Programming in Java: lecture 4

= Exceptions and try...catch

= Overview — static vs. non static
= GUI programming — Applets

= Black Boxes

= Subroutines

= Local and Global variables

= Parameters — formal and actual
= Overloading
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= Last time: Normal flow of control

= Why do we need something different

= Handle errors somewhere else then where they
happen

= Exception — the exception is an Object
= {ry...catch statements



try...catch

= Formal syntax

try |
(statements-1)

}

catch ( (exception-class-name) (variable-name) ) {
(statements-2)

}



try...catch

= Example

try {
double x:
x = Double.parseDouble(str) ;
System.out.println( "The number is " + x );

}

catch ( NumberFormatException e ) {
System.out.println( "Not a legal number." );

}



Day weekday; // User's response as a value of type Day.
while ( true ) {

String response; // User’s response as a String.
TextIO.put("Please enter a day of the week: ");
response = TextI0.getln();

response = response.toUpperCase();

try {
weekday = Day.valueOf (response);
break;

}

catch ( IllegalArgumentException e ) {
TextI0.putln( response + " is not the name of a day of the week." );

}



Exceptions in TextlO

= When reading user input TextlO handles error
itself

= When reading from a file, this is not possible.
= Thus is throws an error that you have to catch.
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Static vs. non-static
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Math vs. String

= Static memebers

= Math.rand()
= Integer.parselnt(“45”)

= Non-static members

= s1 = "Dette bliver et object”
= s1.equals(“hej’)
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Example: Integer

= Class vs. Object

Integer Class
static members
parselnt(String s)

Integer Object
non-static member
equals(int i)
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GUI programming

= GUI = Graphical User Interface
= Applets

= Making an applet class
= When running the applet class an object is created

= Regular programs — as in previous lectures
= public static void main(String[] args) {...

= Applets
= public void paint(Graphics g) {...

12



= Import — packages

= extends

import java.awt.*;
import java.applet.¥*,

public class (name-of-applet) extends Applet {

public void paint(Graphics g) {
(statements)

}

13



= Java.awt vs. javax.swing
= Applet vs. Japplet

= Methods on Graphics obejct

= g.setColor(c)
= c is of type enum Color: ex Color.RED, Color.BLUE
= g.drawRect(x,y,w,h)

= g.fillRect(x,y,w,h)
= Draws rectangles
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import java.awtb.*;
import java.applet.Applet;

public class StaticRects extends Applet {

public void paint(Graphics g) {

+

// Draw a set of nested black rectangles on a red background.
// Each nested rectangle is separated by 15 pixels on
// all sides from the rectangle that encloses it.

int inset; // Gap between borders of applet
iy and one of the rectangles.
int rectWidth, rectHeight; // The size of one of the rectangles.

g.setColor (Color.red);
g.fil11Rect(0,0,300,160); // Fill the entire applet with red.

g.setColor (Color.black); // Draw the rectangles in black.
inset = 0;

rectWidth = 299; // Set size of first rect to size of applet.
rectHeight = 1595;

while (rectWidth >= 0 && rectHeight >= 0) {
g.drawRect(inset, inset, rectWidth, rectHeight) ;

inset += 15; // Rects are 15 pixels apart.
rectWidth -= 30; // Width decreases by 15 pixels

s on left and 15 on right.
rectHeight —-= 30; // Height decreases by 15 pixels

s on top and 15 on bottom.

¥

// end paint() 15

Y // end class StaticRects



= Extend SimpleAnimationApplet2
= implement drawFrame() method
= use this.getFrameNumer() in some way
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Black Boxes

= Why?
= Hiding details and complexity

= Well defined interface

= You should not know how it is implemented
= Implementation can e changed later

= The black box should not know how it will be
used later

= It can be used in many unexpected ways
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= Interface and description can be seen as a
contract

= Read the description
= fillRect(x,y,h,w)
« Not fillRect(x1,y1,x2,y2)
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Static subroutines and variables

= Subroutine definition

= modifiers — static and public, private, protected
= return-type — void or typename

= parameter-list — next slide

(modifiers) (return-type) (subroutine-name) ( (parameter-list) ) {
(statements)

}

public static void main(Stringl] args) { ... }
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Calling subroutines

* |Inside the class
= playGame()
= Qutside the class

= Poker.playGame()
= Integer.parselnt(“33”)

(subroutine-name)((parameters)) ;

{class-name). (subroutine-name)((parameters)) ;
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Subroutines In programs

= Split problem into smaller parts
= Use the same subroutine in several places

= Simple main loop

public class GuessingGame {

public static void main(String[] args) {
TextI0.putln("Let’s play a game. I’1l pick a number between");

TextIO.putln("1 and 100, and you try to guess it.");

boolean playAgain;

do {
playGame(); // call subroutine to play one game

TextIOD.put("Would you like to play again? ");
playAgain = TextIO0.getlnBoolean();
} while (playAgain);
TextIO.putln("Thanks for playing. Goodbye.");
} // end of main()
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Member variables

= We only look at static member variables
= for now

= These belong to the class not the individual
object

= Example PI, which is also final

Math Class
static members
Math.PI
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Static member variables

= Static does not mean final
= Local variables in subroutines
= Global variables in classes

= can be public or private
static String usersllame;

public static int number(fPlayers;
private static double velocity, time;
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Parameters

= You have called lost of methods with
parameters

= These are called actual parameters
= Formal parameters

= The one you write when you define a subroutine,
that others can call

= Actual parameters are substituted for the formal
ones
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Parameters

= Formal parameters

= only declared once

static void print3NSequence(int startingValue) {

= Actual parameters

= as many times as you call the method
= print3NSequence(17);

do {
TextIO.putln("Enter a starting value;")
TextIO.put("To end the program, enter 0: ");
K = TextIO.getInt(); // Get starting value from user.
if (K> 0) // Print sequence, but only if K is > 0.
print3NSequence (K) ;
} while (K > 0); // Continue only if K > 0.
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Subroutine example

static void doTask(int N, double x, boolean test) {
// statements to perform the task go here

}

doTask(17, Math.sqrt(z+1), z >= 10);

{
int N; // Allocate memory locations for the formal parameters.
double x;
boolean test;
N =1T; // Assign 17 to the first formal parameter, N.
X = Math.sqrt(z+1); // Compute Math.sqrt(z+1), and assign it to
!/ the second formal parameter, x.
test = (z >= 10); // Evaluate "z >= 10" and assign the resulting
/ true/false value to the third formal
!/ parameter, test.

// statements to perform the task go here
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Overloading

= Many methods with the same name

= TextlO example
= putin(int)
= putlin(String)
= putin(boolean)
= No overloading on return-type
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Bad parameter values

= This is an error
= What do you do?
= Throw an exception

static void print3NSequence(int startingValue) {

if (startingValue <= 0) // The contract is violated!
throw new IllegaldrqumentEzception( "Starting value must be positive." );

. /| (The rest of the subroutine is the same as before.)
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= Leftover from lecture?2
= |f...then...else on a single line

boolean-expression) 7 (ezpressionl) : (ezpression?)

next = (W% 2==0)7 (N/2) : (3xl+1);

29



= Avoid warning
= write

= private static final long serialVersionUID = 1L
= or click error message and select

= Add default serial versionlID
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