

Novel Is Not Always Better: On the Relation between Novelty and Dominance Pruning

Joschka Groß, Álvaro Torralba, Maximilian Fickert

Classical	Planning
•0	

Novelty 00

Dominance 00 Relation

Novelty Heuristics

Conclusions o

Classical Planning

Definition. A planning task is a 4-tuple $\Pi = (V, A, I, G)$ where:

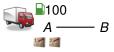
- V is a set of state variables, each $v \in V$ with a finite domain D_v .
- A is a set of actions; each a ∈ A is a triple (pre_a, eff_a, c_a), of precondition and effect (partial assignments), and the action's cost c_a ∈ ℝ⁺₀.
- Initial state I (complete assignment), goal G (partial assignment).

 \rightarrow Solution ("Plan"): Action sequence mapping *I* into *s* s.t. *s* \models *G*.

Classical	Planning
•0	

Novelty 00 Dominance 00 Relation

Novelty Heuristics


Conclusions o

Classical Planning

Definition. A planning task is a 4-tuple $\Pi = (V, A, I, G)$ where:

- V is a set of state variables, each $v \in V$ with a finite domain D_v .
- A is a set of actions; each a ∈ A is a triple (pre_a, eff_a, c_a), of precondition and effect (partial assignments), and the action's cost c_a ∈ ℝ₀⁺.
- Initial state I (complete assignment), goal G (partial assignment).
- \rightarrow Solution ("Plan"): Action sequence mapping *I* into *s* s.t. *s* \models *G*.

Running Example:

• $V = \{t, p_1, p_2, f\}$ with $D_t = \{A, B\}$ and $D_{p_i} = \{t, A, B\}, D_f = \{100, 99, 98, \dots, 0\}.$

• *A* = {*load*(*p_i*, *x*), *unload*(*p_i*, *x*), *drive*(*x*, *x'*)}

Dominance oo Relation

Novelty Heuristics

Conclusions o

What this is about?

Novelty (Lipovetzky and Geffner, 2012) (Lipovetzky and Geffner, 2017) (Katz, Lipovetzky, Moshkovich and Tuisov 2017) (Fickert 2018)

A (pruning) technique which has greatly improved the state of the art in satisficing planning

Dominance (Torralba and Hoffmann, 2015), (Torralba, 2017), (Torralba, 2018):

A safe pruning technique for cost-optimal planning

IW(K): Breadth first search, pruning all *s* with N(s) > k

- Polynomial time
- No guidance towards the goal
- Good for exploration/achieving single goal facts

IW(K): Breadth first search, pruning all *s* with N(s) > k

- Polynomial time
- No guidance towards the goal
- Good for exploration/achieving single goal facts

Novelty Heuristics:

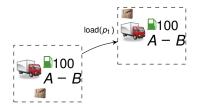
- · Combine the definition of novelty with heuristics
- State of the art in satisficing planning

IW(K): Breadth first search, pruning all s with N(s) > k

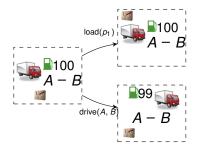
- Polynomial time
- No guidance towards the goal
- Good for exploration/achieving single goal facts

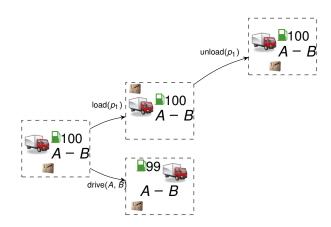
Novelty Heuristics:

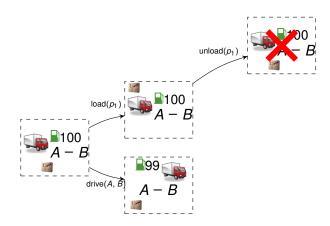
- Combine the definition of novelty with heuristics
- State of the art in satisficing planning

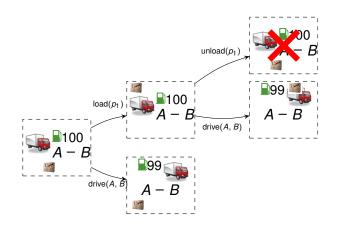

But, why is novelty so good?

