### Simulation-Based Admissible Dominance Pruning

Álvaro Torralba, Jörg Hoffmann

HSDIP Workshop at ICAPS June 8th, 2015

Álvaro Torralba, Jörg Hoffmann

Simulation Dominance Pruning

HSDIP, June 2015 1 / 19

4 3 > 4 3

**A** 

### **Motivation**

• Cost-optimal planning:  $(\mathcal{V}, \mathcal{O}, \mathcal{I}, \mathcal{G})$ 

• A\*+ admissible heuristic h(s): estimates distance to goal

#### • Pruning methods:

- Partial-order pruning
- Symmetries
- Optimization Dominance pruning

4 3 5 4 3

< 🗇 🕨



э

ヘロト 人間 とくほとくほど

Detect "better than" states

$$\mathcal{V} = \{ at-T = \{A, B\}, at-P = \{A, B, T\} \}$$

$$\mathcal{I} = \{ at-T A, at-P A \}$$

$$\mathcal{G} = \{ at-P B \}$$

$$\mathcal{O} = \{ move-T (A, B), move-T (B, A), load-P(A), \dots \}$$

イロト イポト イヨト イヨト

Detect "better than" states

$$\mathcal{V} = \{ at-T = \{A, B\}, at-P = \{A, B, T\} \}$$

$$\mathcal{I} = \{ at-T A, at-P A \}$$

$$\mathcal{G} = \{ at-P B \}$$

$$\mathcal{O} = \{ move-T (A, B), move-T (B, A), load-P(A), \dots \}$$

• What do you prefer?



Detect "better than" states

$$\mathcal{V} = \{ at-T = \{A, B\}, at-P = \{A, B, T\} \}$$

$$\mathcal{I} = \{ at-T A, at-P A \}$$

$$\mathcal{G} = \{ at-P B \}$$

$$\mathcal{O} = \{ move-T (A, B), move-T (B, A), load-P(A), \dots \}$$

• What do you prefer?

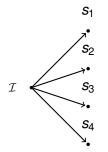


• Formally: relation of pair of states  $s \leq t$ 

• *t* simulates  $s (s \leq t) \implies t$  is at least as good as *s*:

 $h^*(s) \ge h^*(t)$ 

• If  $g(t) \leq g(s)$  and  $s \leq t$  then s can be discarded

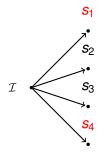


**A** 

• *t* simulates  $s (s \leq t) \implies t$  is at least as good as *s*:

 $h^*(s) \ge h^*(t)$ 

• If  $g(t) \leq g(s)$  and  $s \leq t$  then s can be discarded

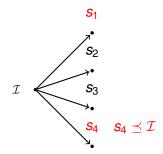


**A** 

• *t* simulates  $s (s \leq t) \implies t$  is at least as good as *s*:

 $h^*(s) \ge h^*(t)$ 

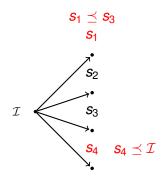
• If  $g(t) \leq g(s)$  and  $s \leq t$  then s can be discarded



• *t* simulates  $s (s \leq t) \implies t$  is at least as good as *s*:

 $h^*(s) \ge h^*(t)$ 

• If  $g(t) \leq g(s)$  and  $s \leq t$  then s can be discarded

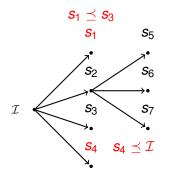


**A** 

• *t* simulates  $s(s \leq t) \implies t$  is at least as good as *s*:

 $h^*(s) \ge h^*(t)$ 

• If  $g(t) \leq g(s)$  and  $s \leq t$  then s can be discarded



Challenges:

How to find good dominance relations?

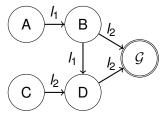
**A** 

How to efficiently check dominance?

# Simulation Relation

#### **Definition (Simulation)**

A binary relation  $\preceq \subseteq S \times S$  is a **simulation** for  $\Theta$  if, whenever  $s \preceq t$ , for every transition  $s \xrightarrow{l} s'$  there exists  $t \xrightarrow{l} t'$  s.t.  $s' \preceq t'$ . We call  $\preceq$ goal-respecting for  $\Theta$  if, whenever  $s \preceq t$ ,  $s \in S_G$  implies that  $t \in S_G$ .



