Stackelberg Planning	Solving	Symbolic Leader Search	Net-Benefit	Results	Conclusions

Álvaro Torralba, Patrick Speicher, Robert Künnemann, Marcel Steinmetz, Jörg Hoffmann

Stackelberg Planning ●000000	Solving 0000	Symbolic Leader Search	Net-Benefit 0000	Results 0000000	Conclusions
Outline					

2/32

Stackelberg Planning

- 2 Solving Stackelberg Tasks: Previous Work
- Symbolic Leader Search
- 4 Net-Benefit Stackelberg Planning
- 5 Empirical Results

6 Conclusions

Stackelberg Planning o●ooooo	Solving 0000	Symbolic Leader Search	Net-Benefit 0000	Results 0000000	Conclusions
Classical Pla	annina				

• Optimal Planning: Find a minimum-cost plan to the goal

Stackelberg Planning o●ooooo	Solving 0000	Symbolic Leader Search	Net-Benefit 0000	Results 0000000	Conclusions
Classical Pla	nning				

• Optimal Planning: Find a minimum-cost plan to the goal

Stackelberg Planning o●ooooo	Solving 0000	Symbolic Leader Search	Net-Benefit 0000	Results 0000000	Conclusions
Classical Pla	nning				

• Optimal Planning: Find a minimum-cost plan to the goal

Stackelberg Planning	Solving 0000	Symbolic Leader Search	Net-Benefit 0000	Results 0000000	Conclusions
Classical Pla	anning				

Definition. A planning task is a 4-tuple $\Pi = (\mathcal{V}, \mathcal{A}, \mathcal{I}, \mathcal{G})$ where:

 Ξ

- \mathcal{V} is a set of state variables, each $v \in \mathcal{V}$ with a finite domain D_v .
- A is a set of actions; each a ∈ A is a triple (pre_a, eff_a, c_a), of precondition and effect (partial assignments), and the action's cost c_a ∈ ℝ₀⁺.
- Initial state I (complete assignment), goal G (partial assignment).
- \rightarrow Solution ("Plan"): Action sequence mapping \mathcal{I} into *s* s.t. *s* $\models \mathcal{G}$.

Running Example:

- $\mathcal{V} = \{c\}$ with $D_c = \{A, B, C, D, E, F, G, H, I\}.$
- $\mathcal{A} = \{ drive(x, x') \}$
- $\mathcal{I} = \{ c \mapsto I \}$ and $\mathcal{G} = \{ c \mapsto G \}$

Stackelberg Planning ooo●ooo	Solving 0000	Symbolic Leader Search	Net-Benefit 0000	Results 0000000	Conclusions
Stackelberg	ı Planniı	าต			

- Leader acts first executing a sequence of actions
- Afterwards, the follower plans to achieve its goal

Stackelberg Planning ooo●ooo	Solving 0000	Symbolic Leader Search	Net-Benefit 0000	Results 0000000	Conclusions
Stackelberg	ı Planniı	าต			

- Leader acts first executing a sequence of actions
- Afterwards, the follower plans to achieve its goal

Stackelberg Planning ooo●ooo	Solving 0000	Symbolic Leader Search	Net-Benefit 0000	Results 0000000	Conclusions
Stackelberg	ı Planniı	าต			

- Leader acts first executing a sequence of actions
- Afterwards, the follower plans to achieve its goal

Stackelberg Planning	Solving 0000	Symbolic Leader Search	Net-Benefit 0000	Results 0000000	Conclusions
Stackelberg	n Planni	na			

- Leader acts first executing a sequence of actions
- Afterwards, the follower plans to achieve its goal

Stackelberg Planning ooo●ooo	Solving 0000	Symbolic Leader Search	Net-Benefit 0000	Results 0000000	Conclusions
Stackelberg	ı Planniı	าต			

- Leader acts first executing a sequence of actions
- Afterwards, the follower plans to achieve its goal

Stackelberg Planning	Solving 0000	Symbolic Leader Search	Net-Benefit 0000	Results 0000000	Conclusions
Stackelberg	Planni	na			

- Leader acts first executing a sequence of actions
- Afterwards, the follower plans to achieve its goal

