
Learning How to Ground a Plan – Partial Grounding in Classical Planning

Daniel Gnad, Álvaro Torralba
Saarland University

Saarland Informatics Campus
Saarbrücken, Germany

{gnad,torralba}@cs.uni-saarland.de

Martı́n Domı́nguez, Carlos Areces, Facundo Bustos
Universidad Nacional de Córdoba

Córdoba, Argentina
{mardom75, carlos.areces, facundojosebustos}@gmail.com

Abstract

Current classical planners are very successful in finding (non-
optimal) plans, even for large planning instances. To do so,
most planners rely on a preprocessing stage that computes a
grounded representation of the task. Whenever the grounded
task is too big to be generated (i.e., whenever this preprocess
fails) the instance cannot even be tackled by the actual plan-
ner. To address this issue, we introduce a partial grounding
approach that grounds only a projection of the task, when
complete grounding is not feasible. We propose a guiding
mechanism that, for a given domain, identifies the parts of a
task that are relevant to find a plan by using off-the-shelf ma-
chine learning methods. Our empirical evaluation attests that
the approach is capable of solving planning instances that are
too big to be fully grounded.

Introduction
Given a model of the environment, classical planning at-
tempts to find a sequence of actions that lead from an initial
state to a state that satisfies a set of goals. Planning mod-
els are typically described in the Planning Domain Defini-
tion Language (PDDL) (McDermott et al. 1998) in terms of
predicates and action schemas with arguments that can be
instantiated with a set of objects. However, most planners
work on a grounded representation without free variables,
like STRIPS (Fikes and Nilsson 1971) or FDR (Bäckström
and Nebel 1995). Grounding is the process of translating a
task in the lifted (PDDL) representation to a grounded repre-
sentation. It requires to compute all valid instantiations that
assign objects to the arguments of predicates and action pa-
rameters, even though only a small fraction of these instan-
tiations might be necessary to solve the task.

The size of the grounded task is exponential in the num-
ber of arguments in predicates and action schemas. Although
this is constant for all tasks of a given domain, and ground-
ing can be done in polynomial time, it may still be pro-
hibitive when the number of objects is large and/or some
predicates or actions have many parameters.

The success of planners like FF (Hoffmann and Nebel
2001a) or LAMA (Richter, Westphal, and Helmert 2011) in
finding plans for large planning tasks is undeniable. How-
ever, since most planners rely on grounding for solving a

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

task, they fail without even starting the search for a plan
whenever an instance cannot be grounded, making ground-
ing a bottleneck for the success of satisficing planners.

Grounding is particularly challenging in open multi-task
environments, where the planning task is automatically gen-
erated with all available objects even if only a few of them
are relevant to achieve the goals. For example, in robotics,
the planning task may contain all objects with which the
robot may interact even if they are not needed (Lang and
Toussaint 2009). In network-security environments, like the
one modeled in the Caldera domain (Miller et al. 2018),
the planning task may contain all details about the network.
However, to the best of our knowledge, no method exists that
attempts to focus the grounding on relevant parts of the task.

We propose partial grounding, where, instead of instan-
tiating the full planning task, we focus on the parts that are
required to find a plan. The approach is sound – if a plan
is found for the partially grounded task then it is a valid
plan for the original task – but incomplete – the partially
grounded task will only be solvable if the operators in at
least one plan have been grounded. To do so, we give prior-
ity to operators that we deem more relevant to achieve the
goal. Inspired by relational learning approaches to domain
control knowledge (e.g., Yoon, Fern, and Givan (2008), de la
Rosa et al. (2011), Krajnansky et al. (2014)), we use machine
learning methods to predict the probability that a given op-
erator belongs to a plan. We learn from small training in-
stances, and generalize to larger ones by using relational
features in standard classification and regression algorithms
(e.g., Kramer, Lavrač, and Flach (2001)). As an alternative
model, we also experiment with relational trees to learn the
probabilities (Muggleton and Raedt 1994).

Empirical results show that our learning models can pre-
dict which operators are relevant with high accuracy in sev-
eral domains, leading to a very strong reduction of task size
when grounding and solving huge tasks.

Background
Throughout the paper, we assume for simplicity that tasks
are specified in the STRIPS subset of PDDL (Fikes and Nils-
son 1971). Our algorithms and implementation, however, are
directly applicable to a larger subset of PDDL containing
ADL expressions (Pednault 1989).

A lifted (PDDL) task ΠPDDL is a tuple

(P,A,ΣC ,ΣO, I, G) whereP is a set of (first-order) atomic
predicates, A is a set of action schemas, Σ := ΣC ∪ ΣO

is a non-empty set of objects consisting of constants ΣC ,
and non-constant objects ΣO, I is the initial state, and G is
the goal. Predicates and action schemas have parameters.
We denote individual parameters with x, y, z and sets of
parameters with X,Y, Z. An action schema a[X] is a triple
(pre(a), add(a), del(a)), consisting of preconditions, add
list, and delete list, all of which are subsets of P , possibly
pre-instantiated with objects from ΣC , such that X is the
set of variables that appear in pre(a) ∪ add(a) ∪ del(a). I
and G are subsets of P , instantiated with objects from Σ.

A lifted task ΠPDDL can be divided into two parts:
the domain specification (P,A,ΣC) which is common to
all instances of the domain, and the problem specification
(ΣO, I, G) which is different for each instance of a domain.

