
GROUP SW604F12

BACHELOR PROJECT

Oasis: Part of the GIRAF System

Authors:
Henrik KLARUP

Jens Mohr MORTENSEN

Dan Stenholt MØLLER

Supervisor:
Ulrik NYMAN

Spring Semester 2012

Department of Computer Science
Aalborg University
Selma Lagerlöfs Vej 300
DK-9220 Aalborg Øst
Telephone +45 9940 9940
Telefax +45 9940 9798
http://cs.aau.dk

Title: Oasis: Part of the GIRAF System
Subject: Application Development
Semester: Spring Semester 2012
Project group: sw604f12

Participants:

Henrik Klarup

Jens Mohr Mortensen

Dan Stenholt Møller

Supervisor:
Ulrik Nyman

Number of copies: 5

Number of pages: 68

Number of appendices: 48 pages

Completed: June 3, 2012

Synopsis:
Oasis is an administration module for
the GIRAF system. The GIRAF system
is designed to ease the daily routine for
guardians of children with ASD.
Oasis will provide tools for the develop-
ment of applications for the GIRAF plat-
form. Oasis consists of three parts; a
database used to store information, a li-
brary that supplies an API, and an ad-
ministration application. We tested the
functionality of Oasis, using unit testing
and a usability test.

The Oasis tools are used in the develop-

ment of various applications for the GI-

RAF platform. Even though we released

a working version of Oasis, the tools are

still open for further development.

The content of this report is freely accessible. Publication (with source reference) can only happen

with the acknowledgment from the authors of this report.

Resume

Oasis is an administration module for the GIRAF system. The GIRAF system is
developed as part of a multi project. The multi project is a continuation of a
previous multi project by a group of 6th semester Software students at Aalborg
University.

Besides Oasis, other groups have developed modules for the GIRAF system.
These includes; Launcher, WOMBAT, PARROT, and Savannah. Oasis have re-
ceived requirements from different multi project groups. These requirements
specifies how the Oasis module is structured.

Oasis consists of three parts; a database, a library, and a Oasis administra-
tion app. The database part of Oasis is called Oasis Local Db. The Oasis Local
Db is used for storing the data, which is used by GIRAF applications. The li-
brary of Oasis is called Oasis Lib. The Oasis Lib is the library, which works as a
connection between the Oasis Local Db and GIRAF applications. The admin-
istration application is called Oasis App. The Oasis App demonstrates some of
the utilities the Oasis Lib offers.

To ensure the correctness of the Oasis Lib we enforced dynamic white box
testing through unit tests. The unit tests are created in order to test the Oasis
Lib and the Oasis Local Db. It is only the normal operation of the Oasis Lib and
Oasis Local Db that has been tested. The usability of the Oasis App has been
tested and the result of the test have been documented.

The Oasis tools are used in the development of various applications for the
GIRAF platform. Although we released a fully functional version of Oasis, there
still exists some requirements Oasis does not fulfill. These requirements gives
the opportunity for further development.

Preface

This report was written as a 6th semester bachelor project by Software group
sw604f12 from the Department of Computer Science at Aalborg University in
the spring of 2012. The report will document the process of developing an ad-
ministration module for the GIRAF system. The GIRAF system is designed to
support guardians of children with autism spectrum disorder.

When references are used in the report they will be referred to in the format
[abc] with a corresponding entry in the bibliography (located in the back of
the report). For larger works a range of relevant pages will also be specified in
the format [Abc, pp10]. Figures, tables and equations will be referred to in the
format [2.1], where the first number refers to the chapter in which it is placed
and the second number is the actual number of the figure, table or equation.

The reader is expected to have an understanding of basic programming
concepts.

Throughout this report the following abbreviations will be used:

• GIRAF - Name of the entire system, a title was never agreed upon, but
“Graphical Interface Resources for Assistive Functionality” was suggested.

• WOMBAT - Name of the timer application, Way Of Measuring Basic Time.

• PARROT - Name of the pictogram application, Pictogram Assisting with
Rhetoric Reasoning Or Talking.

• MVC - Model View Controller [Mic12].

• ASD - Autistic Spectrum Disorder.

I

• Guardians - Parents, teachers, caretakers, and educators of children with
ASD.

• Children - Children refers to “Children with ASD”.

• We - In the introduction, it refers to the entire multi project group. After
the common report, it refers to the individual project group.

• Eclipse - An intelligent development environment for Java.

• Metadata - Data about data.

• API - Application Programming Interface.

• GUI - Graphical User Interface

The CD-ROM included with this report contains the source code for the sys-
tem developed during this project, as well as a copy of this report.

The Oasis administration project group would like to thank the educators
whom helped developing and designing the GIRAF system, as well as our su-
pervisor for the interest and cooperation in the project.

