Programming In Java: lecture 10

= Recursion
= Why?
= How?
= Examples
= Example
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= Defining something by itself
= usually a bad idea

= Defining something partially by itself
= a very powerful technique

= Calling a method from itself
= can be done indirectly



= Base cases
= Splitting the problem into smaller problems
= The problem of infinite recursion



Binary Search

= Why?
= Liniear search

= 1000 items, max 1000 comparisons
= 1000000 items, max 1000000 comparisons
= Binary search

= 1000 items, 10 comparisons
= 1000000 items, 20 comparisons
= Data must be sorted



* Searches the array A for the integer N.

* Precondition: A must be sorted into increasing order.

* Postcondition: If N is in the array, then the return value, 1,
* satisfies A[i] == N. If N is nmot in the array, then the

* return value is -—1.

*

static int binarySearch(int[] A, int N) {

int lowestPossiblelLoc = 0;
int highestPossibleloc = A.length - 1;

while (highestPossiblelLoc >= lowestPossiblelLoc) {
int middle = (lowestPossiblelLoc + highestPossiblelLoc) / 2;
if (A[middle] == N) {
S/ N has been found at this index!
return middle;
*
else if (A[middle] > N) {
/Y eliminate locations »>= middle
highestPossibleloc = middle — 1;

¥
else {
// eliminate locations <= middle
lowestPossiblelLoc = middle + 1 ;

¥
}
/4 At this point, highestPossibleLoc < LowestPossibleloc,
// which means that N is known to be nmot in the array. Return

/Y a -1 to indicate that N could not be found in the array.

return —1;



Recursive Binary Search

static int binarySearch(int[] A, int loIndex, int hiIndex, int wvalue) {

if (loIndex > hiIndex) {
// The starting position comes after the final index,
// so there are actually no elements in the specified

// range. The value does not occur in this empty list!
return -1;
+
else {
// Look at the middle position in the list. If the
// walue occurs at that position, return that position.
// Otherwise, search recursively in either the first
// half or the second half of the list.
int middle = (loIndex + hiIndex) / 2;
if (value == Almiddle])
return middle;
else if (value < A[middlel)
return binarySearch(A, loIndex, middle - 1, value);
else // wvalue must be > A[middle]
return binarySearch(A, middle + 1, hiIndex, value);
+

} // end binarySearch()



Towers of Hanoi
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Algorithm

/%
* Solwve the problem of moving the number of disks specified
* by the first parameter from the stack specified by the

* second parameter to the stack specified by the third
* parameter. The stack specified by the fourth parameter
* is avallable for use as a spare. ©Stacks are specified by
* number: 0, 1, or 2.
*/
static void TowersOfHanoi(int disks, int from, int to, int spare) {
if (disks == 1) {
// There is only one disk to be moved. Just move it.
System.out.println('"Move a disk from stack number "
+ from + " to stack number " + to);
+
else {
/Y Move all but one disk to the spare stack, then
// move the bottom disk, then put all the other
// disks on top of it.
TowersOfHanoi(disks-1, from, spare, to);
System.out.println("Move a disk from stack number "
+ from + " to stack number " + to);
TowersOfHanoi(disks-1, spare, to, from);
+
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Toapply QuicksortStep to a hist of numbers, select one of the
numbers, 23 m this case. Arrange the numbers so that numbers less
than 23 lie to its left and numbers greater than 23 lie to its right.

23 10 7 45 16 86 56 2 31 18

18 12 7 2 16 23 86 56 31 45

To finish sorting the list, sort the numbers to the left of 23,
and sort the numbers to the right of 23, The nuber 23 itself is
already m 1ts final position and doesn't have to be moved agamn



Quicksort

/**

* Apply quicksort to put the array elements between

* position lo and position hi into increasing order.

*/

static void quicksort(int[] A, int lo, int hi) {

if (hi <=1o) {
// The list has length one or zero. Nothing needs
// to be done, so just return from the subroutine.
return;

}

else {

/I Apply quicksortStep and get the new pivot position.

// Then apply quicksort to sort the items that
I/ precede the pivot and the items that follow it.
int pivotPosition = quicksortStep(A, lo, hi);
quicksort(A, lo, pivotPosition - 1);
quicksort(A, pivotPosition + 1, hi);
}
}

11



Quicksort step

static int quicksortStep(int[] A, int lo, int hi) {
int pivot = A[lo]; // Get the pivot value.

while (hi > lo) {
while (hi > lo && A[hi] > pivot) {
hi--;
}
if (hi == lo)
break;
Allo] = Afhi];
lo++:
while (hi > lo && A[lo] < pivot) {
lo++:
}
if (hi == lo)
break;
A[hi] = AJlo];
hi--;
} I/ end while
Allo] = pivot;
return lo;

12
} I/ end QuicksortStep
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int getBlobSize(int r, int c) { // BUGGY, INCORRECT VERSION!!
// This INCORRECT method tries to count all the filled
// squares that can be reached from position (r,c) in the grid
if (r <0 [l r>rows || ¢ <0 || ¢ > columns) {
// This position is not in the grid, so there is
// no blob at this position. Return a blob size of zero.
return O;
}
if (filled[r][c] == false) {
// This square is not part of a blob, so return zero.
return 0;
}
int size = 1; // Count the square at this position, then count tl
//  the blobs that are connected to this square
//  horizontally or vertically.
size += getBlobSize(r-1,c);
size += getBlobSize(r+1,c);
size += getBlobSize(r,c-1);
size += getBlobSize(r,c+1);
return size;
} // end INCORRECT getBlobSize()



Infinite recursion

= StackOverflowError

15



int getBlobSize(int r, int c) {
if (r < 0|l r>=rows || ¢ <0 || ¢ >= columns) {
// This position is not in the grid, so there is
// no blob at this position. Return a blob size of zero.
return 0;

}
if (filled[r] [c] == false [/ wisited[r][c] == true) {
// This square is not part of a blob, or else it has
// already been counted, so return zero.
return 0O;
}
visited[r] [c] = true; // Mark the square as visited so that
s we won’t count it again during the
V4 following recursive calls.
int size = 1; // Count the square at this position, then count the

//  the blobs that are connected to this square
//  horizontally or vertically.

size += getBlobSize(r-1,c);

size += getBlobSize(r+1,c);

size += getBlobSize(r,c-1);

size += getBlobSize(r,c+1);

return size;

} // end getBlobSize()



void countBleobs () {
int count = 0; // Humber of blobs.

/* First clear out the visited array. The getBlobSize() method
Wwill mark every filled square that it finds by setting the

corresponding element of the array to true. Once a square
has been marked as wvisited, it will stay marked until all the
blobs have been counted. This will prevent the same blob from

being counted more than once. */

for (imt r = 0; T < rows;: T++)
for (int ¢ = 0:; ¢ < columns; c++)
visited[r] [c]l = false;

/* For each position in the grid, call getBlobSize() to get the
size of the bleb at that position. If the size is not zero,
count a blob. Note that if we come to a position that was part
of a previously counted bleb, getBlobSize() will return 0 and
the blob will not be counted again. =*/

for (int r = 0; T < rows; r++)
for (int ¢ = 0; ¢ < columns; c++) {
if (getBlebSizel(r.,c) > 0)
count++;

¥
repaint() ; // Note that all the filled squares will be red,
£ since they have all now been visited.
message .setText (" The number of blobs is " + count);

¥ // end countBlobs ()



= Team programming

18
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