Stackelberg Planning	Solving	Symbolic Leader Search	Net-Benefit 0000	Results 0000000	Conclusions
Applications					

Robustness Analysis

Pentesting

- Follower: How to achieve the system's goal
- Leader: What could go wrong
- Follower: Attack the network to access sensible information
- Leader: How to defend the network

Stackelberg Planning 00000●0	Solving	Symbolic Leader Search	Net-Benefit	Results 0000000	Conclusions
<u></u>					

Stackelberg Planning

Definition. A Stackelberg planning task is a 4-tuple $\Pi = (\mathcal{V}, \mathcal{A}^L, \mathcal{A}^F, \mathcal{I}, \mathcal{G})$ where:

- *V* is a set of state variables, each $v \in V$ with a finite domain D_v .
- A^L, A^F are sets of actions; each a ∈ A^L ∪ A^F is a triple (pre_a, eff_a, c_a), of precondition and effect (partial assignments), and the action's cost c_a ∈ ℝ⁺₀.
- Initial state I (complete assignment), goal G (partial assignment).

Stackelberg Planning oooooeo	Solving 0000	Symbolic Leader Search	Net-Benefit	Results 0000000	Conclusions

Stackelberg Planning

Definition. A Stackelberg planning task is a 4-tuple $\Pi = (\mathcal{V}, \mathcal{A}^L, \mathcal{A}^F, \mathcal{I}, \mathcal{G})$ where:

- V is a set of state variables, each $v \in V$ with a finite domain D_v .
- A^L, A^F are sets of actions; each a ∈ A^L ∪ A^F is a triple (pre_a, eff_a, c_a), of precondition and effect (partial assignments), and the action's cost c_a ∈ ℝ⁺₀.
- Initial state I (complete assignment), goal G (partial assignment).

Running Example:

•
$$\mathcal{V} = \{c, w, r_{AG}, r_{FG}, r_{DE}\}, D_c = D_w = \{A, \dots, I\}, D_{r_{ij}} = \{available, blocked\}.$$

•
$$\mathcal{A}^F = \{ drive_c(x, x') \},\$$

 $\mathcal{A}^L = \{ walk(x, x'), block(x, x') \}$

• $\mathcal{I} = \{ c \mapsto I, w \mapsto A, r_{ij} \mapsto available \}$

•
$$\mathcal{G} = \{ c \mapsto G \}$$

Faster Stackelberg Planning via Symbolic Search and Information Sharing

A D N A B N A B N

Stackelberg Planning	Solving 0000	Symbolic Leader Search	Net-Benefit	Results 0000000	Conclusions

 \rightarrow Find a set of leader plans that minimize leader cost and maximize follower's cost

Stackelberg Planning	Solving	Symbolic Leader Search	Net-Benefit	Results	Conclusions
000000					

 \rightarrow Find a set of leader plans that minimize leader cost and maximize follower's cost

Leader Plan	c(L)	c	:(F)
$\langle \rangle$	0		5
$\langle block(A,G) \rangle$	1	1	16

Stackelberg Planning	Solving	Symbolic Leader Search	Net-Benefit	Results	Conclusions
000000					

 \rightarrow Find a set of leader plans that minimize leader cost and maximize follower's cost

Leader Plan	c(L)	c(F)
$\langle \rangle$	0	5
$\langle block(A,G) \rangle$	1	16
$\langle walk(A,C), walk(C,D), block(D,E) \rangle$	3	5

Stackelberg Planning	Solving	Symbolic Leader Search	Net-Benefit	Results	Conclusions
000000					

 \rightarrow Find a set of leader plans that minimize leader cost and maximize follower's cost

Leader Plan	c(L)	c(F)
$\langle \rangle$	0	5
$\langle block(A,G) \rangle$	1	16
$\langle walk(A,C), walk(C,D), block(D,E)\rangle$	3	5
$\langle walk(A,G), block(G,A), block(G,F)\rangle$	3	∞

Stackelberg Planning	Solving	Symbolic Leader Search	Net-Benefit	Results	Conclusions
000000					

 \rightarrow Find a set of leader plans that minimize leader cost and maximize follower's cost