II

Contents

I GIRAF Introduction 1

1 Introduction 3
1.1 Motivation . 3
1.2 Target Group . 4
1.3 Target Platform . 5
1.4 Development Method . 5
1.5 Problem Definition . 5
1.6 System Description . 6
1.7 Architecture . 7
1.8 Usability Test . 7

II Oasis Introduction 11

2 Initial Process 13
2.1 Problem Definition . 13
2.2 Requirements . 13
2.3 System architecture . 14

3 The Process 17
3.1 Sprints . 17

III Design and Implementation 21

4 Oasis Local Db 23

III

4.1 Database Schema . 23
4.2 Structure . 26
4.3 Implementation . 26

5 Oasis Lib 31
5.1 Structure . 31
5.2 Implementation . 33

6 Oasis App 37
6.1 Design . 37
6.2 Implementation . 39

7 Testing 45
7.1 Dynamic White Box Testing . 45
7.2 Usability Test . 55

IV Epilogue 57

8 Discussion 59
8.1 Development Method . 59
8.2 System architecture . 60

9 Conclusion 65
9.1 GIRAF Problem Definition . 65
9.2 Oasis Problem Definition . 65
9.3 Oasis . 66
9.4 Testing . 66

10 Future Work 67
10.1 Server Synchronization . 67
10.2 Unit Tests . 67
10.3 Certificates . 68
10.4 Media Table . 68
10.5 Oasis App . 68

V Appendix 69

11 Requirements from Wombat 71

12 Project Backlog 73

13 Burndown Charts and Sprint Backlogs 75

IV

14 Change Log 84
14.1 OasisLib version 0.8 . 84
14.2 OasisLib version 0.7 . 84
14.3 OasisLib version 0.6 . 84
14.4 OasisLib version 0.5 . 85
14.5 OasisLib version 0.4 . 86
14.6 OasisLib version 0.3 . 87
14.7 OasisLib version 0.2 . 90
14.8 OasisDB version 0.2 . 90
14.9 OasisLib version 0.1 . 91
14.10OasisLocalDB version 0.1 . 92

15 Mail correspondence with Customer 93

16 Notes from Interview 96

17 Usability Documents 98
17.1 Briefing . 100
17.2 Questionnaires from usability . 102

18 Usability Assignments 112

19 Unit Test Results 113

Bibliography 117
*

V

Part I

GIRAF Introduction

1

CHAPTER 1

Introduction

In order to describe the context of the system, we – as a multi project group
– will in the following state the motivation of the project, the group of people
we are aiming at helping, the technological platform chosen, the used devel-
opment method, followed by a problem definition, a system description and
architecture, and the conducted usability test.

1.1 Motivation

As this is a student report written as part of a learning project, we are required
to comply with the study regulation. The main areas of focus, according to
the study regulation, are: multi-project management and quality assurance
in the form of requirements analysis, requirements management, and testing.
The goal is to create a comprehensive software system, across multiple project
groups, in order to enhance our competences in analysis, design, implementa-
tion, and evaluation of software applications in regards to the system require-
ments [Uni].

This project builds on top of a previous project, and is further developed,
with the aim of having other students continue the development. The goal of
the project, we are building on top of, is to create a touch based tablet system
to support children and their guardians in everyday scenarios.

3

1.2 Target Group

Our target group is both children and their guardians. These guardians have
certain needs for special tools and gadgets that help to ease the communication
between them and the children.

Five teachers and educators, who work with children, act as customers.
They will provide requirements and information about the institutions’ way of
working to give us an insight into their daily struggles.

1.2.1 Working with Children with ASD

This section is based upon the statements of a woman with ASD [Gra02], ex-
plaining what it is like to live with ASD, and an interview with an educator at
Birken, a special kindergarten for children (see chapter 16 for interview notes).

People with ASD are often more visual in their way of thinking. Rather
than visualizing thoughts in language and text, they do it in pictures or vi-
sual demonstrations. Pictures and symbols are therefore an essential part of
the daily tools used by children and the people interacting with them. Also,
children can have difficulties expressing themselves by writing or talking, and
can often more easily use electronic devices to either type a sentence or show
pictures, to communicate with people around them. Another characteristic of
children is their perception of time. Some of them simply do not understand
phrases like “in a moment” or “soon”, they will need some kind of visual indi-
cator that shows how long time they will have to wait.

Different communication tools for children with autism already exist, but
many of them rely on a static database of pictures, and often these has to be
printed on paper in order to use them as intended. Other tools, such as hour-
glasses of different sizes and colors, are also essential when working with chil-
dren, and these tools are either brought around with the child, or a set is kept
every place the child might go, e.g. being at an institution or at home.

There exists tools today which helps the guardians in their daily life, al-
though – as stated in Drazenko’s quote – none of them are cost-effective enough
to be used throughout the institutions. From the quote, it is clear that there is a
need for a more cost-effective solution.

“The price of the existing solutions are not sufficiently low such
that we can afford to buy and use them throughout the institution.”

