Programming In Java: lecture 10

= Recursion
= Why?
= How?
= Examples
= Example

Slides made for use with "Introduction to Programming Using Java, Version 5.0” by David J. Eck
Some figures are taken from "Introduction to Programming Using Java, Version 5.0” by David J. Eck
Lecture 10 covers Section 9.1 1

@ @ Except where otherwise noted, this work is licensed under
http://creativecommons.org/licenses/by-sa/3.0

= Defining something by itself
= usually a bad idea

= Defining something partially by itself
= a very powerful technique

= Calling a method from itself
= can be done indirectly

= Base cases
= Splitting the problem into smaller problems
= The problem of infinite recursion

Binary Search

= Why?
= Liniear search

= 1000 items, max 1000 comparisons
= 1000000 items, max 1000000 comparisons
= Binary search

= 1000 items, 10 comparisons
= 1000000 items, 20 comparisons
= Data must be sorted

* Searches the array A for the integer N.

* Precondition: A must be sorted into increasing order.

* Postcondition: If N is in the array, then the return value, 1,
* satisfies A[i] == N. If N is nmot in the array, then the

* return value is -—1.

*

static int binarySearch(int[] A, int N) {

int lowestPossiblelLoc = 0;
int highestPossibleloc = A.length - 1;

while (highestPossiblelLoc >= lowestPossiblelLoc) {
int middle = (lowestPossiblelLoc + highestPossiblelLoc) / 2;
if (A[middle] == N) {
S/ N has been found at this index!
return middle;
*
else if (A[middle] > N) {
/Y eliminate locations »>= middle
highestPossibleloc = middle — 1;

¥
else {
// eliminate locations <= middle
lowestPossiblelLoc = middle + 1 ;

¥
}
/4 At this point, highestPossibleLoc < LowestPossibleloc,
// which means that N is known to be nmot in the array. Return

/Y a -1 to indicate that N could not be found in the array.

return —1;

Recursive Binary Search

static int binarySearch(int[] A, int loIndex, int hiIndex, int wvalue) {

if (loIndex > hiIndex) {
// The starting position comes after the final index,
// so there are actually no elements in the specified

// range. The value does not occur in this empty list!
return -1;
+
else {
// Look at the middle position in the list. If the
// walue occurs at that position, return that position.
// Otherwise, search recursively in either the first
// half or the second half of the list.
int middle = (loIndex + hiIndex) / 2;
if (value == Almiddle])
return middle;
else if (value < A[middlel)
return binarySearch(A, loIndex, middle - 1, value);
else // wvalue must be > A[middle]
return binarySearch(A, middle + 1, hiIndex, value);
+

} // end binarySearch()

Towers of Hanoi

=taclks O Stacke 1 ~tack -
e
L
L L]
L .
L] . :E]

The stacks afier a rmurmber of moves. 7

Algorithm

/%
* Solwve the problem of moving the number of disks specified
* by the first parameter from the stack specified by the

* second parameter to the stack specified by the third
* parameter. The stack specified by the fourth parameter
* is avallable for use as a spare. ©Stacks are specified by
* number: 0, 1, or 2.
*/
static void TowersOfHanoi(int disks, int from, int to, int spare) {
if (disks == 1) {
// There is only one disk to be moved. Just move it.
System.out.println('"Move a disk from stack number "
+ from + " to stack number " + to);
+
else {
/Y Move all but one disk to the spare stack, then
// move the bottom disk, then put all the other
// disks on top of it.
TowersOfHanoi(disks-1, from, spare, to);
System.out.println("Move a disk from stack number "
+ from + " to stack number " + to);
TowersOfHanoi(disks-1, spare, to, from);
+

Move
Move

Mowve
Mowve
Mowve
Mowve
Mowve
Mowve
Mowve
Mowve
Move
Move
Move
Move
Mowve

AR R PP R PR PR R YRR PR

disk
disk
disk
disk
disk
disk
disk
disk
disk
disk
disk
disk
disk
disk
disk

from
from
from
from
from
from
from
from
from
from
from
from
from
from
from

stack
stack
stack
stack
stack
stack
stack
stack
stack
stack
stack
stack
stack
stack
stack

number
number
number
number
number
number
number
number
number
number
number
number
number
number
number

o T T e T e T Y e T % T o T Y Y Y e T % T B

to
to
to
to
to
to
to
to
to
to
To
to
to
to
to

stack
stack
stack
stack
stack
stack
stack
stack
stack
stack
stack
stack
stack
stack
stack

number
number
number
number
number
number
number
number
number
number
number
number
number
number
number

P H N, O, 2RO KRR

Toapply QuicksortStep to a hist of numbers, select one of the
numbers, 23 m this case. Arrange the numbers so that numbers less
than 23 lie to its left and numbers greater than 23 lie to its right.

