{2}:$
(package)

Compositional Approach

(1) Consider a partition of the problem: $\Theta_{1}, \ldots, \Theta_{k}$
(2) Compute a simulation for each part: $\preceq_{1}, \ldots, \preceq_{k}$
(3) $\preceq: s \preceq t$ iff $\forall i \in[1, k] s_{i} \preceq_{i} t_{i}$
\preceq is a cost-simulation
In our example:
Θ^{1} :
(truck)
Θ^{2} :
(package)

Not so fast

Definition of $s \preceq t$: For every $s{ }^{\prime} s^{\prime}$ there exists $t \xrightarrow{\prime} t^{\prime}$ s.t. $s^{\prime} \preceq t^{\prime}$

(truck)
Θ^{2} :
(package)

$$
A \preceq_{2} T \preceq_{2} B
$$

Not so fast

Definition of $s \preceq t$: For every $s{ }^{\prime} s^{\prime}$ there exists $t \xrightarrow{\prime} t^{\prime}$ s.t. $s^{\prime} \preceq t^{\prime}$

(truck)
Θ^{2} :
(package)

$$
A \preceq_{2} T \preceq_{2} B
$$

$T 九_{2} B: T \xrightarrow{I B} B$ and there is no $B \xrightarrow{I B}$

Not so fast

Definition of $s \preceq t$: For every $s \xrightarrow{\prime} s^{\prime}$ there exists $t \xrightarrow{\prime} t^{\prime}$ s.t. $s^{\prime} \preceq t^{\prime}$
Θ^{1} :
(truck)
Θ^{2} :
(package)

$$
A \preceq_{2} T \preceq_{2} B
$$

$T 九_{2} B: T \xrightarrow{I B} B$ and there is no $B \xrightarrow{I B}$
$T \xrightarrow{I B} B$ and $T \xrightarrow{I A} A$ are simulated by $B \rightarrow$

Not so fast

Definition of $s \preceq t$: For every $s \xrightarrow{\prime} s^{\prime}$ there exists $t \xrightarrow{\prime} t^{\prime}$ s.t. $s^{\prime} \preceq t^{\prime}$ Θ^{1} :
(truck)
Θ^{2} :
(package)

$$
A \preceq_{2} T \preceq_{2} B
$$

$T 九_{2} B: T \xrightarrow{I B} B$ and there is no $B \xrightarrow{I B}$
$T \xrightarrow{I B} B$ and $T \xrightarrow{I A} A$ are simulated by $B \xrightarrow{\text { noop }} B$
$I A, I B$ do not have useful effects in the rest of the problem $\left(\Theta^{1}\right)!$

Label-Dominance Simulation

Definition (Label Dominance)

I^{\prime} dominates $/$ in Θ given \preceq if for every $s \xrightarrow{\prime} s^{\prime} \in \Theta$ there exists $s \xrightarrow{\prime \prime} t^{\prime}$ s.t. $s^{\prime} \preceq t^{\prime}$

Definition (Label-Dominance Simulation)

A set $\mathcal{R}=\left\{\preceq_{1}, \ldots, \preceq_{k}\right\}$ of binary relations $\preceq_{i} \subseteq S_{i} \times S_{i}$ is a label-dominance simulation for $\left\{\Theta^{1}, \ldots, \Theta^{k}\right\}$ if, whenever $s \preceq_{i} t$:

- $s \in S_{i}^{G}$ implies that $t \in S_{i}^{G}$
- For every $s \xrightarrow{\prime} s^{\prime}$ in Θ^{i}, there exists $t \xrightarrow{\prime \prime} t^{\prime}$ in Θ^{i} s.t.:
(1) $s^{\prime} \varliminf_{i} t^{\prime}$,
(2) $c\left(I^{\prime}\right) \leq c(I)$, and
(3) for all $j \neq i, l^{\prime}$ dominates / in Θ^{j} given \preceq_{j}

Label-Dominance Simulation: Theoretical Results

Theorem
 A coarsest label-dominance simulation always exists and can be computed in polynomial time

For all i, set $\preceq_{i}:=\left\{(s, t) \mid s, t \in S_{i}, s \notin S_{G}^{i}\right.$ or $\left.t \in S_{G}^{i}\right\}$
while ex. (i, s,t) s.t. not $\mathbf{O k}(i, s, t)$ do
Select one such triple (i, s, t)
Set $\preceq_{i}:=\preceq_{i} \backslash\{(s, t)\}$
return $\mathcal{R}:=\left\{\preceq_{1}, \ldots, \preceq_{k}\right\}$