- Drazenko Banjak, educator at Egebakken.

4

1.3 Target Platform

Since we build upon last year’s project, we are bound to use the platform they
used, which is tablets running the Android operating system.

In this project we have been provided with five Samsung Galaxy Tab 10.1
devices[Sam]. The firmware on the tablets is version 3.2. This version, as of
project start, is the latest stable version available for these specific tablets. [Tea12a]

1.4 Development Method

As a part of the study regulation we have been required to use the same devel-
opment method in each individual group. Two methods have been considered,
XP (eXtreme Programming) [Wel09], and Scrum [All11b].

With the knowledge of both XP and Scrum, we decided in the multi project
to use Scrum of Scrums, which is the use of Scrum nested in a larger Scrum
project [All11a].

The reason for choosing Scrum of Scrums is that everyone, at all times, will
be able to know what the vision of the project is, and how close every group is
to achieving their individual goals of the vision.

Another element of the Scrum method is that a close contact with the cus-
tomers is maintained. This helps keep the product backlog up to date and cor-
rectly prioritized. The customers are presented with the vision of the project, as
well as showing the latest release when we have meetings with our customers.

We customized Scrum to fit our project. The changes are as follows:

• The sprint length have been shortened to approximately 7 - 14 half days.

• Some degree of pair programming have been introduced.

• There is no project owner because this is a learning project.

• Everyone is attending the Scrum of Scrums meetings.

• The Scrum of Scrums meetings are only held once at sprint planning.

1.5 Problem Definition

The problem statement is as follows:

How can we ease the daily life for children with ASD and their
guardians, while complying with the study regulation?

5

This problem statement is necessarily vague to allow the individual groups
some freedom in their projects, while we maintain the overall structure of the
multi project, however there are limiting factors. We are limited by resources
and time available, as we are only working on this project for a single semester.
However, all work done in this multi project will be passed on to the next line of
students, which means we can make a full system design and pass on anything
we do not have the time or resources for. This also requires that our work need
to be of such quality that it is understandable by students of the same educa-
tional level as ourselves.

1.6 System Description

GIRAF is a collection of applications, either fully or partially interdependent, for
the Android platform, designed to be used by guardians and children. GIRAF
consists of five projects with various degree of interaction. These projects are
named Launcher, PARROT, WOMBAT, Oasis, and Savannah. Each of the groups
have produced individual products, which are parts of a greater project, GIRAF.

Launcher handles execution of GIRAF apps, and at the same time it pro-
vides safety features to ensure that a user that is not authorized to interact with
the rest of the system will not be able to do so. When the launcher executes
an app, it will provide it with profile information, specifying which child is cur-
rently using the app, as well as which guardian is signed in.

PARROT is an app which provides access to pictograms – pictures with as-
sociated information such as sound and text – which can be used for commu-
nication. PARROT also gives guardians functionality for adding additional pic-
tograms, as well as organizing the pictograms into categories for ease of access,
based on the needs of the individual child.

WOMBAT is an app which purpose is to help the children to understand the
aspect of time, by visualizing it. WOMBAT provides different ways of displaying
time, as well as the possibility to configure the app for the needs of individual
children.

Oasis locally stores the data and configuration of the GIRAF platform, and
provides an API to access it. The stored data and configurations are synchro-
nized to the Savannah server, if available. In addition, an app is provided for
the guardian to access the stored data and configurations.

Savannah provides Oasis with a way to synchronize tablets running GIRAF.
Furthermore, a website is provided to ease administration of the synchronized
data.

6

1.7 Architecture

Our System architecture – shown in Figure 1.1 has been designed with simplic-
ity in mind and was greatly inspired by the MVC pattern. This means that the
architecture is divided into three layers. The lowest layer is the database where
the information is stored. Above this layer is the controller layer which, in the
GIRAF platform, is known as Oasis. The controller is responsible for querying
the database for information needed in an app and the controller is also re-
sponsible for storing information in the database. The last layer is the apps.
This division of layers give the GIRAF platform a low cohesion which makes it
easier to work with individual parts of the platform independently.

We have chosen to redesign last year’s architecture [JB11] to make it easier
to work with. We have simplified the architecture because we feel it is unnec-
essarily complex.

Launcher

Oasis Lib

Oasis Local DB

Savannah

Savannah DB

Oasis App PARROT WOMBAT

Server

Tablet n

Figure 1.1: The GIRAF architecture

1.8 Usability Test

As stated in the motivation, quality assurance through testing of the system is
required. Therefore a usability test was conducted in order to measure the cur-

7

rent usability of the GIRAF platform as a whole, as well as of the individual parts
of the platform. Furthermore, the next wave of developers will immediately be
able to start correcting the found usability issues.

1.8.1 Approach

The test group consists of the five contact persons. We assess that they, as a test
group, are representative. We base this on them being a mix of educators and
teachers, with varying computer skills.