A STRIPS task Π is a tuple (F,O, I,G), where F is a
set of grounded predicates, called facts, and O is a set of
grounded action schemas, called operators. A state s ⊆ F
is a set of facts, I ⊆ F is the initial state and G ⊆ F is the
goal. An operator o is applicable in a state s if pre(o) ⊆ s.
In that case, the outcome state is s′ = (s \ del(o))∪ add(o),
and we write s o−→ s′ for the transition from s to s′ via o. For
a sequence of operators o, we write s o−→ t if the operators in
o can be iteratively applied to s, resulting in t. A sequence
o, with I o−→ sG, is a plan for Π if G ⊆ sG. A task Π is
solvable if a plan exists. The plan is optimal if its length is
minimal among all plans for Π.

We define the delete-relaxation of a task Π as the task Π+

obtained by setting del(o) = ∅, for all o ∈ O. We say that Π
is delete-relaxed solvable if Π+ is solvable.

Given a lifted task ΠPDDL, we can compute the corre-
sponding STRIPS task Π by instantiating the predicates and
action schemas with the objects in Σ. Then, F contains a
fact for each possible assignment of objects in Σ to the ar-
guments of each predicate P [X] ∈ P , andO contains an op-
erator for each possible assignment of objects in Σ to each
action schema a[X] ∈ A. In practice, we do not enumerate
all possible assignments of objects in Σ to the arguments in
facts and action schemas. Instead, only those facts and oper-
ators are instantiated that are delete-relaxed reachable from
the initial state (Helmert 2009).

Partial Grounding
We base our method on the grounding algorithm of Fast
Downward (Helmert 2006). To ground a planning task, this
algorithm performs a fix-point computation similar to the
computation of relaxed planning graphs (Blum and Furst
1997), where a queue is initialized with the facts in the ini-
tial state and in each iteration one element of the queue is
popped and processed. If the element is a fact, then those
operators of which all preconditions have already been pro-
cessed (are reached) are added to the queue. If the element is
an operator, all its add effects are pushed to the queue. The
algorithm terminates when the queue is empty. Then, all pro-
cessed facts and operators are delete-relaxed reachable from
the initial state. For simplicity, the algorithm we describe
here considers only STRIPS tasks but it can be adapted to

Algorithm 1: Partial Grounding.

Input: A lifted task ΠPDDL = (P,A,ΣC ,ΣO, I, G)
Output: A STRIPS task Π = (F,O, I,G)

1 q ← I;
2 F ← ∅ ; // Processed facts
3 O ← ∅ ; // Processed operators
4 while ¬(q.empty() ∨ G ⊆ F) ∧ StoppingCondition

do
5 if q.containsFact() then
6 f ← q.popFact() ;
7 F ← F ∪ {f} ;
8 for o 6∈ O ∧ pre(o) ⊆ F do
9 q.insert(o) ;

10 else
11 o← q.popHighPriorityOperator() ;
12 O ← O ∪ {o} ;
13 for f 6∈ F ∧ f ∈ add(o) do
14 q.insert(f) ;
15 return (F,O, I,G)

support other PDDL features like negative preconditions or
conditional effects as it is done by Helmert (2009).

Algorithm 1 shows details of our approach. The main dif-
ference with respect to the approach by Helmert (2009) is
that (1) the algorithm can stop before the queue is empty,
and (2) operators are instantiated in a particular order. For
these two choice points we suggest an approach that aims
at minimizing the size of the partially grounded task, while
keeping it solvable. That said, our main focus is the operator
ordering, and we only consider a simple stopping condition.

Stopping condition. Typical grounding approaches termi-
nate only when the queue is empty, meaning that all (delete-
relaxed) reachable facts and operators have been grounded.
In partial grounding, we allow the algorithm to stop earlier.
Intuitively, this is a good idea because most planning tasks
have short plans, usually in the order of at most a few hun-
dred operators, compared to possibly millions of grounded
operators. Hence, if the correct operators are selected, partial
grounding can potentially stop much sooner than complete
grounding. The key issue is how to decide when the proba-
bility of finding a plan using the so-far grounded operators
is sufficient. Consider the following claims:

1. The grounded task is delete-relaxed solvable iff G ⊆ F .

2. The grounded task is solvable iff there exists a plan π for
ΠPDDL such that π ⊆ O.

Item 1 provides a necessary condition for the task to be
relaxed-solvable, so grounding should continue at least until
G ⊆ F . But this is not sufficient, as it does not guarantee that
a plan can be found for the non-relaxed task. Item 2 provides
an obvious, but difficult to predict, condition for success.

In this work, we consider only a simple stopping condi-
tion. To maximize the probability of the task being solvable,
it is desirable to ground as many operators as possible. The
main constraint on the number of operators to ground are the

resources (time and memory) that can be spent on ground-
ing. For that reason, one may want to continue grounding
while these resources are not compromised1. Let Nop be
a constant, provided as a parameter, of the estimated num-
ber of operators that can be grounded given the available re-
sources: require the algorithm to continue while |O| ≤ Nop.

If not all actions are grounded, the resulting grounded task
is a partial representation of the PDDL input and the over-
all planning process of grounding and finding a plan for the
grounded task is incomplete. We implemented a loop around
the overall process that incrementally grounds more actions,
when finding the partially grounded task unsolvable. This
converges to full grounding, resulting in a complete planner.