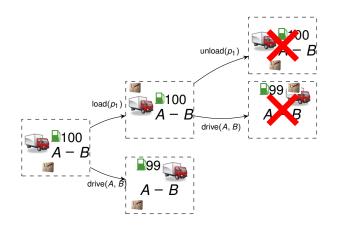
Classical Planning	Novelty ○●	Dominance 00	Relation 00000	Novelty Heuristics	Conclusions o	
Example IW(1)						



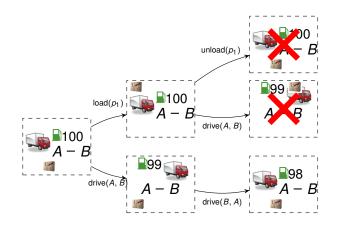


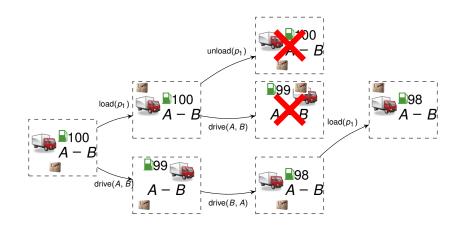




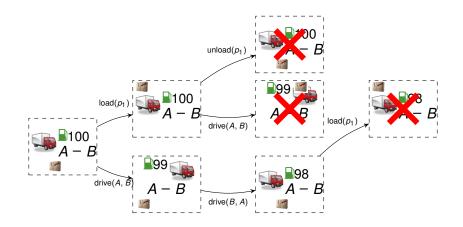

Classical Planning	Novelty ○●	Dominance 00	Relation 00000	Novelty Heuristics	Conclusions o	
		Examp	Example IW(1)			

5/18

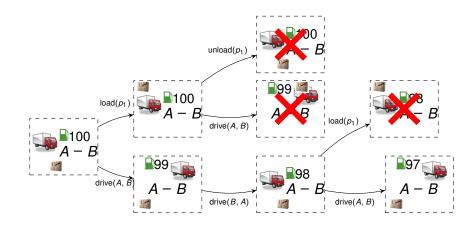

Classical Planning	Novelty ○●	Dominance 00	Relation	Novelty Heuristics	Conclusions o
		Examp	le IW(1)		


5/18

Classical Planning	Novelty ○●	Dominance 00	Relation 00000	Novelty Heuristics	Conclusions O	
		Examp	Example IW(1)			



	Classical Planning	Novelty ○●	Dominance oo	Relation 00000	Novelty Heuristics	Conclusions o
Example IW(1)						

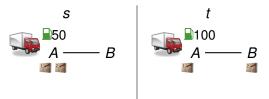


Classical Planning	Novelty ○●	Dominance 00	Relation 00000	Novelty Heuristics	Conclusions O	
Example IW(1)						

Classical Planning	Novelty ○●	Dominance 00	Relation 00000	Novelty Heuristics	Conclusions O	
Example IW(1)						

Classical Planning

Dominance

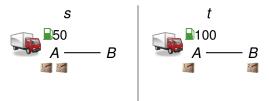

Relation

Novelty Heuristics

Conclusions o

Dominance Analysis

Compare states: Which one is better?


Relation

Novelty Heuristics

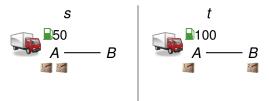
Conclusions o

Dominance Analysis

Compare states: Which one is better?

Dominance Relation

If $s \leq t$, then $h^*(s) \geq h^*(t)$: *t* is at least as good as *s*


Relation

Novelty Heuristics

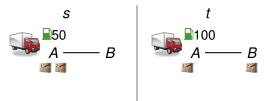
Conclusions o

Dominance Analysis

Compare states: Which one is better?

Dominance Relation

If $s \leq t$, then $h^*(s) \geq h^*(t)$: *t* is at least as good as *s*


Relation

Novelty Heuristics

Conclusions o

Dominance Analysis

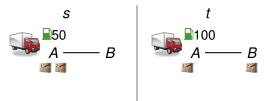
Compare states: Which one is better?

Dominance Relation

If $s \leq t$, then $h^*(s) \geq h^*(t)$: *t* is at least as good as *s*

 $\rightarrow \mbox{We}$ can reason about variables independently!

Groß, Torralba, Fickert


Relation

Novelty Heuristics

Conclusions o

Dominance Analysis

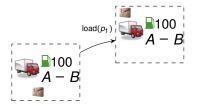
Compare states: Which one is better?

Dominance Relation

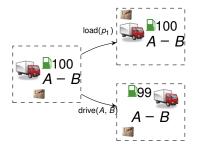
If $s \leq t$, then $h^*(s) \geq h^*(t)$: *t* is at least as good as *s*

 \rightarrow We can reason about variables independently!

