Programming in Java: lecture 4

= Exceptions and try...catch

= Overview — static vs. non static
= GUI programming — Applets

= Black Boxes

= Subroutines

= Local and Global variables

= Parameters — formal and actual
= Overloading

Slides made for use with "Introuction to Programming Using Java, Version 5.0” by David J. Eck
Some figures are taken from ”Introuction to Programming Using Java, Version 5.0” by David J. Eck
Lecture 3 covers Section 3.7 to 3.8 and 4.1 to 4.3 1

@ @ Except where otherwise noted, this work is licensed under
http://creativecommons.org/licenses/by-sa/3.0

= Last time: Normal flow of control

= Why do we need something different

= Handle errors somewhere else then where they
happen

= Exception — the exception is an Object
= {ry...catch statements

try...catch

= Formal syntax

try |
(statements-1)

}

catch ((exception-class-name) (variable-name)) {
(statements-2)

}

try...catch

= Example

try {
double x:
x = Double.parseDouble(str) ;
System.out.println("The number is " + x);

}

catch (NumberFormatException e) {
System.out.println("Not a legal number.");

}

Day weekday; // User's response as a value of type Day.
while (true) {

String response; // User’s response as a String.
TextIO.put("Please enter a day of the week: ");
response = TextI0.getln();

response = response.toUpperCase();

try {
weekday = Day.valueOf (response);
break;

}

catch (IllegalArgumentException e) {
TextI0.putln(response + " is not the name of a day of the week.");

}

Exceptions in TextlO

= When reading user input TextlO handles error
itself

= When reading from a file, this is not possible.
= Thus is throws an error that you have to catch.

Overview

Vehicle

!

HasWheels

!

Flying Vehicle

!

Truck

Car

Plane

Helicopter

Object

Applet

MyApplet

SimpleAnimationApplet2

!

MyAnimationApplet

Static vs. non-static

MyApplet

RunningApplet

RunningApplet

MyAnimationApplet

Math vs. String

= Static memebers

= Math.rand()
= Integer.parselnt(“45”)

= Non-static members

= s1 = "Dette bliver et object”
= s1.equals(“hej’)

10

Example: Integer

= Class vs. Object

Integer Class
static members
parselnt(String s)

Integer Object
non-static member
equals(int i)

11

GUI programming

= GUI = Graphical User Interface
= Applets

= Making an applet class
= When running the applet class an object is created

= Regular programs — as in previous lectures
= public static void main(String[] args) {...

= Applets
= public void paint(Graphics g) {...

12

= Import — packages

= extends

import java.awt.*;
import java.applet.¥*,

public class (name-of-applet) extends Applet {

public void paint(Graphics g) {
(statements)

}

13

= Java.awt vs. javax.swing
= Applet vs. Japplet

= Methods on Graphics obejct

= g.setColor(c)
= c is of type enum Color: ex Color.RED, Color.BLUE
= g.drawRect(x,y,w,h)

= g.fillRect(x,y,w,h)
= Draws rectangles

14

import java.awtb.*;
import java.applet.Applet;

public class StaticRects extends Applet {

public void paint(Graphics g) {

+

// Draw a set of nested black rectangles on a red background.
// Each nested rectangle is separated by 15 pixels on
// all sides from the rectangle that encloses it.

int inset; // Gap between borders of applet
iy and one of the rectangles.
int rectWidth, rectHeight; // The size of one of the rectangles.

g.setColor (Color.red);
g.fil11Rect(0,0,300,160); // Fill the entire applet with red.

g.setColor (Color.black); // Draw the rectangles in black.
inset = 0;

rectWidth = 299; // Set size of first rect to size of applet.
rectHeight = 1595;

while (rectWidth >= 0 && rectHeight >= 0) {
g.drawRect(inset, inset, rectWidth, rectHeight) ;

inset += 15; // Rects are 15 pixels apart.
rectWidth -= 30; // Width decreases by 15 pixels

s on left and 15 on right.
rectHeight —-= 30; // Height decreases by 15 pixels

s on top and 15 on bottom.