Queue order. Standard grounding algorithms extract ele-
ments from the queue in an arbitrary order – since all op-
erators are grounded, order does not matter. Our algorithm
always grounds all facts that have been added to the queue,
giving them preference over operators. This ensures that the
effects of all grounded operators are part of the grounded
task. After all facts in the queue have been processed, our al-
gorithm picks an operator according to a heuristic criterion,
which we will call the priority function. Some simple prior-
ity functions include FIFO, LIFO, or random. Since our aim
is to ground all operators of a plan, the priority queue should
sort operators by their probability of belonging to a plan. To
estimate these probabilities, we use machine learning tech-
niques as detailed in the next section. Additionally, one may
want to increase the diversity of selected operators to avoid
being misguided by a bias in the estimated probabilities. We
consider a simple round robin (RR) criterion, which clas-
sifies all operators in the queue by the action schema they
belong to, and chooses an operator from a different action
schema in each iteration. RR works in combination with a
priority function that is used to select which instantiation of
a given action schema should be grounded next.

We define a novelty criterion as a non-trivial priority
function that is not based on learning, inspired by nov-
elty pruning techniques that have successfully been ap-
plied in classical planning (Lipovetzky and Geffner 2012;
2017). During search, the novelty of a state is defined as the
minimum number m for which the state contains a set of
facts of size m, that is not part of any previously generated
state. This can be used to prune states with a novelty < k.

We adapt the definition of novelty to operators in the
grounding process as follows. Let Σ be the set of objects,
a[X] an action schema, and O the set of already grounded
operators corresponding to all instantiations of a[X]. Let
σ = {(x1, σ1), . . . , (xk, σk)} be an assignment of objects
in Σ to parameters X instantiating an operator o, such that
o 6∈ O. Then, the novelty of o is defined as the number of as-
signments (xi, σi) such that there does not exist an operator
o′ ∈ O where xi got assigned σi. In the grounding we will
prioritize operators with a higher novelty, which are likely
to generate facts that have not been grounded yet.

1While search can benefit from grounding less operators, an or-
thogonal pruning method that uses full information of the grounded
task, can be employed at that stage (e. g. Heusner et al. (2014)).

Learning Operator Priority Functions
To guide the grounding process towards operators that are
relevant to solve the task, we use a priority queue that gives
preference to more promising operators. We use a priority
function f : O → [0, 1] that estimates whether operators
are useful or not. Ideally, we want to assign 1 to operators
in an optimal plan and 0 to the rest, so that the number of
grounded operators is minimal. We approximate this by as-
signing to each operator a number between 0 and 1 that esti-
mates the probability that the operator belongs to an optimal
plan for the task. This is challenging, however, due to lack
of knowledge about the fully grounded task.

We use a learning approach, training a model on small in-
stances of a domain and using it to guide grounding in larger
instances. Our training instances need to be small enough to
compute the set of operators that belong to any optimal plan
for the task. We do this by solving the tasks with a symbolic
bidirectional breadth-first search (Torralba et al. 2017) and
extracting all operators that belong to an optimal solution.

Before grounding, the only information that we have
available is the lifted task ΠPDDL = (P,A,ΣC ,ΣO, I, G).
Our training data uses this information, consisting of tu-
ples (I,G,ΣO, o, {0, 1}) for each operator o in a training
instance, where o is assigned a value of 1 if it belongs to
an optimal solution and 0 otherwise. We formulate our pri-
ority functions as a classification task, where we want to
order the operators according to our confidence that they
belong to the 1 class. To learn a model from this data, we
need to characterize the tuple (I,G,ΣO, o) with a set of fea-
tures. Since training and testing problems have different ob-
jects, these features cannot refer to specific objects in ΣO,
so learning has to be done at the lifted level. We propose re-
lational rules that connect the objects that have instantiated
the action schema to the training sample (I,G,ΣO) to cap-
ture meaningful properties of an operator. Because different
action schemas have different (numbers of) arguments, the
features that characterize them will necessarily be different.
Therefore, we train a separate model for each action schema
a[X] ∈ A. All these models, however, predict the proba-
bility of an operator being in an optimal plan, so the values
from two different models are still comparable.

We considered two approaches to conduct the learning:
inductive relational trees and classification/regression with
relational features.

Inductive Relational Learning Trees. Inductive Logic
Programming (ILP) (Muggleton and Raedt 1994) is a well-
known machine learning approach suitable when the train-
ing instances are described in relational logic. ILP has been
used, e.g., to learn domain control knowledge for plan-
ning (de la Rosa et al. 2011; Krajnansky et al. 2014). We
use the Aleph tool (Srinivasan 1999) to learn a tree where
each inner node is a predicate connecting the parameters of
a to-be-grounded operator to the facts in the initial state or
goal, to objects referred to in a higher node in the tree, or to a
constant. The nodes are evaluated by checking if there exists
a predicate instantiated with the given objects in the initial
state or goal. A wildcard symbol (“ ”) indicates that we do

goal:have-image(?to,)

0.01 goal:have-image(?from,)

0.1 goal:pointing(,?from)

0.38 goal:pointing(?s,?from)

0.19 0

Figure 1: The relational tree learned for the action schema
turn-to(?s - satellite, ?from - direction, ?to - direction) in
the Satellite domain.

not require a particular object, but that any object instantiat-
ing the predicate at this position is fine. In Figure 1, the left
child corresponds to this check evaluating to false and the
right child to true. For a given action, the tree is evaluated by
checking if there exists an assignment to the free variables
in a path from the root to a leaf node, such that all nodes on
the path evaluate to the correct truth value. We then take the
real value in the leaf node as an estimate of the probability
that the operator is part of an optimal plan. This evaluation
is akin to a CSP problem, so we need to keep the depth of
the trees at bay to have an efficient priority function.