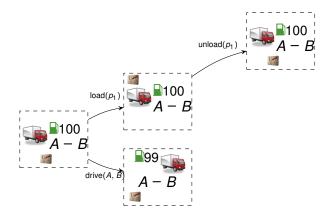
Groß, Torralba, Fickert

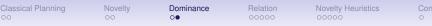

Prune *s* if there exists *t* s.t. $g(t) \leq g(s)$ and $s \leq t$

Groß, Torralba, Fickert

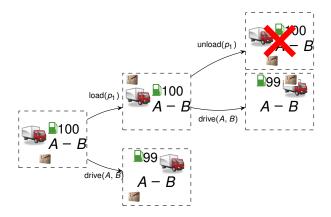


Prune *s* if there exists *t* s.t. $g(t) \leq g(s)$ and $s \leq t$

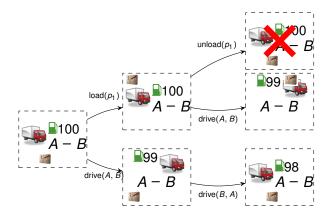



Prune *s* if there exists *t* s.t. $g(t) \leq g(s)$ and $s \leq t$

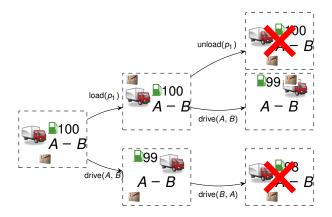
Prune *s* if there exists *t* s.t. $g(t) \leq g(s)$ and $s \leq t$



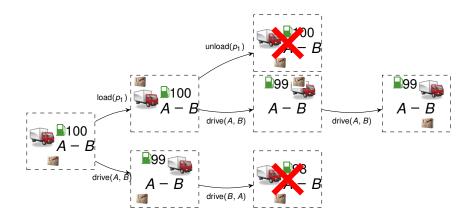
Prune *s* if there exists *t* s.t. $g(t) \leq g(s)$ and $s \leq t$



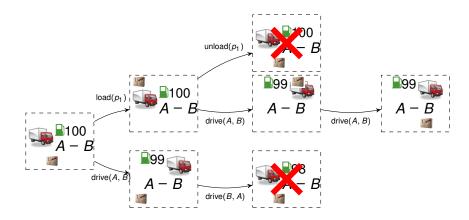
Prune *s* if there exists *t* s.t. $g(t) \leq g(s)$ and $s \leq t$



Prune *s* if there exists *t* s.t. $g(t) \leq g(s)$ and $s \leq t$



Prune *s* if there exists *t* s.t. $g(t) \leq g(s)$ and $s \leq t$



Prune *s* if there exists *t* s.t. $g(t) \leq g(s)$ and $s \leq t$

Prune *s* if there exists *t* s.t. $g(t) \leq g(s)$ and $s \leq t$

 \rightarrow Dominance pruning preserves at least an optimal solution.

Groß, Torralba, Fickert

Classical Planning	Novelty	Dominance	Relation	Novelty Heuristics	Conclusions
00	00	00	00000	00000	0

So, What Novelty and Dominance Have In Common?

Classical Planning	Novelty	Dominance	Relation	Novelty Heuristics	Conclusions
00	00	00	•0000	00000	0

So, What Novelty and Dominance Have In Common?

Both compare new states s against all previously seen states \mathcal{T}

Classical Planning	Novelty	Dominance	Relation	Novelty Heuristics	Conclusions
00	00	00	0000	00000	0

Both compare new states s against all previously seen states \mathcal{T}

Safe dominance pruning $\exists t \in \mathcal{T} \ \forall v \in V \quad s[v] \preceq t[v]$

Classical Planning	Novelty	Dominance	Relation	Novelty Heuristics	Conclusions
00	00	00	0000	00000	0

Both compare new states s against all previously seen states \mathcal{T}

Safe dominance pruning $\exists t \in \mathcal{T} \forall v \in V \quad s[v] \leq t[v]$

Novelty IW(1) pruning $\forall v \in V \exists t \in \mathcal{T} \quad s[v] = t[v]$

Both compare new states s against all previously seen states \mathcal{T}

Safe dominance pruning $\exists t \in \mathcal{T} \ \forall v \in V \quad s[v] \preceq t[v]$ Novelty IW(1) pruning $\forall v \in V \ \exists t \in \mathcal{T} \quad s[v] = t[v]$

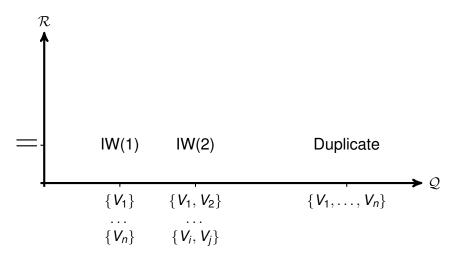
\rightarrow Novelty can be interpreted as (unsafe) dominance