 $D \preceq B$ 

Thm: A unique coarsest goal-respecting simulation always exists and can be computed in time polynomial in the size of  $\Theta$ 

Álvaro Torralba, Jörg Hoffmann

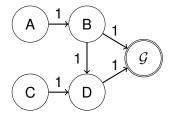
Simulation Dominance Pruning

16 N A 16 N

# Simulation Relation

#### **Definition (Simulation)**

A binary relation  $\preceq \subseteq S \times S$  is a **simulation** for  $\Theta$  if, whenever  $s \preceq t$ , for every transition  $s \xrightarrow{l} s'$  there exists  $t \xrightarrow{l} t'$  s.t.  $s' \preceq t'$ . We call  $\preceq$ goal-respecting for  $\Theta$  if, whenever  $s \preceq t$ ,  $s \in S_G$  implies that  $t \in S_G$ .



Cost-simulation: replace labels by their cost

→ A cost-simulation on the state space of the planning task is a dominance relation

 $D \preceq B, C \preceq A$ 

Thm: A unique coarsest goal-respecting simulation always exists and can be computed in time polynomial in the size of  $\Theta$ 

**EN 4 EN** 

## **Compositional Approach**

- Consider a partition of the problem:  $\Theta_1, \ldots, \Theta_k$
- **2** Compute a simulation for each part:  $\leq_1, \ldots, \leq_k$

 $\leq$  is a cost-simulation

## **Compositional Approach**

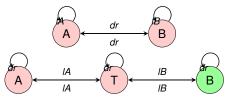
- **Output** Consider a partition of the problem:  $\Theta_1, \ldots, \Theta_k$
- 2 Compute a simulation for each part:  $\leq_1, \ldots, \leq_k$

 $\leq$  is a cost-simulation

In our example:

⊖<sup>1</sup>: (truck)

⊖<sup>2</sup>: (package)



A (10) > A (10) > A (10)

# **Compositional Approach**

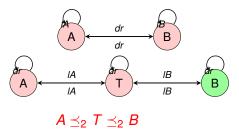
- **Output** Consider a partition of the problem:  $\Theta_1, \ldots, \Theta_k$
- 2 Compute a simulation for each part:  $\leq_1, \ldots, \leq_k$

 $\leq$  is a cost-simulation

In our example:

⊖<sup>1</sup>: (truck)

⊖<sup>2</sup>: (package)



Definition of  $s \leq t$ : For every  $s \xrightarrow{i} s'$  there exists  $t \xrightarrow{i} t'$  s.t.  $s' \leq t'$   $\Theta^{1}$ : (truck)  $\Theta^{2}$ : (package)  $A \xrightarrow{i} A \xrightarrow{i} T \xrightarrow{iB} B$ 

 $A \preceq_2 T \preceq_2 B$ 

Definition of  $s \leq t$ : For every  $s \xrightarrow{i} s'$  there exists  $t \xrightarrow{i} t'$  s.t.  $s' \leq t'$   $\Theta^{1}$ : (truck)  $\Theta^{2}$ : (package)  $A \xrightarrow{iA} \xrightarrow{iA} \xrightarrow{iB} B$   $A \xrightarrow{iA} \xrightarrow{iB} B$   $A \xrightarrow{iB} B$   $B \xrightarrow{iB} B$   $B \xrightarrow{iB} B$  $B \xrightarrow{iB} B$ 

 $A \preceq_2 T \preceq_2 B$ 

$$T \not\preceq_2 B: T \xrightarrow{IB} B$$
 and there is no  $B \xrightarrow{IB} B$ 

Álvaro Torralba, Jörg Hoffmann

Simulation Dominance Pruning

Definition of  $s \leq t$ : For every  $s \stackrel{l}{\rightarrow} s'$  there exists  $t \stackrel{l}{\rightarrow} t'$  s.t.  $s' \prec t'$  $\Theta^1$ : dr А В (truck) dr  $\Theta^2$ : ΙA IB B A (package) IA IB  $A \prec_2 T \prec_2 B$  $T \not\prec_2 B: T \xrightarrow{B} B$  and there is no  $B \xrightarrow{B} B$ 