Figure 1 shows the tree learned for the turn-to action
schema in Satellite. In this domain, the goal is to take pic-
tures in different modes. Several satellites are available, each
with several instruments that support some of the modes.
The actions are switching the instruments on and off, cali-
brating them, turning the satellite into different directions,
and taking images. The turn-to action changes the direction
satellite ?s is looking at. In this case, the learned tree consid-
ers that the operators turning to and from relevant directions
are more likely part of an optimal plan than turning away
from the goal direction. This is relevant information to pre-
dict the usefulness of turn-to. However, there is some margin
of improvement since the initial state is ignored.

Classification and Regression with Relational Features.
An alternative is to use relational rules as features for
standard classification and regression algorithms (Kramer,
Lavrač, and Flach 2001). Our features are relational rules
where the head is an action schema, and the body consists
of a set of goal or initial-state predicates, partially instan-
tiated with the arguments of the action schema in the head
of the rule, constant objects in ΣC , or free variables used
in other predicates in the rule. This is very similar to a path
from root to leaf in the aforementioned relational trees.

We generate rules by considering all possible predicates
and parameter instantiations with two restrictions. First, to
guarantee that the rule takes different values for different in-
stantiations of the action schema, one of the arguments in
the first predicate in the body of the rule must be bound to
a parameter of the action schema. Second, at least one argu-
ment of each predicate after the first one, must be bound to a
free variable used in a previously used predicate. This aims
at reducing the number of features by avoiding redundant
rules that can be described as a conjunction of simpler rules.
We assume that, if the conjunction of two rules is relevant

for the classification task, the machine learning algorithms
will be able to infer this.

Most of the generated rules do not provide useful infor-
mation to predict whether an operator will be part of an op-
timal plan or not. This is because we brute-force generate all
possible rules, including many that do not capture any use-
ful properties. Therefore, it is important to select a subset of
relevant features. We do this filtering in two steps. First, we
remove all rules that evaluate to the same value in all train-
ing instances (e.g., rules that contain goal:predicate in
the body will never evaluate to true if predicate is never
part of the goal description in that domain). Then, we use
attribute selection techniques in order to filter out those fea-
tures that are not helpful to predict whether the operator is
part of an optimal plan. As an example, the most relevant
rule generated for the turn-to schema is:
turn-to(?s, ?to, ?from) :- goal:have-image(?to, ?M1),

goal:have-image(?from,?M2), ini:on-board(?I, ?s),

ini:supports(?I, ?M1), ini:supports(?I, ?M2).

This can be read as: “do we have to take images in two
directions in modes that are supported by one of the in-
struments on board?”. This rule is surprisingly accurate in
describing a scenario where turn-to is relevant (and can be
complemented with other rules to capture different cases).

Given a planning task and an operator, a rule is evaluated
by replacing the arguments in the head of the rule by the ob-
jects that are used to instantiate the operator and checking if
there exists an assignment to the free variables such that the
corresponding facts are present in the initial state and goal
of the task. Doing so, we generate a feature vector for each
grounded action from the training instances with a binary
feature for every rule indicating whether the rule evaluates
to true for that operator or not. This results in a training set
where for each operator we get a vector of boolean features
(one feature per rule), together with a to-be-predicted class
that is 1 if the operator is part of an optimal plan for the task,
and 0 if not. On this training set, we can use either classifi-
cation or regression methods to map each operator to a real
number. With classification methods we use the confidence
that the model has in the operator belonging to the positive
class. In regression, the model directly tries to minimize the
error by assigning values to 1 for operators in an optimal
plan and 0 to others. It is important to note that it is possible
that there are two training examples with the same feature
vector, but with different values in the target. In these cases,
we merge all training examples with the same feature vector
and replace them with a single one that belongs to the 1 class
if any of the examples did2.

During grounding, for every operator that is inserted in the
queue, we evaluate all rules and call the model to get its pri-
ority estimate. To speed-up rule evaluation, we precompute,
before grounding, all possible assignments to the arguments
of the action schema that satisfy the rule. The computational
cost of doing this is exponential in the number of free vari-
ables but it was typically negligible for the rules used by our
models. We evaluate the relational trees in a similar way.

2For regression algorithms, we also considered taking the aver-
age but this resulted in slightly worse results in most cases.

Experiments
For the evaluation of our partial grounding approach, we
adapted the implementation of the “translator” component of
the Fast Downward planning system (FD) (Helmert 2006).
The translator parses the given input PDDL files and out-
puts a fully grounded task in finite-domain representation
(FDR) (Bäckström and Nebel 1995; Helmert 2009) that cor-
responds to the PDDL input. Our changes are minimally
invasive, only changing the ordering in which actions are
handled and the termination condition, as indicated in Algo-
rithm 1. Therefore, none of the changes affect the correct-
ness of the translator, i. e., the generated grounded planning
task will always be a proper FDR task. The changes do not
affect the performance too much either, except when using a
computationally expensive priority function.

Experimental Setup. For the evaluation of our technique,
we require domains for which (1) instance generators are
available to generate a set of diverse instances small enough
for training, and (2) the size of the grounded instances grows
at least cubically with respect to the parameters of the gen-
erator so that we have large instances that are hard to fully
ground, for evaluation. We picked four domains that were
part of the learning track of the international planning com-
petition (IPC) 2011 (Blocksworld, Depots, Satellite, and
TPP), as well as two domains of the deterministic track of
IPC’18 (Agricola and Caldera). For all domains, we used
the deterministic track IPC instances and a set of 25 large
instances that we generated ourselves for the experiments.