They have prior knowledge about the overall idea of the GIRAF platform,
and although some of the contact persons had previously informally used some
aspects or parts of the system, they had not been exposed to the platform as a
whole, and therefore still are of value.

The invitation sent to the test persons can be found in Figure 17.1.

The Instant Data Analysis (IDA) method for usability is chosen. A traditional
video analysis method could be used, but since IDA is designed for small test
groups, this approach is used. [JK]

Setup

The usability test is divided into two tests: A test of three user applications,
and a test of two administrative applications. The user applications are: The
launcher, PARROT, and WOMBAT. The administrative applications are: The Oa-
sis app and the Savannah web application. Each test is assigned a team to ac-
commodate the need to run two tests simultaneously. The teams are made with
respect to the criteria of the Instant Data Analysis process.
Each team consisted of:

• 1 x Test Coordinator

• 1 x Test Monitor

• 1 x Data Logger

• 2 x Observers

The usability lab at Aalborg University is designed with two rooms for us-
ability testing and a control room to observe and record the tests. The two test
chambers are assigned a test each and the control room is used to observe both
tests as seen in figure 1.2.

8

Figure 1.2: An overview of the usability lab at Cassiopeia, Department of Com-
puter Science, Aalborg University.

Execution

The tests are conducted according to the schedule in Figure 1.3.

Figure 1.3: The schedule of the usability test.

Briefing, debriefing, and questionnaire documents can be found in chap-
ter 17, and the results of the test can be found in subsection 7.2.1.

9

Part II

Oasis Introduction

11

CHAPTER 2

Initial Process

In this chapter the problem definition for Oasis is described. An analysis of
the requirements, received from the other groups in the multi project, are per-
formed and from the analysis the Oasis system architecture has been derived.

2.1 Problem Definition

In the multi project a common problem definition have been stated, see Sec-
tion 1.5 on page 5. The common problem definition is – as stated – to vogue
for the individual groups. Therefore we have devised a problem definition for
Oasis. It is as follows:

How can we provide a set of tools, which can help develop appli-
cations for the GIRAF system?

2.2 Requirements

Before the development can begin the requirements for the software must be
analyzed. The requirements stem from the multi project groups and the con-
tact persons. Examples of the requirements received can be seen in Appendix 11
on page 71 and 15 on page 93.

13

The derived informal requirements are:

• Child profile handling

• Guardian profile handling

• Child and guardian relation handling

• Application specific profile setting handling

• Certificate handling

• Media handling

• Media access handling

• Media to media relation handling

• Department handling

• Department to subdepartment handling

• Profile to department relation handling

We have decided to develop a database and a library, which are to be used
by GIRAF applications. As an example of a GIRAF application, that uses the
library and database, we will develop an administration application.

2.3 System architecture

Oasis consists of three parts; The Oasis Local Db, the Oasis Lib, and the Oasis
App. This is shown in Figure 2.1 on the next page.

The Oasis Lib handles application interaction with the Oasis Local Db, and
every GIRAF application should be utilizing this library. Another feature the
Oasis Lib offers is the ability to handle synchronization between the Oasis Local
Db and Savannah.

The last part is the Oasis App. This application allows interaction with the
Oasis Local Db through the Oasis Lib. Some of the features of the Oasis App are
creation and removal of profiles and departments. It also enables the user to
handle relations between specific elements.

14

Figure 2.1: The GIRAF sytem architecture.

15

CHAPTER 3

The Process

In this chapter we describe the sprint process of our project, this can be seen in
Section 3.1.

3.1 Sprints

This project was divided into eight sprints. The length of the sprints was de-
cided at every sprint meeting. At the end of each sprint period, a meeting was
held to reflect on what was learned through the sprint. The burn down charts,
sprint backlogs and the final change log can be seen in Appendix 13 on page 75.

3.1.1 Sprint One

Sprint one started on 19/03-2012 with a work period of seven half days. In this
sprint period we started making the design for the Oasis Local Db schema, a
prototype database, the model classes, that is supposed to wrap the data from
the Oasis Local Db, and some methods to the library, which we got as require-
ments from the other groups.

Sprint Reflection

In this sprint we learned that we should be a bit better at estimating the size
of each task and the solution would be combining the small tasks into bigger

17

tasks, thereby allowing us to work on one big task a day, instead of several small
tasks.

3.1.2 Sprint Two

Sprint two started on 26/03-2012 with a work period of eight half days. In this
sprint period we improved the design for the Oasis Local Db schema, started
implementing the Oasis Local Db, and updated the library with the new re-
quirements we got from the other groups. Besides that we used a little time on
setting up a counter-strike server, this gave us a social activity that improved
the relation between the multi project groups.

Sprint Reflection

In this sprint we learned that we still should be a bit better at estimating the size
of each task, because there was some tasks we did not start on. Another thing
we learned was that a good database design takes some iteration to achieve.