Faster Stackelberg Planning via Symbolic Search and Information Sharing

Stackelberg Planning	Solving ●○○○	Symbolic Leader Search	Net-Benefit	Results 0000000	Conclusions
Outline					

- Stackelberg Planning
- 2 Solving Stackelberg Tasks: Previous Work
 - 3 Symbolic Leader Search
 - 4 Net-Benefit Stackelberg Planning
 - 5 Empirical Results
 - 6) Conclusions

000000	0000	000000	0000	0000000	00
Stackelberg Planning	Solving	Symbolic Leader Search	Net-Benefit	Results	Conclusions

Stackelberg	Planning	Solving o●oo	Symbolic Leader Search	Net-Benefit 0000	Results 0000000	Conclusions
	-					

• • • • • • • • • • •

• • • • •

ъ

10/32

Leader Search

Stackelb 000000	oorg Plan	ning	Solving ○●○○	Symbolic Leader Search	Net-Benefit	Results 0000000	Conclusions

Leader Search

Stackelberg Planning	Solving o●oo	Symbolic Leader Search	Net-Benefit	Results 0000000	Conclusions

Leader Search

Stackelberg Planning	Solving ○○●○	Symbolic Leader Search	Net-Benefit	Results 0000000	Conclusions

Follower Subtasks

Follower subtask:

 \bullet Classical Planning Task $\rightarrow set$ of actions depends on blocked roads

11/32

- Optimal planners:
 - A* with LM-cut
 - Symbolic Bidirectional Search

Stackelberg Planning	Solving ○○●○	Symbolic Leader Search	Net-Benefit	Results 0000000	Conclusions
	A				

Follower Subtasks

Follower subtask:

 \bullet Classical Planning Task $\rightarrow set$ of actions depends on blocked roads

4 D N 4 D N 4 D N

11/32

- Optimal planners:
 - A* with LM-cut
 - Symbolic Bidirectional Search

Stackelberg Planning	Solving ○○○●	Symbolic Leader Search	Net-Benefit	Results 0000000	Conclusions
Leader Searc	ch (IDS)				

Stackelberg Planning	Solving ○○○●	Symbolic Leader Search	Net-Benefit	Results	Conclusions

		0000000	0000	0000000	00
Stackelberg Planning	Solving	Symbolic Leader Search	Net-Benefit	Results	Conclusions

	0000	0000000		
	0000	0000000		

Leader Search (IDS)

Stackelberg Planning	Solving 0000	Symbolic Leader Search ●000000	Net-Benefit	Results 0000000	Conclusions
Outline					

- Stackelberg Planning
- 2 Solving Stackelberg Tasks: Previous Work
- Symbolic Leader Search
 - 4 Net-Benefit Stackelberg Planning
 - 5 Empirical Results
 - Conclusions

Stackelberg Planning	Solving	Symbolic Leader Search o●ooooo	Net-Benefit 0000	Results 0000000	Conclusions
Symbolic L	eader S	earch			

Observation 1: Leader search is exhaustive \rightarrow state space *explosion*

イロト イヨト イヨト イヨト

Stackelberg Planning	Solving	Symbolic Leader Search	Net-Benefit	Results 0000000	Conclusions				
Symbolic Leader Search									

Observation 1: Leader search is exhaustive \rightarrow state space *explosion*

Stackelberg Planning	Solving 0000	Symbolic Leader Search	Net-Benefit 0000	Results 0000000	Conclusions				
Cost-bounded search									

Observation 2: We do not always need to compute optimal solutions to follower sub-tasks

Global bounds:

- Leader cost L: explore leader space in ascending leader cost
- Follower cost *F*: the highest cost of any follower sub-problem so far
- \rightarrow any new entry in the pareto front will have a cost greater than F

ノ周 トレイモト ノモト
Stackelberg Planning	Solving	Symbolic Leader Search oo●oooo	Net-Benefit 0000	Results 0000000	Conclusions
Cost-bound	ed sear	ch			

Observation 2: We do not always need to compute optimal solutions to follower sub-tasks

Global bounds:

- Leader cost L: explore leader space in ascending leader cost
- Follower cost *F*: the highest cost of any follower sub-problem so far

 \rightarrow any new entry in the pareto front will have a cost greater than F

Cost-bounded/Optimal Planning: Given a follower sub-task and a cost bound F, return any plan of cost $C \le F$ if one exists, otherwise return an optimal plan if one exists, otherwise return "unsolvable".