For the training of the models, we used between 40 and
250 small instances, to get enough training data for each
action schema. Since the number of grounded actions per
schema varies significantly across domains, we individually
adapted the number of training instances.

To generate the large instances, we started at roughly the
same size as the largest IPC instances, scaling the parame-
ters of the generator linearly when going beyond that. As an
example, in Satellite, the biggest IPC instance has around 10
satellites and 20 instruments, which is the size of our small-
est instances. In the largest instances that we generated, there
are up to 15 satellites and 60 instruments. In Blocksworld,
where IPC instances only scale up to 17 blocks, we scale in
a different way, starting at 75 blocks and going up to 100,
which can still easily be solved by our techniques.

Regarding the domains, we used the typed domain en-
coding of Satellite from the learning track, which simplifies
rule generation, but does not semantically change the do-
main. In Blocksworld, we use the “no-arm” encoding, which
shows a cubic explosion in the grounding, in contrast to the
“arm” encoding, where the size of the grounded task is only
quadratic in the PDDL description.

Beside the static queue orderings, FIFO, LIFO, and
novelty-based methods, we experiment with learning-based
approaches using classification and regression models.
While the former exemplify what is possible without learn-
ing, the latter methods aim at grounding only those actions
that belong to a plan for a given task. In all cases, we com-
bine the methods with the round robin queue setup (RR).

0 0.2 0.4 0.6 0.8 1
0

50

100

150

move-t-to-b
non-optimal operators

optimal operators

0 0.2 0.4 0.6 0.8 1
0

500

1,000

1,500

2,000

2,500 move-b-to-b
non-optimal operators

optimal operators

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100
move-b-to-t

non-optimal operators
optimal operators

0 0.2 0.4 0.6 0.8 1
0

500

1,000

1,500

2,000

2,500 accumulated
non-optimal operators

optimal operators

Figure 2: Evaluation of logistic regression in Blocksworld.

Learning Framework. We report results for a logistic re-
gression classifier (LOGR), kernel ridge regression (KRN),
linear regression (LINR), and a support vector machine re-
gressor (SVR). We also report the results of the decision
trees learned by Aleph. To implement the machine learning
algorithms, we use the scikit Python package (Pedregosa
et al. 2011), which nicely connects to the translator in FD.

For feature selection, i. e., to select which rules are use-
ful to predict the probability of an operator to be in a plan,
we used the properties included in the trained models. For
each feature (rule) contained in the feature vector, the model
returns a weight according to its relevance to discriminate
the target vector. After experimenting with multiple differ-
ent models, we decided to use a decision tree regressor to
predict rule usefulness, for all trained models.

We evaluated our models in isolation on a set of validation
instances that are distinct from both our training and testing
set, and small enough to compute the set of operators that
are part of any optimal plan. Figure 2 shows the outcome of
the priority function learned by LOGR in Blocksworld. The
bars indicate the number of operators across all validation
instances that got a priority in a given interval, highlighting
operators from optimal plans in a different color. The plots
nicely illustrate that the priority function works very well
for the action schemas move-t-to-b and move-b-to-t, where
it is able to distinguish “optimal” from “non-optimal” op-
erators. The distinction works not so well for move-b-to-b,
but in general gives a significantly lower priority to this ac-
tion schema. Another important observation is that the to-
tal number of grounded move-b-to-b actions is much higher
than that of the other two action schemas.

Projecting these observations to the grounding process,
we expect the model to work well when used in a sin-
gle priority queue, since it will prioritize move-t-to-b and
move-b-to-t (which are the only ones needed to solve any
Blocksworld instance) over move-b-to-b (which is only
needed to optimally solve a task). On the validation set,
grounding all operators with a priority of roughly > 0.6 suf-

Solved within 30min overall Last iteration solved within 30min
Novelty LINR LOGR KRN SVR Aleph Novelty LINR LOGR KRN SVR Aleph

Domain # Base FIFO LIFO RND RR RR RR RR RR RR FIFO LIFO RND RR RR RR RR RR RR
Agricola-IPC 20 10 1 1 2 1 3 1 7 5 5 8 5 4 10 10 3 9 9 9 7 10 9 12 11 12 9 12 10 12 11 10
Agricola-large 25 4 0 0 0 0 0 0 1 2 1 0 1 0 22 17 0 4 4 4 0 10 1 24 20 23 6 24 19 24 24 24
Blocksworld-IPC 35
Blocksworld-large 25 0 0 0 0 21 25 14 25 25 23 25 24 25 22 25 25 0 0 0 21 25 14 25 25 24 25 25 25 24 25 25
Caldera-IPC 20 13 13 12 13 9 14 17 18 18 18 11 18 19 18 13 14 17 13 17 15 17 19 19 19 19 17 19 20 19 15 18
Caldera-large 25 0 10 0 3 0 5 22 18 18 23 1 19 20 17 0 7 19 0 5 12 16 25 25 24 25 8 25 25 25 0 19
Depots-IPC 22 20 19 20 19 19 20 20 20 19 21 19 20 20 21 20 20 19 20 19 19 20 20 20 19 21 19 20 20 21 20 20
Depots-large 25 1 0 0 0 0 0 5 3 1 2 2 3 1 4 2 0 0 0 0 0 0 5 3 1 2 2 3 1 4 2 0
Satellite-IPC 36 36 35 36 36 35 26 36 35 36 35 35 35 36 35 36 36 35 36 36 36 35 36 36 36 36 36 36 36 36 36 36
Satellite-large 25 0 0 0 0 1 0 0 11 0 14 15 14 0 14 1 1 0 0 0 1 0 0 14 0 16 19 15 0 16 1 1
TPP-IPC 30 30 30 30 30 30 30 26 28 30 30 30 30 30 29 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
TPP-large 25 7 5 8 2 6 8 1 2 4 4 5 6 4 6 8 6 6 8 6 6 8 5 5 7 5 5 6 7 9 8 6∑

