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Motivation

A∗: canonical choice for solving shortest path problems
A∗ is optimally efficient in node expansions (Dechter and Pearl, 1985)

Dominance pruning methods→ new source of information!

We use dominance pruning in A∗:
Is this a good choice?
Could we achieve more pruning with different expansion orders?
What tie-breaking strategies are good for dominance pruning?
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DXBB Algorithms

UDXBB: Unidirectional, Deterministic, Expansion-based, Black Box
Access to the state space Θ only via node expansions

Additionally the algorithm is given an admissible heuristic function h
→h(s) estimates the distance from s to the goal h∗(s), h(s) ≤ h∗(s)

A10
h2
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A∗

A∗: Expand nodes based on f -value: f (ns) = g(ns) + h(s)

Family of algorithms: tie-breaking strategy may pick any node with minimum
f -value
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A∗ is Optimally Efficient (Dechter and Pearl, 1985)

A∗ is 1-optimal on consistent instances
Let N be the set of states expanded by any admissible UDXBB algorithm, then
there exists a tie-breaking of A∗ that expands subset of N.

Consistent Heuristic: h(s)− h(t) ≤ c(s, t)
1 Nodes are expanded with their optimal g-value (no re-expansions)
2 Must-expand nodes: f (n) < f ∗
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Dominance

New source of information: dominance relation directly compares pairs of states

t dominates s (s � t) implies that h∗(t) ≤ h∗(s)
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UDXBB with Dominance Pruning

UDXBBpr

UDXBB algorithms that can prune a node ns whenever another nt has been
seen such that g(nt) ≤ g(ns) and t dominates s.

No access to �: can only use dominance for pruning according to the rule
above

A∗ with dominance pruning (A∗pr):
Expand nodes based on f -value: f (ns) = g(ns) + h(s)

Prune any node that can be pruned
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A∗pr is 1-optimal over A∗ (until last f-layer)
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A∗pr is not optimally efficient in general

→The expansion order of A∗ may not be optimal
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A∗pr is not optimally efficient in general (take 2)

→Sometimes it could be worth it to expand a node even if it can be pruned
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Consistency

Consistent instances
An instance I = 〈Θ, h,�〉 is consistent if:

(i) h is consistent
(ii) � is a transitive cost-simulation relation
(iii) � is consistent with h: s � t =⇒ h(t) ≤ h(s)

On the Optimal Efficiency of A∗ with Dominance Pruning 16/32



Stackelberg Planning Solving Symbolic Leader Search Net-Benefit Results Conclusions

Consistent Dominance Relations

� is a transitive cost-simulation relation

Transitive: C � B and B � A implies C � A

Cost-simulation:
C8 D7

C9

�

c

→State-of-the-art methods on dominance pruning derive transitive
cost-simulation relations
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Consistency between Heuristics and Dominance

� is consistent with h: s � t =⇒ h(t) ≤ h(s)

If h(s) < h(t) then h(t) ≤ h∗(t) ≤ h∗(s), so we can raise h(s) to h(t)!

Thm: If � is consistent with h, whenever ns can be pruned by nt then
f (nt) ≤ f (ns)

Conjecture: Most consistent heuristics and dominance relations are consistent
unless dominance considers larger subsets of variables

The information of h and � is still complementary!
When h(s) < h(t), s is more promising but there is no guarantee
When t � s, we are certain that t is as good as s (but if s 6� t we know nothing)
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When h(s) < h(t), s is more promising but there is no guarantee
When t � s, we are certain that t is as good as s (but if s 6� t we know nothing)
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Is A∗pr 1-optimal on consistent instances?
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A∗pr is NOT 1-optimal on consistent instances
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A∗pr is #-optimal

A∗pr is #-optimal on consistent instances wrt. UDXBBpr

Let N be the set of states expanded by any admissible UDXBBpr algorithm, then
there exists a tie-breaking of A∗pr that expands N′ with |N′|≤ |N|.

→It may not expand a subset of nodes but it will expand the least amount of
nodes!
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A∗pr is #-optimal on consistent instances
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Tie-Breaking

In A∗ tie-breaking is only relevant in the last f -layer
In A∗pr, tie-breaking is relevant in all layers
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Tie-Breaking Strategies

A∗
h<,pr

Prefer nodes with lower h value

Standard in most implementations of A∗

Advantage: follow heuristic in the last f -layer

→We prove that it is not optimally efficient until the last f -layer

A∗
g<,pr

Prefer nodes with lower g value
→We prove that it is optimally efficient until the last f -layer

Trade off:
follow h in the last f-layer follow � up to the last f-layer
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Conclusion

Dominance pruning introduces a new source of information for heuristic
search algorithms

Consistent instances:
1 Consistent heuristic
2 Dominance relation is a transitive cost-simulation relation
3 Heuristic and dominance relation are consistent with each other

A∗pr is #-optimally efficient on consistent instances

Until last layer is better to break ties in favor of minimum g-value
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