¥

// end paint() 15

Y // end class StaticRects

= Extend SimpleAnimationApplet2
= implement drawFrame() method
= use this.getFrameNumer() in some way

16

Black Boxes

= Why?
= Hiding details and complexity

= Well defined interface

= You should not know how it is implemented
= Implementation can e changed later

= The black box should not know how it will be
used later

= It can be used in many unexpected ways

17

= Interface and description can be seen as a
contract

= Read the description
= fillRect(x,y,h,w)
« Not fillRect(x1,y1,x2,y2)

18

Static subroutines and variables

= Subroutine definition

= modifiers — static and public, private, protected
= return-type — void or typename

= parameter-list — next slide

(modifiers) (return-type) (subroutine-name) ((parameter-list)) {
(statements)

}

public static void main(Stringl] args) { ... }
19

Calling subroutines

* |Inside the class
= playGame()
= Qutside the class

= Poker.playGame()
= Integer.parselnt(“33”)

(subroutine-name)((parameters)) ;

{class-name). (subroutine-name)((parameters)) ;

20

Subroutines In programs

= Split problem into smaller parts
= Use the same subroutine in several places

= Simple main loop

public class GuessingGame {

public static void main(String[] args) {
TextI0.putln("Let’s play a game. I’1l pick a number between");

TextIO.putln("1 and 100, and you try to guess it.");

boolean playAgain;

do {
playGame(); // call subroutine to play one game

TextIOD.put("Would you like to play again? ");
playAgain = TextIO0.getlnBoolean();
} while (playAgain);
TextIO.putln("Thanks for playing. Goodbye.");
} // end of main()

21

Member variables

= We only look at static member variables
= for now

= These belong to the class not the individual
object

= Example PI, which is also final

Math Class
static members
Math.PI

22

Static member variables

= Static does not mean final
= Local variables in subroutines
= Global variables in classes

= can be public or private
static String usersllame;

public static int number(fPlayers;
private static double velocity, time;

23

Parameters

= You have called lost of methods with
parameters

= These are called actual parameters
= Formal parameters

= The one you write when you define a subroutine,
that others can call

= Actual parameters are substituted for the formal
ones

24

Parameters

= Formal parameters

= only declared once

static void print3NSequence(int startingValue) {

= Actual parameters

= as many times as you call the method
= print3NSequence(17);

do {
TextIO.putln("Enter a starting value;")
TextIO.put("To end the program, enter 0: ");
K = TextIO.getInt(); // Get starting value from user.
if (K> 0) // Print sequence, but only if K is > 0.
print3NSequence (K) ;
} while (K > 0); // Continue only if K > 0.

25

Subroutine example

static void doTask(int N, double x, boolean test) {
// statements to perform the task go here

}

doTask(17, Math.sqrt(z+1), z >= 10);

{
int N; // Allocate memory locations for the formal parameters.
double x;
boolean test;
N =1T; // Assign 17 to the first formal parameter, N.
X = Math.sqrt(z+1); // Compute Math.sqrt(z+1), and assign it to
!/ the second formal parameter, x.
test = (z >= 10); // Evaluate "z >= 10" and assign the resulting
/ true/false value to the third formal
!/ parameter, test.

// statements to perform the task go here
} 26

Overloading

= Many methods with the same name

= TextlO example
= putin(int)
= putlin(String)
= putin(boolean)
= No overloading on return-type

27

Bad parameter values

= This is an error
= What do you do?
= Throw an exception

static void print3NSequence(int startingValue) {

if (startingValue <= 0) // The contract is violated!
throw new IllegaldrqumentEzception("Starting value must be positive.");

. /| (The rest of the subroutine is the same as before.)

28

= Leftover from lecture?2
= |f...then...else on a single line

boolean-expression) 7 (ezpressionl) : (ezpression?)

next = (W% 2==0)7 (N/2) : (3xl+1);

29

= Avoid warning
= write

= private static final long serialVersionUID = 1L
= or click error message and select

= Add default serial versionlID

30