313 156 148 142 140 157 166 177 203 193 211 186 210 194 233 197 177 174 155 161 182 206 199 248 227 248 211 250 228 255 207 224

Table 1: Number of instances solved by the baseline with full grounding (Base), and incremental grounding with static action
orderings (FIFO, LIFO, random (RND)), novelty-based ordering, and several learning models (see text). “RR” indicates that
we use a separate priority queue for each action schema, taking turns over the schemas. Best coverage highlighted in bold face.

fices to solve the tasks, pruning all move-b-to-b operators
and most non-optimal ones of the other schemas. RR in con-
trast will ground an equal number of all action schemas, in-
cluding many unnecessary operators. These conjectures are
well-supported by the plots in Figure 3.

When working with machine learning techniques, there is
always the risk of overfitting. In our case the results on the
training set are very similar to those on the validation set
shown in Figure 2, suggesting that overfitting is not an issue
in our setup. The results in other domains are similar.

Incremental Grounding. We use the incremental ap-
proach, where the first iteration grounds a given task until
the goal is found to be relaxed-reachable. The left half of
Figure 3 shows detailed information on how many opera-
tors need to be grounded until this is achieved for different
priority functions. We discuss details later. In case this first
iteration fails, i. e., the partial task is not solvable, we set a
minimum number of operators to be grounded in the next
iteration by using an increment of 10 000 operators. This
strategy does not aim to maximize coverage but rather to find
out what is the minimum number of operators that need to
be grounded to solve a task for each priority function (with
a granularity of 10 000 operators). The number of operators
that were necessary to actually solve a given instance is il-
lustrated in the right half of Figure 3.

For all configurations, after grounding, we run the first it-
eration of the LAMA planner (Richter and Westphal 2010),
a good standard configuration for satisficing planning that is
well integrated in FD. We also use LAMA’s first iteration as
a baseline on a fully grounded task, with runtime and mem-
ory limits for the entire process of 30 minutes and 4GB. All
other methods perform incremental grounding using their re-
spective priority function. We allowed for a total of 5 hours
and 4GB for the incremental grounding, while restricting the
search part to only 10 minutes per iteration to keep the over-
all runtime of the experiments manageable.

We show coverage, i. e., number of instances solved, in

Table 1, with the time and memory limits mentioned in the
previous subsection. The left part of the table considers in-
stances as solved when the overall incremental grounding
process (including finding a plan) finished within 30 min.
In the right part, we approximate the results that could be
achieved with a perfect stopping condition by considering
an instance as solved if the last iteration, i. e., the successful
grounding and search, finished within 30 min.

The baseline (Base) can still fully ground most instances
except in Caldera and TPP, but fails to solve most of the large
instances with up to 9 million operators. We scaled instances
in this way so that a comparison of the number of grounded
operators to the baseline is possible; further scaling would
make full grounding impossible.

The table nicely shows that the incremental grounding
approach, where several iterations of partial grounding and
search are performed (remember that we only allow 10min
for the search), significantly outperforms the baseline, even
when considering an overall time limit of 30min. In fact,
all instances in Blocksworld can be solved in less than 10s
by LOGR. This illustrates the power of our approach when
the learned model captures the important features of a do-
main. The static orderings typically perform worse than the
baseline, only the novelty-based ordering can solve more in-
stances in Blocksworld, and in Caldera when using RR.

The plots in Figure 3 shed further light on the number of
operators when (leftmost two columns) the goal is relaxed
reachable in the first iteration and (rightmost two columns)
the number of operators needed to actually solve the task.
Each data point corresponds to a planning instance, with the
number of ground actions of a fully grounded task on the x-
axis. The y-axis shows the number of grounded actions for
several priority functions, including FIFO (LIFO in TPP),
novelty, the learned model that has the highest reduction on
the number of grounded actions, and Aleph.

In general, the models capture the features of most do-
mains quite accurately, leading to a substantial reduction in
the size of the grounded task, and still being able to find