Stackelberg Planning	Solving 0000	Symbolic Leader Search 000●000	Net-Benefit 0000	Results 0000000	Conclusions
Information	Sharing				

Observation 3: We need to find optimal solutions for many follower sub-tasks, but they are very similar

- $\bullet~$ Same set of variables ${\cal V}$ and goal ${\cal G}$
- Actions $A \subseteq \mathcal{A}^F$

 $\rightarrow \mbox{How to re-use}$ information among follower sub-searches?

Stackelberg Planning	Solving	Symbolic Leader Search	Net-Benefit	Results	Conclusions
		0000000			

Information Sharing: Goal Regression

Whenever we compute a new plan for some follower sub-task, use regression from the goal:

drive
$$(I,A)$$
, drive (A,G)

$$\{c \mapsto G\} \operatorname{cost} = 0$$

Stackelberg Planning	Solving	Symbolic Leader Search	Net-Benefit	Results	Conclusions
		0000000			

Information Sharing: Goal Regression

Whenever we compute a new plan for some follower sub-task, use regression from the goal:

$$\begin{cases} c \mapsto G \} \operatorname{cost} = 0 \\ \text{drive } (I,A), \text{ drive } (A,G) \quad \{c \mapsto A, r_{AG} \mapsto available\} \operatorname{cost} = 3 \end{cases}$$

Stackelberg Planning	Solving	Symbolic Leader Search	Net-Benefit	Results	Conclusions
		0000000			

Information Sharing: Goal Regression

Whenever we compute a new plan for some follower sub-task, use regression from the goal:

$$\begin{cases} c \mapsto G \} \cos t = 0 \\ \text{drive } (I,A), \text{ drive } (A,G) \quad \{c \mapsto A, r_{AG} \mapsto available\} \cos t = 3 \\ \{c \mapsto I, r_{AG} \mapsto available\} \cos t = 5 \end{cases}$$

Stackelberg Planning	Solving	Symbolic Leader Search	Net-Benefit	Results	Conclusior
		0000000			

Solved Follower Tasks

Stackelberg Planning	Solving	Symbolic Leader Search	Net-Benefit	Results	Conclusior
		0000000			

Stackelberg Planning	Solving	Symbolic Leader Search	Net-Benefit	Results	Conclusior
		0000000			

L=0 F=5

Solved Follower Tasks $\{c \mapsto I, r_{AG} \mapsto available\}$

Stackelberg Planning	Solving	Symbolic Leader Search	Net-Benefit	Results	Conclusior
		0000000			

Solved Follower Tasks $\{c \mapsto I, r_{AG} \mapsto available\}$

ilable}

Stackelberg Planning	Solving	Symbolic Leader Search	Net-Benefit	Results	Conclusior
		0000000			

L=1 F=5

L=1 F=5

L=1 F=5

Stackelberg Planning	Solving	Symbolic Leader Search	Net-Benefit	Results	Conclusior
		0000000			

L=1 F=16

Stackelberg Planning	Solving	Symbolic Leader Search	Net-Benefit 0000	Results 0000000	Conclusions

Upper Bound Function: pre-store plans for certain follower states

Stackelberg Planning	Solving 0000	Symbolic Leader Search 000000●	Net-Benefit	Results 0000000	Conclusions

Upper Bound Function: pre-store plans for certain follower states

How to obtain upper bound functions? From plans: ${c \mapsto G}$ ub = 0 ${c \mapsto A, r_{AG} \mapsto available}$ ub = 3 ${c \mapsto I, r_{AG} \mapsto available}$ ub = 5

Stackelberg Planning	Solving	Symbolic Leader Search 000000●	Net-Benefit	Results 0000000	Conclusions

Upper Bound Function: pre-store plans for certain follower states

How to obtain upper bound functions? From plans: ${c \mapsto G}$ ub = 0 ${c \mapsto A, r_{AG} \mapsto available}$ ub = 3 ${c \mapsto I, r_{AG} \mapsto available}$ ub = 5

How to use upper bound functions?