Theorem

Combination of $\left\{\preceq_{1}, \ldots, \preceq_{k}\right\}$ is a cost-simulation for the planning task $\Theta_{1} \otimes \cdots \otimes \Theta_{k}$

Computation of Label-Dominance Simulation

$\Theta^{1}:$
(truck)

$\Theta^{2}:$
(package)

Truck

$$
\begin{aligned}
& \mathrm{A} \preceq_{1}\{\mathrm{~B}\} \\
& \mathrm{B} \preceq_{1}\{\mathrm{~A}\}
\end{aligned}
$$

Package

$$
\begin{aligned}
& \mathrm{A} \preceq_{2}\{\mathrm{~T}, \mathrm{~B}\} \\
& \mathrm{T} \preceq_{2}\{\mathrm{~A}, \mathrm{~B}\} \\
& \mathrm{B} \preceq_{2}\{ \}
\end{aligned}
$$

(noop $\equiv d r$) simulate $\{I A\}$ dr simulates $\{I A, I B\}$

Computation of Label-Dominance Simulation

Truck

$$
\begin{aligned}
& \mathrm{A} \preceq_{1}\{\mathrm{~B}\} \\
& \mathrm{B} \preceq_{1}\{\mathrm{~A}\}
\end{aligned}
$$

Package

$$
\begin{aligned}
& \mathrm{A} \preceq_{2}\{\mathrm{~T}, \mathrm{~B}\} \\
& \mathrm{T} \preceq_{2}\{\mathrm{~A}, \mathrm{~B}\} \\
& \mathrm{B} \preceq_{2}\{ \}
\end{aligned}
$$

(noop $\equiv d r$) simulate $\{I A\}$
noop simulates $\{I A, I B, d r\}$ $d r$ simulates $\{I A, \mid B\}$

Computation of Label-Dominance Simulation

Truck

$$
\begin{aligned}
& \mathrm{A} \preceq_{1}\{\mathrm{~B}\} \\
& \mathrm{B} \preceq_{1}\{\mathrm{~A}\}
\end{aligned}
$$

Package

$$
\begin{aligned}
& \mathrm{A} \preceq_{2}\{\mathrm{~T}, \mathrm{~B}\} \\
& \mathrm{T} \preceq_{2}\{\mathrm{~A}, \mathrm{~B}\} \\
& \mathrm{B} \preceq_{2}\{ \}
\end{aligned}
$$

(noop $\equiv d r$) simulate $\{\mid \mathrm{A}\}$
noop simulates $\{I A, I B$, dr $\}$ $d r$ simulates $\{I A, \mid B\}$

Computation of Label-Dominance Simulation

Truck

$$
\begin{aligned}
& \mathrm{A} \preceq_{1}\{B\} \\
& \mathrm{B} \preceq_{1}\{\mathrm{~A}\}
\end{aligned}
$$

noop simulates $\{I A, I B, \mathrm{dr}\}$ $d r$ simulates $\{|\mathrm{A}| \mathrm{B}$,

Package

$$
\begin{aligned}
& \mathrm{A} \preceq_{2}\{\mathrm{~T}, \mathrm{~B}\} \\
& \mathrm{T} \preceq_{2}\{\mathrm{~A}, \mathrm{~B}\} \\
& \mathrm{B} \preceq_{2}\{ \}
\end{aligned}
$$

(noop $\equiv d r$) simulate $\{\mid \mathrm{A}\}$

Pruning: Implementation Details

- Insert in closed every state dominated by any expanded state
\rightarrow BDD B_{g} represents any state expanded/dominated with g
- When s is generated or expanded:
(1) Prune s if it is in $B_{g^{\prime}}$ for some $g^{\prime} \leq g(s)$
- When s is expanded:
(1) Insert all states dominated by s in $B_{g(s)}$

Pruning: Implementation Details

- Insert in closed every state dominated by any expanded state
\rightarrow BDD B_{g} represents any state expanded/dominated with g
- When s is generated or expanded:
(1) Prune s if it is in $B_{g^{\prime}}$ for some $g^{\prime} \leq g(s)$
- When s is expanded:
(1) Insert all states dominated by s in $B_{g(s)}$
- Safety Belt: Stop if no state is pruned after 1000 expansions
- Don't waste time if no useful dominance relation has been found