#
op

er
at

or
s

go
al

re
la

xe
d

re
ac

ha
bl

e

103 104 105 106 107

103

104

105

106

107

AgricolaFIFO
Nov

RR-Nov
LOGR

RR-LOGR
Aleph

RR-Aleph

101 102 103 104 105 106

101

102

103

104

105

106

BlocksworldFIFO
Nov

RR-Nov
LOGR

RR-LOGR
Aleph

RR-Aleph

#
op

er
at

or
s

go
al

re
la

xe
d

re
ac

ha
bl

e

102 103 104 105 106 107

102

103

104

105

106

107

CalderaFIFO
Nov

RR-Nov
LOGR

RR-LOGR
Aleph

RR-Aleph

102 103 104 105 106

102

103

104

105

106

DepotsFIFO
Nov

RR-Nov
LINR

RR-LINR
Aleph

RR-Aleph

#
op

er
at

or
s

go
al

re
la

xe
d

re
ac

ha
bl

e

101 102 103 104 105 106 107
101

102

103

104

105

106

107

operators in fully grounded task

SatelliteFIFO
Nov

RR-Nov
KRN

RR-KRN
Aleph

RR-Aleph

101 102 103 104 105 106 107

101

102

103

104

105

106

107

operators in fully grounded task

TPPLIFO
Nov

RR-Nov
SVR

RR-SVR
Aleph

RR-Aleph
#

op
er

at
or

s
ta

sk
so

lv
ed

103 104 105 106

103

104

105

106

AgricolaFIFO
Nov

RR-Nov
LOGR

RR-LOGR
Aleph

RR-Aleph

101 102 103 104 105 106

101

102

103

104

105

BlocksworldFIFO
Nov

RR-Nov
LOGR

RR-LOGR
Aleph

RR-Aleph

#
op

er
at

or
s

ta
sk

so
lv

ed

103 104 105 106 107

103

104

105

106

107

CalderaFIFO
Nov

RR-Nov
LOGR

RR-LOGR
Aleph

RR-Aleph

102 103 104 105 106

102

103

104

105

DepotsFIFO
Nov

RR-Nov
LINR

RR-LINR
Aleph

RR-Aleph

#
op

er
at

or
s

ta
sk

so
lv

ed

101 102 103 104 105 106 107
101

102

103

104

105

106

107

operators in fully grounded task

SatelliteFIFO
Nov

RR-Nov
KRN

RR-KRN
Aleph

RR-Aleph

101 102 103 104 105 106

101

102

103

104

105

106

operators in fully grounded task

TPPLIFO
Nov

RR-Nov
SVR

RR-SVR
Aleph

RR-Aleph

Figure 3: The scatter plots show the number of operators of a fully grounded task on the x-axis. The y-axis shows the number
of operators that are needed to make the goal reachable in the grounding (leftmost two columns), and the number of operators
that are needed to solve the task (rightmost two columns), for several priority functions.

a solution. The plots show that our models obtain a very
strong reduction of the number of operators in the partially
grounded task in Agricola, Blocksworld, and Caldera; some
reduction (one order of magnitude) in Depots, and Satellite,
and a small reduction in TPP. In terms of the size of the
partially grounded tasks, different learning models perform
best in different domains, and there is not a clear winner. In
comparison, the baselines FIFO, LIFO, and Random do not
significantly reduce the size of the grounded task in most
cases, with a few exceptions like LIFO in TPP and FIFO
in Caldera. The novelty criterion is often the best method
among those without learning.

Grounding a delete-relaxed reachable task with less oper-
ators is often beneficial, but may be detrimental for the cov-
erage if the task is unsolvable, as happens for the Novelty
method in Agricola or the LIFO method in TPP. This also
explains why the learning models with highest reductions
in some domains (e.g. LOGR in Agricola) are not always
the same as the ones with highest coverage. The RR queue
mechanism often grounds more operators before reaching
the delete-relaxed goal but this makes the first iteration solv-
able more often leading to more stable results. The excep-
tion is Aleph, where RR has the opposite effect, making the
partially grounded tasks unsolvable.

Related Work
Some approaches in the literature try to alleviate the ground-
ing problem, e. g. by avoiding grounding facts and opera-
tors unreachable from the initial state (Helmert 2009), refor-
mulating the PDDL description by splitting action schemas
with many parameters (Areces et al. 2014), or using sym-
metries to avoid redundant work during the grounding pro-
cess (Röger, Sievers, and Katz 2018).

Lifted planning approaches that skip grounding en-
tirely (Penberthy and Weld 1992) have lost popularity due
to the advantages of grounding to speed-up the search and
allow for more informative heuristics which are not easy
to compute in a lifted level. Ridder and Fox (2014) (2014)
adapted the delete-relaxation heuristic (Hoffmann and Nebel
2001a) to the lifted level. This is related to our par-
tial grounding approach since their relaxed plan extraction
mechanism can be used to obtain a grounded task where the
goal is relaxed reachable, and it could be used to enhance
the novelty and learning priority functions that we use here.

There are many approaches to eliminate irrelevant facts
and operators from grounded tasks (Nebel, Dimopoulos,
and Koehler 1997; Hoffmann and Nebel 2001b; Haslum,
Helmert, and Jonsson 2013; Torralba and Kissmann 2015).
The closest to our approach is under-approximation refine-

ment (Heusner et al. 2014), which also performs search with
a subset of operators. However, all these techniques use in-
formation from the fully grounded representation to decide
on the subset of relevant operators, so are not directly appli-
cable in our setting. The results of our learning models (see
Figure 2) show that applying learning to identify irrelevant
operators is a promising avenue for future research.

Conclusion
In this paper, we proposed an approach to partial ground-
ing of planning tasks, to deal with tasks that cannot be fully
grounded under the available time and memory resources.
Our algorithm heuristically guides the grounding process
giving preference to operators that are deemed most rele-
vant for solving the task. To determine which operators are
relevant, we train different machine learning models using
optimal plans from small instances of the same domain. We
consider two approaches, a direct application of relational
decision trees, and using relational features with standard
classification and regression algorithms. The empirical re-
sults show the effectiveness of the approach. In most do-
mains, the learned models are able to identify which oper-
ators are relevant with high accuracy, helping to reduce the
number of grounded operators by several orders of magni-
tude, and greatly increasing coverage in large instances.