3.1.3 Sprint Three

Sprint three started on 10/04-2012 with a work period of nine half days. In this
sprint period we froze the Oasis Local Db schema, continued on the implemen-
tation of the Oasis Local Db, and updated the Oasis Lib with the new require-
ments gathered from the other groups. Besides that we started thinking on the
“Oasis App”.

Sprint Reflection

In this sprint we learned that we should not be adding new tasks to the sprint
backlog when the sprint has started, as this will make us less likely to complete
all tasks on the sprint backlog. Besides that, we underestimated the size of the
tasks, which lead to tasks not being completed before the end of the sprint.
Another thing we learned was that some tasks depended on each other and this
could result in some tasks not being completed because of such a dependency.

3.1.4 Sprint Four

Sprint four started on 23/04-2012 with a work period of six half days. In this
sprint period we completed the implementation of the Oasis Local Db and up-
dated the Oasis Lib with the new requirements gathered from the other groups.
Besides that we started writing Java Doc to the Oasis Lib, refactoring of the code

18

in the Oasis Local Db, started making a method, which created dummy data,
and wrote a part of the common report.

Sprint Reflection

In this sprint we learned that we still need to be better at saying no to other
groups, whom came with new tasks in the middle of the sprint.

3.1.5 Sprint Five

Sprint five started on 07/05-2012 with a work period of six half days. In this
sprint we worked on implementing the Oasis App. We also planned to work on
synchronizing with Savannah, however this did not happen due to Savannah
not being ready. The Oasis Lib was improved with minor bug fixes.

Sprint Reflection

In this sprint we learned to communicate with the other groups before planning
a mutual task.

3.1.6 Sprint Six

Sprint six started on 14/05-2012 with a work period of eight half days. In this
sprint we continued the implementation of the Oasis App, updated the Oasis
Lib, and started creating a structure for the rapport.

Sprint Reflection

In this sprint we learned nothing new.

3.1.7 Sprint Seven

Sprint seven started on 21/05-2012 with a work period of nine half days. In
this sprint we worked on unit tests for the Oasis Lib. We also conducted the
usability test, where we tested the Oasis App. Apart from that we also added
more content to the rapport.

Sprint Reflection

In this sprint we learned that not every choice you make as a developer is easy
to understand for someone without much technical knowledge.

19

Examples on this can be seen in the result of the usability test conducted on
the Oasis App seen in Section 7.2.1 on page 55.

3.1.8 Sprint Eight

Sprint eight started on 28/05-2012 with a work period of eight half days. In this
sprint we finished the report.

Sprint Reflection

In this sprint we learned that writing some parts of the report earlier might be
a good idea.

20

Part III

Design and Implementation

21

CHAPTER 4

Oasis Local Db

In this chapter we describe the Oasis Local Db. The Oasis Local Db is used
for storing the data, which is used by the GIRAF applications. The database
schema, which the Oasis Local Db is based upon, is described in Section 4.1.
The structure of SQLite used on the Android Platform is described in Section 4.2
on page 26. Finally the implementation of the Oasis Local Db on the Android
system is described in Section 4.3 on page 26.

4.1 Database Schema

The Oasis Local Db Schema is developed in cooperation with Savannah. The
reason for this is to alleviate the complexities that could occur during a syn-
chronization of the Oasis Local Db and Savannah.

The central point of the Oasis Local Db schema is the AuthUsers table. This
table contains all the user id’s and their certificates. A user in the Oasis Local
Db can be either a profile or a department and therefore a role is stored as well
to differentiate the two.

The Oasis Local Db schema for the profiles and departments are a simple
model representing a kindergarten like Birken or a school like Egebakken. This
means that a profile can either be a child or guardian. The Oasis Local Db sup-
ports the possibility to associate profiles to each other in order to allow a child
to guardian relation. The profiles can be attached to one or more departments,
and a department can be related to one or more sub departments.

23

An important part of the system for the guardians is the ability to access
different kinds of media on the tablets. Therefore media can be stored in the
Oasis Local Db along with information about who has access to them. A media
can be owned by either a profile or a department, and the owner has the ability
to decide who should have access to the media. The Oasis Local Db schema
also allows the user to adds tags to media, these tags can be used to identify the
media.

Another important part of the system is the ability to control applications.
From the users viewpoint it consists of deciding which applications should be
accessible and from the developers viewpoint it is a way of storing application
settings for a profile.

The Oasis Local Db schema can be seen in Figure 4.1 on the facing page.

24

Figure 4.1: The schema for the Oasis Local Db.