Transform any search-based optimal subsolver in a cost-bounded algorithm: If some follower state *s* is seen such that $g(s) + ub(s) \le F$ stop immediately!

Stackelberg Planning	Solving	Symbolic Leader Search	Net-Benefit	Results	Conclusions
		000000			

Upper Bound Function: pre-store plans for certain follower states

How to obtain upper bound functions?

From plans: ${c \mapsto G}$ ub = 0 ${c \mapsto A, r_{AG} \mapsto available}$ ub = 3 ${c \mapsto I, r_{AG} \mapsto available}$ ub = 5 ${\overline{AG}, \overline{FG}, \overline{DE}}$

How to use upper bound functions?

Transform any search-based optimal subsolver in a cost-bounded algorithm: If some follower state *s* is seen such that $g(s) + ub(s) \le F$ stop immediately!

Stackelberg Planning	Solving	Symbolic Leader Search	Net-Benefit	Results	Conclusions
		000000			

Upper Bound Function: pre-store plans for certain follower states

How to obtain upper bound functions?

From plans:
 $\{c \mapsto G\}$ ub = 0From backward search on the most
constrained follower task (Π^+): $\{c \mapsto A, r_{AG} \mapsto available\}$ ub = 3
 $\{c \mapsto I, r_{AG} \mapsto available\}$ ub = 5G $\{c \mapsto I, r_{AG} \mapsto available\}$ ub = 5 $\{\overline{AG}, \overline{FG}, \overline{DE}\}$

How to use upper bound functions?

Transform any search-based optimal subsolver in a cost-bounded algorithm: If some follower state *s* is seen such that $g(s) + ub(s) \le F$ stop immediately!

 \rightarrow In the paper: General conditions under which lower- and upper-bounds can be shared accross follower sub-tasks Faster Stackelberg Planning via Symbolic Search and Information Sharing

Stackelberg Planning	Solving	Symbolic Leader Search	Net-Benefit ●000	Results 0000000	Conclusions
Outline					

20/32

- Stackelberg Planning
- 2 Solving Stackelberg Tasks: Previous Work
- 3 Symbolic Leader Search
- 4 Net-Benefit Stackelberg Planning
 - 5 Empirical Results

Conclusions

Stackelberg Planning	Solving	Symbolic Leader Search	Net-Benefit	Results	Conclusions
			0000		

Stackelberg Planning	Solving	Symbolic Leader Search	Net-Benefit	Results	Conclusions
			0000		

Stackelberg Planning	Solving	Symbolic Leader Search	Net-Benefit	Results	Conclusions
			0000		

			0000	0000000	00				
Net-Benefit Stackelberg Planning									

 Soft goals: Each goal has a corresponding cost the follower must pay if it is not achieved

0000000	0000	0000000		0000000	00			
Net-Benefit Stackelberg Planning								

- Soft goals: Each goal has a corresponding cost the follower must pay if it is not achieved
- Compilation to classical planning by Keyder and Geffner (2009) →No specialized algorithms are required

Net-Benefit S	tackelbe	era Plannina			
Stackelberg Planning	Solving 0000	Symbolic Leader Search	Net-Benefit oo●o	Results 0000000	Conclusions

- Soft goals: Each goal has a corresponding cost the follower must pay if it is not achieved
- Compilation to classical planning by Keyder and Geffner (2009) →No specialized algorithms are required
- In our experiments we set a cost of 10000 for each individual sub-goal
 →follower chooses the cheapest plan among the ones that maximize the
 number of achieved goals

Stackelberg Planning	Solving 0000	Symbolic Leader Search	Net-Benefit 000●	Results 0000000	Conclusions

・ロト ・回ト ・ヨト ・ヨト

ъ

Stackelberg Planning	Solving 0000	Symbolic Leader Search	Net-Benefit 000●	Results 0000000	Conclusions

Stackelberg Planning	Solving 0000	Symbolic Leader Search	Net-Benefit 000●	Results 0000000	Conclusions

Stackelberg Planning	Solving 0000	Symbolic Leader Search	Net-Benefit 000●	Results 0000000	Conclusions