 $T \xrightarrow{IB} B$  and  $T \xrightarrow{IA} A$  are simulated by  $B \rightarrow$ 

Álvaro Torralba, Jörg Hoffmann

Simulation Dominance Pruning

4 3 > 4 3

< 🗇 🕨

Definition of  $s \leq t$ : For every  $s \stackrel{l}{\rightarrow} s'$  there exists  $t \stackrel{l}{\rightarrow} t'$  s.t.  $s' \prec t'$  $\Theta^1$ : dr А В (truck) dr  $\Theta^2$ : IA IB B Α (package) IA IR  $A \prec_2 T \prec_2 B$  $T \not\prec_2 B: T \xrightarrow{B} B$  and there is no  $B \xrightarrow{B} B$  $T \xrightarrow{IB} B$  and  $T \xrightarrow{IA} A$  are simulated by  $B \xrightarrow{noop} B$ 

*IA*, *IB* do not have useful effects in the rest of the problem  $(\Theta^1)$ !

4 **A** N A **B** N A **B** N

# Label-Dominance Simulation

#### Definition (Label Dominance)

*I'* dominates *I* in  $\Theta$  given  $\leq$  if for every  $s \xrightarrow{l} s' \in \Theta$  there exists  $s \xrightarrow{l'} t'$  s.t.  $s' \leq t'$ 

#### Definition (Label-Dominance Simulation)

A set  $\mathcal{R} = \{ \preceq_1, \dots, \preceq_k \}$  of binary relations  $\preceq_i \subseteq S_i \times S_i$  is a label-dominance simulation for  $\{\Theta^1, \dots, \Theta^k\}$  if, whenever  $s \preceq_i t$ :

• 
$$s \in S_i^G$$
 implies that  $t \in S_i^G$ 

For every 
$$s \xrightarrow{l} s'$$
 in  $\Theta^i$ , there exists  $t \xrightarrow{l'} t'$  in  $\Theta^i$  s.t.:

• 
$$s' \leq_i t'$$
,  
•  $c(l') \leq c(l)$ , and  
•  $or all j \neq i, l' dominates l in  $\Theta^j$  given  $\leq_l$$ 

# Label-Dominance Simulation: Theoretical Results

#### Theorem

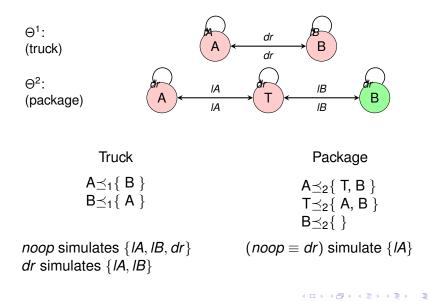
A coarsest label-dominance simulation always exists and can be computed in polynomial time

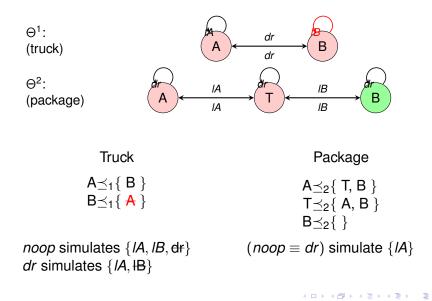
For all *i*, set 
$$\leq_i := \{(s, t) \mid s, t \in S_i, s \notin S_G^i \text{ or } t \in S_G^i\}$$
  
while ex.  $(i, s, t)$  s.t. not  $Ok(i, s, t)$  do  
Select one such triple  $(i, s, t)$   
Set  $\leq_i := \leq_i \setminus \{(s, t)\}$   
return  $\mathcal{R} := \{\leq_1, ..., \leq_k\}$ 

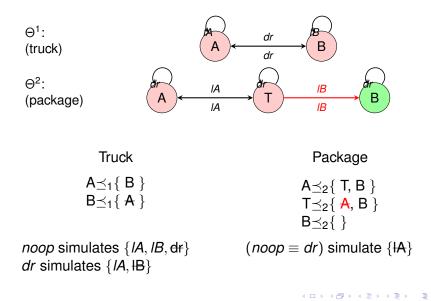
#### Theorem

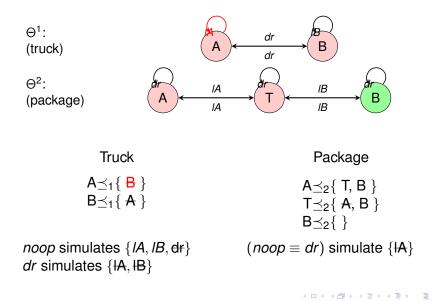
Combination of  $\{ \leq_1, \dots, \leq_k \}$  is a cost-simulation for the planning task  $\Theta_1 \otimes \dots \otimes \Theta_k$ 