25

4.2 Structure

When using the Android system to develop databases the developers are bound
to use the open source database SQLite. [SQL12b] The reason for this is that
only SQLite is supported on the Android platform. [Tea12b] It supports three
kinds of data types; TEXT, which is similar to String type in Java, INTEGER,
which is similar to long type in Java, and REAL, which is similar to double type
in Java. [SQL12c] SQLite does not validate if the types written to the columns
actually are of the defined type. This means that it for instance is possible to
write an integer into a TEXT column. On the positive site SQLite only requires
a little portion of memory at runtime. [SQL12a]

4.3 Implementation

As stated in Section 4.2, we implemented the Oasis Local Db using SQLite.
The Oasis Local Db consists of three elements; metadata, tables, and a content
provider. These are explained in the following sections.

4.3.1 Metadata

First we created metadata files for each table in the Oasis Local Db.
As an example the metadata file for the AuthUsers table can be seen in list-

ing 4.1.

1 package dk.aau.cs.giraf.oasis.localdb;
2 import android.net.Uri;
3 import android.provider.BaseColumns;
4
5 public class AuthUsersMetaData {
6
7 public static final Uri CONTENT_URI =

Uri.parse("content://dk.aau.cs.giraf.oasis.localdb.AutismProvider/authusers");
8
9 .

10 .
11 .
12
13 public class Table implements BaseColumns {
14 public static final String TABLE_NAME = "tbl_authusers";
15
16 public static final String COLUMN_ID = "_id";
17 public static final String COLUMN_CERTIFICATE = "authusers_certificate";
18 public static final String COLUMN_ROLE = "authusers_role";
19 }
20 }

Listing 4.1: The AuthUsers MetaData

In the AuthUsers metadata file the uri, CONTENT_URI, is used to defined
which table to alter. The inner class Table defines the strings, which are used as
names of the table and the columns.

26

4.3.2 Table

When the metadata file is created we make a table class file, which defines the
SQL statements for creating, updating and deleting the table. The table class
file for AuthUsers can be seen in listing 4.2.

1 package dk.aau.cs.giraf.oasis.localdb;
2 import android.database.sqlite.SQLiteDatabase;
3
4 public class AuthUsersTable {
5
6 private static final String TABLE_CREATE = "CREATE TABLE "
7 + AuthUsersMetaData.Table.TABLE_NAME
8 + "("
9 + AuthUsersMetaData.Table.COLUMN_ID + " INTEGER NOT NULL, "

10 + AuthUsersMetaData.Table.COLUMN_CERTIFICATE + " TEXT NOT NULL, "
11 + AuthUsersMetaData.Table.COLUMN_ROLE + " INTEGER NOT NULL, "
12 + "PRIMARY KEY (" + AuthUsersMetaData.Table.COLUMN_ID + ", " +

AuthUsersMetaData.Table.COLUMN_ID + ")"
13 + ");";
14
15 private static final String TABLE_DROP= "DROP TABLE IF EXISTS " +

AuthUsersMetaData.Table.TABLE_NAME + ";";
16
17 public static void onCreate(SQLiteDatabase db) {
18 db.execSQL(TABLE_CREATE);
19 }
20
21 public static void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
22 db.execSQL(TABLE_DROP);
23 onCreate(db);
24 }
25 }

Listing 4.2: The AuthUsers Table

4.3.3 Content Provider

After the metadata and the tables for the Oasis Local Db has been created, a
content provider is created. The content provider implemented in the Oasis
Local Db allow applications to store and retrieve data from the aforementioned
tables.

The content provider must implement several methods. These methods are
presented along with a code snippet with AuthUsers as an example in the fol-
lowing bullets:

• onCreate() - called at startup to initialize the content provider see List-
ing 4.3.

1 public boolean onCreate() {
2 dbHelper = new DbHelper(getContext());
3 return false;
4 }

Listing 4.3: The onCreate() method.

27

• getType() - called when an application needs to know the type of the
data. The getType() method can be seen in Listing 4.4. This method is
not used in Oasis Local Db.

1 public String getType(Uri uri) {
2 switch(sUriMatcher.match(uri)) {
3 .
4 .
5 .
6 case AUTHUSERS_TYPE_LIST:
7 return AuthUsersMetaData.CONTENT_TYPE_AUTHUSERS_LIST;
8 case AUTHUSERS_TYPE_ONE:
9 return AuthUsersMetaData.CONTENT_TYPE_AUTHUSER_ONE;

10 .
11 .
12 .
13 default:
14 throw new IllegalArgumentException("Unknown URI: " + uri);
15 }
16 }

Listing 4.4: The getType() method.

• query() - called when an application wants to query in the Oasis Local
Db. The query method can be seen in Listing 4.5.