Stackelberg Planning	Solving 0000	Symbolic Leader Search	Net-Benefit 0000	Results ●oooooo	Conclusions
Outline					

- Stackelberg Planning
- 2 Solving Stackelberg Tasks: Previous Work
- Symbolic Leader Search
- 4 Net-Benefit Stackelberg Planning
- 5 Empirical Results
 - Conclusions

Stackelberg Planning	Solving 0000	Symbolic Leader Search	Net-Benefit 0000	Results o●ooooo	Conclusions
Experimental	Setup				

Configurations:

- IDS (Speicher et al. 2018)
- Symbolic Leader Search
 - -
 - + *ub*: use upper bound functions from plans
 - $\bullet\,$ + $\Pi^+:$ use upper bound functions from plans and backward search
 - +FF: use cost-bounded planner (GBFS with FF heuristic for 1s)

 $\rightarrow \! \text{Time}$ limit of 30m and memory limit of 4GB.

周レスモレス

Stackelberg Planning	Solving 0000	Symbolic Leader Search	Net-Benefit 0000	Results oo●oooo	Conclusions
Benchmarks					

We use the benchmarks from previous work (Speicher et al. 2018)

Pareto frontier size ($|PF(\Pi^{S})|$):

OLD (Speicher et al. 2018)					
Domain	avg	max			
Logistics	1.85	3			
Mystery	1.59	3			
Rovers	1.86	3			
Sokoban	1.92	2			
Трр	2.00	2			
Visitall	2.32	7			
Pentesting	1.26	2			
Stackelberg Planning	Solving	Symbolic Leader Search	Net-Benefit 0000	Results oo●oooo	Conclusions
----------------------	---------	------------------------	---------------------	--------------------	-------------
Benchmarks					

We use the benchmarks from previous work (Speicher et al. 2018)

Pareto frontier size ($|PF(\Pi^{S})|$):

OLD (Speicher et al. 2018)			New			Net	
Domain	avg	max	Domain	avg	max	avg	max
Logistics	1.85	3	Logistics	2.61	6	3.83	16
Mystery	1.59	3	Nomystery	2.58	7	3.25	13
Rovers	1.86	3	Rovers	1.85	4	3.21	13
Sokoban	1.92	2	Transport	4.24	17	3.71	9
Трр	2.00	2	Трр	2.15	7	2.35	13
Visitall	2.32	7	Visitall	2.97	7	5.45	34
Pentesting	1.26	2	Pentesting	1.71	4	4.06	13

 \rightarrow New benchmark set for standard and net-benefit planning

Stackelberg Planning	Solving 0000	Symbolic Leader Search	Net-Benefit 0000	Results ooo●ooo	Conclusions
Overall Res	ults				

Coverage: Tasks solved under 30 minutes and 4GB

Follower sub-solver		$ IDS \\ \Pi^+ $	SLS —
LMcut	Old (1987) New (1059) Net (1064)	681 681 526	630 708 536
Symbolic Bidirectional	Old (1987) New (1059) Net (1064)	584 632 540	621 819 654

ъ

ヘロン 人間 とくほ とくほ とう

Stackelberg Planning	Solving	Symbolic Leader Search	Net-Benefit 0000	Results ooo●ooo	Conclusions
Overall Res	ults				

Coverage: Tasks solved under 30 minutes and 4GB

Follower		IDS	SL	.S
sub-solver		$ \Pi^+$	—	+ub
LMcut	Old (1987)	681	630	634
	New (1059)	681	708	743
	Net (1064)	526	536	574
Symbolic	Old (1987)	584	621	628
Bidirectional	NEW (1059)	632	819	823
	Net (1064)	540	654	671

ъ

ヘロン 人間 とくほ とくほ とう

Stackelberg Planning Solving Symbolic Leader Search Net-Benefit October Conclusions

Results: SLS-ub vs IDS

Faster Stackelberg Planning via Symbolic Search and Information Sharing

Stackelberg Planning Solving Symbolic Leader Search Net-Benefit Octoberg Oc

Results: SLS-ub vs IDS

Faster Stackelberg Planning via Symbolic Search and Information Sharing

Stackelberg Planning Solving Symbolic Leader Search Net-Benefit October Conclusions