Acknowledgments This work was supported by the bi-
lateral project of the German Academic Exchange Ser-
vice (DAAD) and the Argentinian Ministry of Science,
Technology, and Productive Innovation (MinCyT) number
DA/16/01 “Optimizing Planning Domains”. Daniel Gnad
was partially supported by the German Research Founda-
tion (DFG), under grant Nr. HO 2169/6-1, “Star-Topology
Decoupled State Space Search”.

References
Areces, C.; Bustos, F.; Dominguez, M.; and Hoffmann, J. 2014.
Optimizing planning domains by automatic action schema split-
ting. In Proc. ICAPS’14.
Bäckström, C., and Nebel, B. 1995. Complexity results for SAS+

planning. Computational Intelligence 11(4):625–655.
Blum, A. L., and Furst, M. L. 1997. Fast planning through planning
graph analysis. Artificial Intelligence 90(1–2):279–298.
de la Rosa, T.; Celorrio, S. J.; Fuentetaja, R.; and Borrajo, D. 2011.
Scaling up heuristic planning with relational decision trees. JAIR
40:767–813.
Fikes, R. E., and Nilsson, N. 1971. STRIPS: A new approach to
the application of theorem proving to problem solving. Artificial
Intelligence 2:189–208.
Haslum, P.; Helmert, M.; and Jonsson, A. 2013. Safe, strong, and
tractable relevance analysis for planning. In Proc. ICAPS’13.
Helmert, M. 2006. The Fast Downward planning system. JAIR
26:191–246.
Helmert, M. 2009. Concise finite-domain representations for
PDDL planning tasks. Artificial Intelligence 173:503–535.
Heusner, M.; Wehrle, M.; Pommerening, F.; and Helmert, M. 2014.
Under-approximation refinement for classical planning. In Proc.
ICAPS’14.

Hoffmann, J., and Nebel, B. 2001a. The FF planning system: Fast
plan generation through heuristic search. JAIR 14:253–302.
Hoffmann, J., and Nebel, B. 2001b. RIFO revisited: Detecting
relaxed irrelevance. In Proceedings of ECP’01, 325–336.
Krajnansky, M.; Buffet, O.; Hoffmann, J.; and Fern, A. 2014.
Learning pruning rules for heuristic search planning. In Proceed-
ings of ECAI’14, 483–488.
Kramer, S.; Lavrač, N.; and Flach, P. 2001. Propositionalization
approaches to relational data mining. In Relational data mining.
Springer. 262–291.
Lang, T., and Toussaint, M. 2009. Relevance grounding for plan-
ning in relational domains. In Proceedings of ECML’09, 736–751.
Lipovetzky, N., and Geffner, H. 2012. Width and serialization of
classical planning problems. In Proceedings of ECAI’12, 540–545.
Lipovetzky, N., and Geffner, H. 2017. A polynomial planning
algorithm that beats LAMA and FF. In Proc. ICAPS’17, 195–199.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram, A.;
Veloso, M.; Weld, D.; and Wilkins, D. 1998. The PDDL Planning
Domain Definition Language. The AIPS-98 Planning Competition
Comitee.
Miller, D.; Alford, R.; Applebaum, A.; Foster, H.; Little, C.; and
Strom, B. 2018. Automated adversary emulation: A case for plan-
ning and acting with unknowns.
Muggleton, S., and Raedt, L. D. 1994. Inductive logic program-
ming: Theory and methods. JLP 19/20:629–679.
Nebel, B.; Dimopoulos, Y.; and Koehler, J. 1997. Ignoring irrel-
evant facts and operators in plan generation. In Proceedings of
ECP’97, 338–350.
Pednault, E. P. 1989. ADL: Exploring the middle ground between
STRIPS and the situation calculus. In Proc. of KR’89, 324–331.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion,
B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg,
V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot,
M.; and Duchesnay, E. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research 12:2825–2830.
Penberthy, J. S., and Weld, D. S. 1992. UCPOP: A sound, com-
plete, partial order planner for ADL. In Nebel, B.; Swartout, W.;
and Rich, C., eds., Principles of Knowledge Representation and
Reasoning: Proceedings of the 3rd International Conference (KR-
92), 103–114. Cambridge, MA: Morgan Kaufmann.
Richter, S., and Westphal, M. 2010. The LAMA planner: Guiding
cost-based anytime planning with landmarks. JAIR 39:127–177.
Richter, S.; Westphal, M.; and Helmert, M. 2011. LAMA 2008 and
2011 (planner abstract). In IPC 2011 planner abstracts, 50–54.
Ridder, B., and Fox, M. 2014. Heuristic evaluation based on lifted
relaxed planning graphs. In Proc. ICAPS’14, 244–252.
Röger, G.; Sievers, S.; and Katz, M. 2018. Symmetry-based
task reduction for relaxed reachability analysis. In Proceedings
of ICAPS’18, 208–217.
Srinivasan, A. 1999. The Aleph manual.

Torralba, Á., and Kissmann, P. 2015. Focusing on what really
matters: Irrelevance pruning in merge-and-shrink. In Proceedings
of SOCS’15, 122–130.
Torralba, Á.; Alcázar, V.; Kissmann, P.; and Edelkamp, S. 2017.
Efficient symbolic search for cost-optimal planning. Artificial In-
telligence 242:52–79.
Yoon, S. W.; Fern, A.; and Givan, R. 2008. Learning control knowl-
edge for forward search planning. Journal of Machine Learning
Research 9:683–718.