 $\exists t \in \mathcal{T} \ h^*(t) \leq h^*(s)$

Both compare new states s against all previously seen states \mathcal{T}

Safe dominance pruning $\exists t \in \mathcal{T} \ \forall v \in V \quad s[v] \preceq t[v]$ Novelty IW(1) pruning $\forall v \in V \ \exists t \in \mathcal{T} \quad s[v] = t[v]$

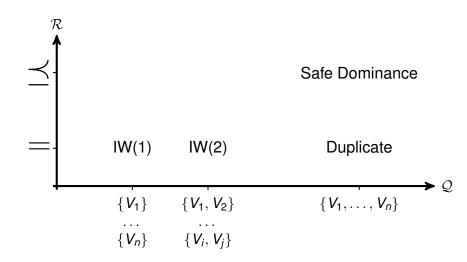
 \rightarrow Novelty can be interpreted as (unsafe) dominance


 $\exists t \in \mathcal{T} \ h^*(t) \leq h^*(s)$

Let $\mathcal{R} = \{ \preceq_1, ..., \preceq_k \}$ be a set of relations on P. Let \mathcal{Q} be a set of subsets of V.

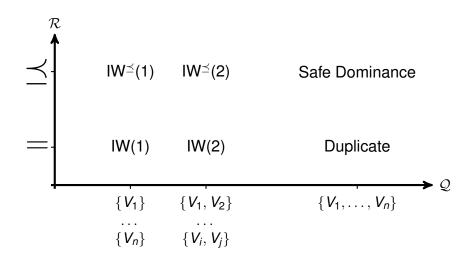
$$\forall Q \in Q : \exists t \in T : \forall v \in Q : s[v] \preceq t[v]$$

Groß, Torralba, Fickert


Classical Planning	Novelty 00	Dominance 00	Relation 00000	Novelty Heuristics	Conclusions o
	Uns	afe Domir	nance P	runing	

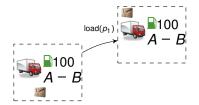
Novel Is Not Always Better

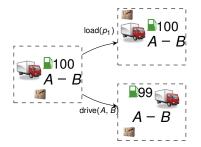
9/18

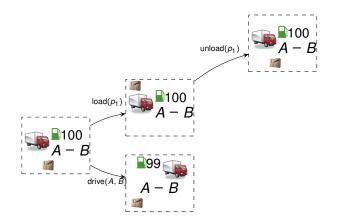


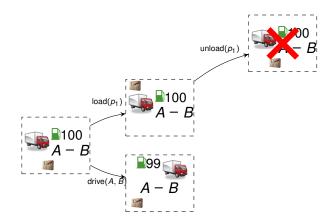
Novel Is Not Always Better

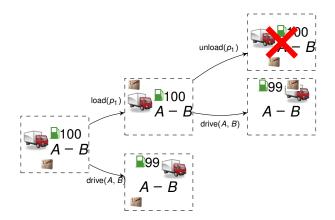
9/18

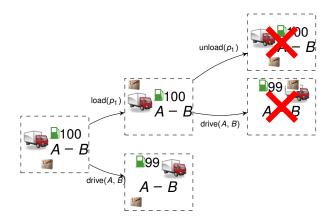


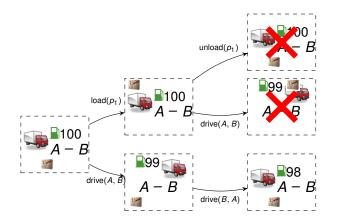

Classical Planning	Novelty 00	Dominance oo	Relation ○○●○○	Novelty Heuristics	Conclusions o
		Example	e IW <u>≺(</u> 1)		

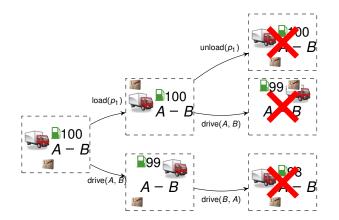

Classical Planning	Novelty 00	Dominance 00	Relation	Novelty Heuristics	Conclusions O
		Example	e IW <u>≺(</u> 1)		


Classical Planning	Novelty 00	Dominance 00	Relation	Novelty Heuristics	Conclusions O
		Example	e IW <u>≺(</u> 1)		









Classical	Planning
00	

Dominance

Relation

Novelty Heuristics

Conclusions o

Our Hypothesis

Hypothesis: $IW^{\preceq}(k)$ is not more unsafe than IW(k)

Dominance

Relation

Novelty Heuristics

Conclusions o

Our Hypothesis

Hypothesis: $IW^{\leq}(k)$ is not more unsafe than IW(k)

In theory not much can be said:

 IW(k) is guaranteed to solve any task with width k or less and using ≤ we lose this guarantee