Results: SLS-ub vs IDS

Faster Stackelberg Planning via Symbolic Search and Information Sharing

 Stackelberg Planning
 Solving
 Symbolic Leader Search
 Net-Benefit
 Results
 Conclusions

 0000000
 0000000
 0000000
 0000000
 0000000
 0000000

Results: SLS-ub vs IDS

Stackelberg Planning	Solving 0000	Symbolic Leader Search	Net-Benefit 0000	Results ooooooo	Conclusions 00
Overall Resu	lts				

Coverage Follower	under	' 30 mi	nutes : S	and 4GB		
sub-solver		Π^+		+ub	+Π ⁺	
LMcut	Old (1987)	681	630	634	652	
	NEW (1059)	681	708	743	740	
	Net (1064)	526	536	574	613	
Symbolic	Old (1987)	584	621	628	652	
Bidirectional	NEW (1059)	632	819	823	825	
	Net (1064)	540	654	671	726	

Stackelberg Planning	Solving 0000	Symbolic Leader Search	Net-Benefit 0000	Results ooooooo	Conclusions 00
Overall Resu	lts				

Coverage: Tasks solved under 30 minutes and 4GB							
Follower		IDS		S	LS		
sub-solver		Π^+		+ub	+ Π^+	+ FF	
LMcut	Old (1987)	681	630	634	652	651	
	NEW (1059)	681	708	743	740	736	
	Net (1064)	526	536	574	613	619	
Symbolic	Old (1987)	584	621	628	652	652	
Bidirectional	NEW (1059)	632	819	823	825	826	
	Net (1064)	540	654	671	726	720	

Stackelberg Planning	Solving 0000	Symbolic Leader Search	Net-Benefit 0000	Results 0000000	Conclusions ●○
Outline					

- Stackelberg Planning
- 2 Solving Stackelberg Tasks: Previous Work
- 3 Symbolic Leader Search
- 4 Net-Benefit Stackelberg Planning
- 5 Empirical Results
- 6 Conclusions

Stackelberg Planning	Solving 0000	Symbolic Leader Search	Net-Benefit 0000	Results 0000000	Conclusions ○●
Conclusions					

• Stackelberg planning is an interesting form of adversarial planning for robustness analysis, pentesting, etc.

Stackelberg Planning	Solving 0000	Symbolic Leader Search	Net-Benefit 0000	Results 0000000	Conclusions ○●			
Conclusions								

- Stackelberg planning is an interesting form of adversarial planning for robustness analysis, pentesting, etc.
- Symbolic Leader Search
 - Symbolic search for efficient exhaustive exploration
 - Information sharing across follower sub-problems
 - \rightarrow outperforms the previous state of the art

周 いっ モ いっ モ い

Stackelberg Planning	Solving	Symbolic Leader Search	Net-Benefit 0000	Results 0000000	Conclusions ○●		
Conclusions							

- Stackelberg planning is an interesting form of adversarial planning for robustness analysis, pentesting, etc.
- Symbolic Leader Search
 - Symbolic search for efficient exhaustive exploration
 - Information sharing across follower sub-problems
 - \rightarrow outperforms the previous state of the art
- Net-benefit Stackelberg planning
 - Soft goals
 - More fine-grained analysis of how many goals can the follower achieve
 - $\rightarrow \text{increases}$ usefulness of this framework

Stackelberg Planning	Solving	Symbolic Leader Search	Net-Benefit 0000	Results 0000000	Conclusions ○●			
Conclusions								

- Stackelberg planning is an interesting form of adversarial planning for robustness analysis, pentesting, etc.
- Symbolic Leader Search
 - Symbolic search for efficient exhaustive exploration
 - Information sharing across follower sub-problems
 - \rightarrow outperforms the previous state of the art
- Net-benefit Stackelberg planning
 - Soft goals
 - More fine-grained analysis of how many goals can the follower achieve
 - \rightarrow increases usefulness of this framework
- Promising future work:
 - Apply information sharing ideas in other contexts
 - Improved cost-bounded planning algorithms