3









## **Pruning: Implementation Details**

- Insert in closed every state dominated by any expanded state
   → BDD B<sub>g</sub> represents any state expanded/dominated with g
- When *s* is generated or expanded:

**1** Prune *s* if it is in  $B_{g'}$  for some  $g' \leq g(s)$ 

• When *s* is expanded:

1 Insert all states dominated by s in  $B_{g(s)}$ 

**B N A B N** 

## Pruning: Implementation Details

- Insert in closed every state dominated by any expanded state
   → BDD B<sub>g</sub> represents any state expanded/dominated with g
- When *s* is generated or expanded:

**1** Prune *s* if it is in  $B_{g'}$  for some  $g' \leq g(s)$ 

When s is expanded:

1 Insert all states dominated by s in  $B_{g(s)}$ 

- Safety Belt: Stop if no state is pruned after 1000 expansions
  - Don't waste time if no useful dominance relation has been found

- A TE N - A TE N

## **Experimental Results**

- M&S: Merge-DFP + bisimulation up to 100 000 transitions
- Pruning types:
  - A: Baseline without pruning
  - L: Label-dominance simulation
  - S: Simulation
  - B: Bisimulation
  - P: Partial-order reduction
- Heuristic: Blind or LM-cut

4 3 5 4 3 5

## **Experimental Results: Blind Search**

|             |      | Coverage |     |     |     | Evaluations |       |       |       |       |
|-------------|------|----------|-----|-----|-----|-------------|-------|-------|-------|-------|
| Domain      | #    | Α        | L   | S   | В   | Р           | L     | S     | В     | Р     |
| Airport     | 50   | 22       | -7  | -7  | 0   | -1          | 1.2   | 1.2   | 1     | 4.4   |
| Driverlog   | 20   | 7        | +2  | 0   | 0   | 0           | 15.8  | 2     | 2     | 1     |
| Floortile11 | 20   | 2        | +4  | +4  | 0   | 0           | 177   | 177   | 1.8   | 1.3   |
| Gripper     | 20   | 8        | +6  | +6  | +6  | 0           | 53968 | 53968 | 28353 | 1     |
| Logistics00 | 28   | 10       | +6  | 0   | 0   | 0           | 32.7  | 3.1   | 1.2   | 1     |
| Miconic     | 150  | 55       | +6  | -1  | 0   | -5          | 58.3  | 8.7   | 3.4   | 1     |
| NoMystery   | 20   | 8        | +10 | +1  | +1  | 0           | 2497  | 128   | 29.1  | 1.1   |
| OpenStack11 | 20   | 17       | +2  | +2  | +1  | 0           | 2.1   | 2     | 1.8   | 2     |
| ParcPrint11 | 20   | 6        | +5  | +3  | +1  | +14         | 869   | 10    | 1.5   | 21826 |
| Rovers      | 40   | 6        | +2  | +1  | 0   | +1          | 33.4  | 9.6   | 1.7   | 2     |
| Satellite   | 36   | 6        | 0   | 0   | 0   | 0           | 72.9  | 35.3  | 9.9   | 10.7  |
| TPP         | 30   | 6        | 0   | 0   | 0   | 0           | 6.5   | 3.4   | 1     | 1     |
| Trucks      | 30   | 6        | +2  | 0   | 0   | 0           | 24.8  | 21.9  | 2.8   | 1     |
| VisitAll11  | 20   | 9        | 0   | 0   | 0   | 0           | 30    | 25.5  | 1     | 1     |
| Woodwork11  | 20   | 3        | +9  | +5  | +4  | +6          | 1059  | 116   | 92.2  | 514   |
| Zenotravel  | 20   | 8        | +1  | 0   | 0   | 0           | 41.6  | 1.5   | 1.1   | 1     |
| Σ           | 1271 | 605      | +57 | +16 | +16 | +8          |       |       |       |       |