Dominance

Relation

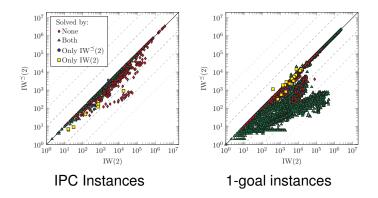
Novelty Heuristics

Conclusions o

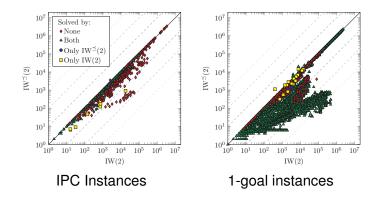
Our Hypothesis

Hypothesis: $IW^{\leq}(k)$ is not more unsafe than IW(k)

In theory not much can be said:


 IW(k) is guaranteed to solve any task with width k or less and using ≤ we lose this guarantee

• However, there are also tasks that are solved when using \preceq but not when using =


al Planning	Novelty	Dominance	Relation	Novelty Heuristics	Co
	00	00	0000	00000	0

Effective Width Analysis

ssical Planning Novelty Dominance Relation Novelty Heuristics Conclusion of the second second

Effective Width Analysis

 \rightarrow In practice, replacing = by \leq increases pruning without making it more unsafe!

Groß, Torralba, Fickert

Classical Planning

Novelty 00 Dominance

Relation

Novelty Heuristics

Conclusions o

Novelty Heuristics

A state is novel if it has a fact that no other state with the same or lower heuristic value has Classical Planning

Novelty 00 Dominance 00 Relation

Novelty Heuristics

Conclusions o

Novelty Heuristics

A state is novel if it has a fact that no other state with the same or lower heuristic value has

Classical Planning

Novelty 00 Dominance 00 Relation

Novelty Heuristics

Conclusions o

Novelty Heuristics

A state is novel if it has a fact that no other state with the same or lower heuristic value has

ominance

Relation

Novelty Heuristics

Conclusions o

Quantify Novelty

How non-novel is a state?

Groß, Torralba, Fickert

Novel Is Not Always Better

14/18

How non-novel is a state?

Previous work: compare to states with strictly smaller h (instead of \leq)

How non-novel is a state?

Previous work: compare to states with strictly smaller h (instead of \leq)

This work: for each fact, count the number of states that have been seen with the same or better h value

 \rightarrow Estimate the probability that the state is really dominated

Overview of Results:

We analyze three variants:

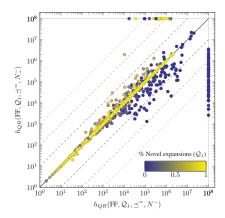
- 1. Changing \mathcal{R} : = vs. \leq
- 2. Changing ${\mathcal Q}$
- 3. Changing quantification of non-novel states

Overview of Results:

We analyze three variants:

- 1. Changing \mathcal{R} : = vs. \leq
- 2. Changing \mathcal{Q}
- 3. Changing quantification of non-novel states

Changing \mathcal{R} : = vs. \leq


- Decreases the number of novel states
- Expansions similar to baseline
- Performance decreases due to overhead

Classical Planning	Novelty 00	Dominance 00	Relation	Novelty Heuristics	Conclusions o
		Chang	ging ${\cal Q}$		

	\mathcal{Q}_1	\mathcal{Q}_{2}	$\mathcal{Q}_{1,2}^{\textit{cg}}$	$\mathcal{Q}_{1,2}^{\textit{pre}}$	\mathcal{Q}^{cg}	$\mathcal{Q}^{\textit{pre}}$	Total
Q_1	_	14	8	9	8	9	1564
\mathcal{Q}_2	17	_	6	6	8	6	1551
$\mathcal{Q}_{1,2}^{cg}$	20	15	_	7	10	10	1609
$\mathcal{Q}_{1,2}^{\text{pre}}$	17	16	8	_	9	7	1618
\mathcal{Q}^{cg}	20	20	15	13	_	6	1630
$\mathcal{Q}^{\textit{pre}}$	17	17	13	15	8	_	1634

 \rightarrow Best configuration in practice: choose subsets of variables that appear together in action preconditions

- Our non-novel priority is superior to the previous one!
- But, not good synergy with changing ${\cal Q}$

Dominance: Compare states by looking at their outgoing plans Novelty: Compare states by looking at their facts

 \rightarrow Our new framework on unsafe dominance generalizes both

Can we use this to devise better variants of novelty?

- Q: Use dominance relations in novelty
- R: Look at different subsets of variables
- Non-novel priority

 \rightarrow Inspire new ideas to further improve novelty methods!