23 10 7 45 16 86 56 2 31 18

18 12 7 2 16 23 86 56 31 45

To finish sorting the list, sort the numbers to the left of 23,
and sort the numbers to the right of 23, The nuber 23 itself is
already m 1ts final position and doesn't have to be moved agamn

Quicksort

/**

* Apply quicksort to put the array elements between

* position lo and position hi into increasing order.

*/

static void quicksort(int[] A, int lo, int hi) {

if (hi <=1o) {
// The list has length one or zero. Nothing needs
// to be done, so just return from the subroutine.
return;

}

else {

/I Apply quicksortStep and get the new pivot position.

// Then apply quicksort to sort the items that
I/ precede the pivot and the items that follow it.
int pivotPosition = quicksortStep(A, lo, hi);
quicksort(A, lo, pivotPosition - 1);
quicksort(A, pivotPosition + 1, hi);
}
}

11

Quicksort step

static int quicksortStep(int[] A, int lo, int hi) {
int pivot = A[lo]; // Get the pivot value.

while (hi > lo) {
while (hi > lo && A[hi] > pivot) {
hi--;
}
if (hi == lo)
break;
Allo] = Afhi];
lo++:
while (hi > lo && A[lo] < pivot) {
lo++:
}
if (hi == lo)
break;
A[hi] = AJlo];
hi--;
} I/ end while
Allo] = pivot;
return lo;

12
} I/ end QuicksortStep

o
=
=
=
=
O
O
0
>
00

13

11) contains 41 squares,

Elok ar (4,

Count the Elobs

407 il

Mew Elobs

int getBlobSize(int r, int c) { // BUGGY, INCORRECT VERSION!!
// This INCORRECT method tries to count all the filled
// squares that can be reached from position (r,c) in the grid
if (r <0 [l r>rows || ¢ <0 || ¢ > columns) {
// This position is not in the grid, so there is
// no blob at this position. Return a blob size of zero.
return O;
}
if (filled[r][c] == false) {
// This square is not part of a blob, so return zero.
return 0;
}
int size = 1; // Count the square at this position, then count tl
// the blobs that are connected to this square
// horizontally or vertically.
size += getBlobSize(r-1,c);
size += getBlobSize(r+1,c);
size += getBlobSize(r,c-1);
size += getBlobSize(r,c+1);
return size;
} // end INCORRECT getBlobSize()

Infinite recursion

= StackOverflowError

15

int getBlobSize(int r, int c) {
if (r < 0|l r>=rows || ¢ <0 || ¢ >= columns) {
// This position is not in the grid, so there is
// no blob at this position. Return a blob size of zero.
return 0;

}
if (filled[r] [c] == false [/ wisited[r][c] == true) {
// This square is not part of a blob, or else it has
// already been counted, so return zero.
return 0O;
}
visited[r] [c] = true; // Mark the square as visited so that
s we won’t count it again during the
V4 following recursive calls.
int size = 1; // Count the square at this position, then count the

// the blobs that are connected to this square
// horizontally or vertically.

size += getBlobSize(r-1,c);

size += getBlobSize(r+1,c);

size += getBlobSize(r,c-1);

size += getBlobSize(r,c+1);

return size;

} // end getBlobSize()

void countBleobs () {
int count = 0; // Humber of blobs.

/* First clear out the visited array. The getBlobSize() method
Wwill mark every filled square that it finds by setting the

corresponding element of the array to true. Once a square
has been marked as wvisited, it will stay marked until all the
blobs have been counted. This will prevent the same blob from

being counted more than once. */

for (imt r = 0; T < rows;: T++)
for (int ¢ = 0:; ¢ < columns; c++)
visited[r] [c]l = false;

/* For each position in the grid, call getBlobSize() to get the
size of the bleb at that position. If the size is not zero,
count a blob. Note that if we come to a position that was part
of a previously counted bleb, getBlobSize() will return 0 and
the blob will not be counted again. =*/

for (int r = 0; T < rows; r++)
for (int ¢ = 0; ¢ < columns; c++) {
if (getBlebSizel(r.,c) > 0)
count++;

¥
repaint() ; // Note that all the filled squares will be red,
£ since they have all now been visited.
message .setText (" The number of blobs is " + count);

¥ // end countBlobs ()

= Team programming

18

	Dias 1
	Dias 2
	Dias 3
	Dias 4
	Dias 5
	Dias 6
	Dias 7
	Dias 8
	Dias 9
	Dias 10
	Dias 11
	Dias 12
	Dias 13
	Dias 14
	Dias 15
	Dias 16
	Dias 17
	Dias 18