Álvaro Torralba, Jörg Hoffmann

æ

# Experimental Results: LM-cut

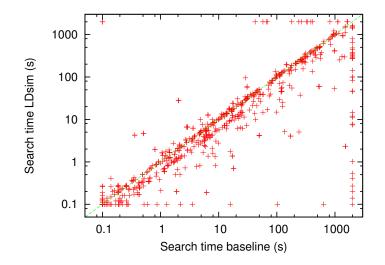
|             |      | Coverage |     |     |     | Evaluations |       |       |       |      |
|-------------|------|----------|-----|-----|-----|-------------|-------|-------|-------|------|
| Domain      | #    | A        | L   | S   | В   | Р           | L     | S     | В     | P    |
| Airport     | 50   | 28       | -1  | -1  | -1  | +1          | 1     | 1     | 1     | 4.7  |
| Driverlog   | 20   | 13       | 0   | 0   | 0   | 0           | 1.9   | 1.2   | 1.2   | 1    |
| Floortile11 | 20   | 7        | +1  | +1  | 0   | 0           | 6.4   | 6.4   | 1     | 1    |
| Gripper     | 20   | 7        | +7  | +7  | +7  | 0           | 14662 | 14662 | 10049 | 1    |
| Logistics00 | 28   | 20       | 0   | 0   | 0   | 0           | 1.9   | 1.1   | 1.1   | 2.9  |
| Miconic     | 150  | 141      | 0   | 0   | 0   | 0           | 2.1   | 1.5   | 1.1   | 1    |
| NoMystery   | 20   | 14       | +6  | +3  | 0   | 0           | 6.5   | 3.1   | 1     | 1    |
| OpenStack11 | 20   | 16       | 0   | 0   | 0   | 0           | 2.5   | 2.4   | 2.1   | 1.8  |
| ParcPrint11 | 20   | 13       | 0   | 0   | 0   | +7          | 5     | 1.2   | 1.1   | 1246 |
| Rovers      | 40   | 7        | +2  | +1  | +1  | +2          | 6.1   | 3.8   | 1.2   | 4.4  |
| Satellite   | 36   | 7        | +3  | +3  | +3  | +4          | 4.8   | 1.8   | 1.7   | 21.5 |
| TPP         | 30   | 6        | +1  | +1  | +1  | 0           | 1.2   | 1.1   | 1     | 1    |
| Trucks      | 30   | 10       | 0   | 0   | 0   | 0           | 2.7   | 2.3   | 1     | 1    |
| VisitAll11  | 20   | 10       | +1  | +1  | 0   | 0           | 7     | 6.8   | 1     | 1    |
| Woodwork11  | 20   | 12       | +5  | +4  | +4  | +7          | 91.6  | 23.8  | 17    | 772  |
| Zenotravel  | 20   | 13       | 0   | 0   | 0   | 0           | 3.6   | 1.6   | 1     | 1    |
| $\sum$      | 1271 | 833      | +20 | +14 | +17 | +38         |       |       |       |      |

Álvaro Torralba, Jörg Hoffmann

æ

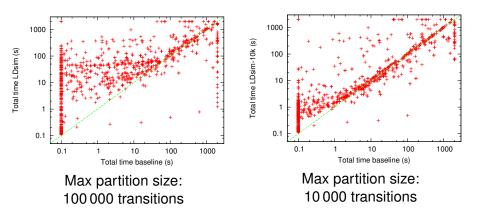
イロト イポト イヨト イヨト

#### **Experimental Results: Search Time**



< 17 ▶

#### **Experimental Results: Total Time**



< 6 b

### Conclusions

- Novel method of dominance pruning useful for many domains
- Overhead in computing the relation and comparing states during the search
- Future work:
  - Find coarser relations
  - Reduce overhead
  - Irrelevance pruning
    - $\rightarrow\,$  SoCS talk on Thursday (joint session with ICAPS)!

The Sec. 74

Thank you for your attention!

# **Questions?**

Álvaro Torralba, Jörg Hoffmann

Simulation Dominance Pruning

HSDIP, June 2015 19 / 19

э

< ロ > < 同 > < 回 > < 回 >