Experimental Results

- M\&S: Merge-DFP + bisimulation up to 100000 transitions
- Pruning types:
- A: Baseline without pruning
- L: Label-dominance simulation
- S: Simulation
- B: Bisimulation
- P: Partial-order reduction
- Heuristic: Blind or LM-cut

Experimental Results: Blind Search

Domain	\#	Coverage					Evaluations			
		A		S	B	P	L	S	B	P
Airport	50	22	-7	-7	0	-1	1.2	1.2	1	4.4
Driverlog	20	7	+2	0	0	0	15.8	2	2	1
Floortile11	20	2	+4	+4	0	0	177	177	1.8	1.3
Gripper	20	8	+6	+6	+6	,	53968	53968	28353	1
Logistics00	28	10	+6	0		0	32.7	3.1	1.2	1
Miconic	150	55	+6	-1	0	-5	58.3	8.7	3.4	1
NoMystery	20	8	+10	+1	+1	0	2497	128	29.1	1.1
OpenStack11	20	17	+2	+2	+1	0	2.1	2	1.8	2
ParcPrint11	20	6	+5	+3	+1	+14	869	10	1.5	21826
Rovers	40	6	+2	+1	0	+1	33.4	9.6	1.7	2
Satellite	36	6	0	0	0	0	72.9	35.3	9.9	10.7
TPP	30	6	0	0	0	0	6.5	3.4	1	1
Trucks	30	6	+2	0	0	0	24.8	21.9	2.8	1
VisitAll11	20	9	0	0	0	0	30	25.5	1	1
Woodwork11	20	3	+9	+5	+4	+6	1059	116	92.2	514
Zenotravel	20	8	+1	0	0	0	41.6	1.5	1.1	1
Σ	1271	605	+57	+16	+16	+8				

Experimental Results: LM-cut

	Coverage					Evaluations				
Domain	\#	A	L	S	B	P	L	S	B	P
Airport	50	28	-1	-1	-1	$\mathbf{+ 1}$	1	1	1	4.7
Driverlog	20	13	0	0	0	0	1.9	1.2	1.2	1
Floortile11	20	7	$\mathbf{+ 1}$	$\mathbf{+ 1}$	0	0	6.4	6.4	1	1
Gripper	20	7	$\mathbf{+ 7}$	$\mathbf{+ 7}$	$\mathbf{+ 7}$	0	14662	14662	10049	1
Logistics00	28	20	0	0	0	0	1.9	1.1	1.1	2.9
Miconic	150	141	0	0	0	0	2.1	1.5	1.1	1
NoMystery	20	14	$\mathbf{+ 6}$	$\mathbf{+ 3}$	0	0	6.5	3.1	1	1
OpenStack11	20	16	0	0	0	0	2.5	2.4	2.1	1.8
ParcPrint11	20	13	0	0	0	$\mathbf{+ 7}$	5	1.2	1.1	1246
Rovers	40	7	$\mathbf{+ 2}$	$\mathbf{+ 1}$	$\mathbf{+ 1}$	$\mathbf{+ 2}$	6.1	3.8	1.2	4.4
Satellite	36	7	$\mathbf{+ 3}$	$\mathbf{+ 3}$	$\mathbf{+ 3}$	$\mathbf{+ 4}$	4.8	1.8	1.7	21.5
TPP	30	6	$\mathbf{+ 1}$	$\mathbf{+ 1}$	$\mathbf{+ 1}$	0	1.2	1.1	1	1
Trucks	30	10	0	0	0	0	2.7	2.3	1	1
VisitAll11	20	10	$\mathbf{+ 1}$	$\mathbf{+ 1}$	0	0	7	6.8	1	1
Woodwork11	20	12	$\mathbf{+ 5}$	$\mathbf{+ 4}$	$\mathbf{+ 4}$	$\mathbf{+ 7}$	91.6	23.8	17	772
Zenotravel	20	13	0	0	0	0	3.6	1.6	1	1
\sum	1271	833	$\mathbf{+ 2 0}$	$\mathbf{+ 1 4}$	$\mathbf{+ 1 7}$	$\mathbf{+ 3 8}$				

Experimental Results: Search Time

Experimental Results: Total Time

Max partition size: 100000 transitions

Max partition size:
10000 transitions

Conclusions

- Novel method of dominance pruning useful for many domains
- Overhead in computing the relation and comparing states during the search
- Future work:
- Find coarser relations
- Reduce overhead
- Irrelevance pruning
\rightarrow SoCS talk on Thursday (joint session with ICAPS)!

Thank you for your attention!

Questions?