1 public Cursor query(Uri uri, String[] projection, String selection, String[]
selectionArgs, String sortOrder) {

2 SQLiteQueryBuilder builder = new SQLiteQueryBuilder();
3 switch(sUriMatcher.match(uri)) {
4 .
5 .
6 .
7 case AUTHUSERS_TYPE_LIST:
8 builder.setTables(AuthUsersMetaData.Table.TABLE_NAME);
9 builder.setProjectionMap(authusersProjectionMap);

10 break;
11 case AUTHUSERS_TYPE_ONE:
12 builder.setTables(AuthUsersMetaData.Table.TABLE_NAME);
13 builder.setProjectionMap(authusersProjectionMap);
14 builder.appendWhere(AuthUsersMetaData.Table.COLUMN_ID + " = " +

uri.getPathSegments().get(1));
15 break;
16 .
17 .
18 .
19 default:
20 throw new IllegalArgumentException("Unknown URI: " + uri);
21 }
22 SQLiteDatabase db = dbHelper.getReadableDatabase();
23 Cursor queryCursor = builder.query(db, projection, selection, selectionArgs, null,

null, null);
24 queryCursor.setNotificationUri(getContext().getContentResolver(), uri);
25 return queryCursor;
26 }

Listing 4.5: The query() method.

• insert() - called when an application wants to insert data into the Oasis
Local Db. The insert() method can be seen in Listing 4.6.

1 public Uri insert(Uri uri, ContentValues values) {
2 SQLiteDatabase db = dbHelper.getWritableDatabase();
3 long rowId;
4 Uri _uri;
5

28

6 switch(sUriMatcher.match(uri)) {
7 .
8 .
9 .

10 case AUTHUSERS_TYPE_LIST:
11 try {
12 rowId = db.insertOrThrow(AuthUsersMetaData.Table.TABLE_NAME, null, values);
13 _uri = ContentUris.withAppendedId(AuthUsersMetaData.CONTENT_URI, rowId);
14 getContext().getContentResolver().notifyChange(_uri, null);
15 } catch (SQLiteConstraintException e) {
16 _uri = ContentUris.withAppendedId(AuthUsersMetaData.CONTENT_URI, -1);
17 }
18 return _uri;
19 .
20 .
21 .
22 default:
23 throw new IllegalArgumentException("Unknown URI: " + uri);
24 }
25 }

Listing 4.6: The insert() method.

• update() - called when an application wants to update existing data in
the Oasis Local Db. The update() method can be seen in Listing 4.7.

1 public int update(Uri uri, ContentValues values, String where, String[] whereArgs) {
2 SQLiteDatabase db = dbHelper.getWritableDatabase();
3 int rowsUpdated = 0;
4 String rowId;
5
6 switch(sUriMatcher.match(uri)) {
7 .
8 .
9 .

10 case AUTHUSERS_TYPE_LIST:
11 rowsUpdated = db.update(AuthUsersMetaData.Table.TABLE_NAME, values, where,

whereArgs);
12 break;
13 case AUTHUSERS_TYPE_ONE:
14 rowId = uri.getPathSegments().get(1);
15 rowsUpdated = db.update(AuthUsersMetaData.Table.TABLE_NAME,
16 values,
17 AuthUsersMetaData.Table.COLUMN_ID + " = " + rowId +

(!TextUtils.isEmpty(where) ? " AND (" + where + ")" : ""),
18 whereArgs);
19 break;
20 .
21 .
22 .
23 default:
24 throw new IllegalArgumentException("Unknown URI: " + uri);
25 }
26
27 getContext().getContentResolver().notifyChange(uri, null);
28 return rowsUpdated;
29 }

Listing 4.7: The update() method.

• delete() - called when an application wants to delete existing data in the
Oasis Local Db. The delete() method can be seen in Listing 4.8.

1 public int delete(Uri uri, String where, String[] whereArgs) {
2 SQLiteDatabase db = dbHelper.getWritableDatabase();
3 int rowsDeleted = 0;
4 String rowId;
5 .
6 .

29

7 .
8 case AUTHUSERS_TYPE_LIST:
9 rowsDeleted = db.delete(AuthUsersMetaData.Table.TABLE_NAME, where, whereArgs);

10 break;
11 case AUTHUSERS_TYPE_ONE:
12 rowId = uri.getPathSegments().get(1);
13 rowsDeleted = db.delete(AuthUsersMetaData.Table.TABLE_NAME,
14 AuthUsersMetaData.Table.COLUMN_ID + " = " + rowId +

(!TextUtils.isEmpty(where) ? " AND (" + where + ")" : ""),
15 whereArgs);
16 break;
17 .
18 .
19 .
20 default:
21 throw new IllegalArgumentException("Unknown URI: " + uri);
22 }
23
24 getContext().getContentResolver().notifyChange(uri, null);
25 return rowsDeleted;
26 }

Listing 4.8: The delete() method.

The implemented methods in the content provider supply the functionality
for the Oasis Local Db. This functionality can be utilized in the implementation
of the Oasis Lib.

30

CHAPTER 5

Oasis Lib

In this chapter we describe the Oasis Lib. The Oasis Lib is the library, which
works as a connection between the Oasis Local Db, see Section 4 on page 23,
and the GIRAF applications. The Oasis Lib provides an API, which the GI-
RAF applications can use. The structure of the Oasis Lib is described in Sec-
tion 5.1. Finally the implementation of the Oasis Lib is described in Section 5.2
on page 33.

5.1 Structure

The structure of the Oasis Lib, have been inspired of the MVC pattern, where
the system is divided into three parts; Model, View, and Controller.

In Oasis Lib the Model part is a package containing model classes. Each
model class represents a table in the Oasis Local Db. The model classes are
used to encapsulate the data, which is to be stored and retrieved from the Oasis
Local Db. The reason that we use model classes is to ease it for the users of the
library and to make a uniform way of storing and retrieving data. The model
classes can be seen in Figure 5.1 on the next page.

31

Figure 5.1: The models in the Oasis Lib

The Controller part is the package containing all the methods, which the
developers can use to interact with Oasis Local Db. The controller methods
have been divided into several classes. The division can be seen in Figure 5.2
on the facing page.

32

Figure 5.2: The controllers in the Oasis Lib

The controllers are divided by the models they manipulate, this means that
for each table in the Oasis Local Db there is a controller.

In the Oasis Lib there is no direct reference to the Views from the MVC pat-
tern. This is because the individual applications in the GIRAF system is seen as
a view.

5.2 Implementation

The Oasis Lib has been designed with the intention of having as few method
calls as possible to gain access to the Oasis Local Db. The code for all the
implemented methods will not be show in this section. Two examples from
the Oasis Lib will be presented, these methods are autenticateProfile and
getProfileById.

The method autenticateProfile is used to authenticate a profile in order
to decide what informations the user should be allowed access to.

33

First the method verifies that the input is not null and that the certificate
conformes to the rules for the certificates, if the certificate is rejected, null is
returned to indicate this.

After the certificate has been verified the profile id will be retrived from the
Oasis Local Db, iff a profile exists with that certificate. In case a profile exist with
the certificate the id will be returned and the profile model will be retrieved
from the Oasis Local Db. If no profile with the certificate exists, -1 will be re-
turned and no profile model will be retrieved.

The code for autenticateProfile can be seen in Listing 5.1.

1 public Profile authenticateProfile(String certificate) {
2 if (certificate == null || !certificate.matches("[a-z]{200}")) {
3 return null;
4 }
5
6 Profile profile = null;
7 long id = au.getIdByCertificate(certificate);
8
9 if (id != -1) {

10 profile = getProfileById(id);
11 }
12
13 return profile;
14 }

Listing 5.1: The authenticateProfile method.

The method getProfileById is used the retrieve a profile model from the
database. The model is retrived using the profile id as a parameter to get the
model by.

First it must be ensured that the id is above zero, as the database can not
handle zero or negative values. After this check the database is queried to re-
trive the profile model. A conversion is needed as the database returns a Cursor
object and this object must be converted into a profile model. [Tea12c] This
conversion is done in the auxiliary method cursorToProfile, which maps val-
ues in the Cursor to values in the profile model. If the Cursor from the database
is null or empty, no profile was found in the database.

34

The code for getProfileById method can be seen in Listing 5.2.

1 public Profile getProfileById(long id) {
2 Profile profile = null;
3
4 if (id <= 0) {
5 return null;
6 }
7
8 Uri uri = ContentUris.withAppendedId(ProfilesMetaData.CONTENT_URI, id);
9 Cursor c = _context.getContentResolver().query(uri, columns, null, null, null);

10
11 if (c != null) {
12 if (c.moveToFirst()) {
13 profile = cursorToProfile(c);
14 }
15 c.close();
16 }
17
18 return profile;
19 }

Listing 5.2: The getProfileById method.

For further information on how the Oasis Lib methods work, see the JavaDoc
or the source code, which are placed on the attached CD-ROM.

35

CHAPTER 6

Oasis App

In this chapter we describe the Oasis App. The Oasis App is an application,
which demonstrates some of the utilities the Oasis Lib offers. First the design
of the Oasis App is described in Section 6.1. After that the implementation of
the Oasis Lib in the Oasis App is described in Section 6.2 on page 39.

6.1 Design

The idea behind the Oasis App is that we want to make a tool, for the guardians,
to manage the profile data, by giving them CRUD (Create, Read, Update, and
Delete) options.

The application design should be revolving around the database structure
with the key functionality being profile handling. The application design has
been divided into two parts; the home screen of the application and an overview
screen showing relevant data.

Paper prototypes of the GUI has been created and evalutated. Several pro-
totypes have been made and the chosen prototype for the application can be
seen in Figure 6.1 on the next page and Figure 6.2 on the following page.

37

Figure 6.1: The prototype for the home screen.

Figure 6.2: The prototype for the overview screen.

38

The final prototypes have been implemented as the GUI in the Oasis App.

6.2 Implementation

The Oasis App is split into two activities; MainActivity and FragParentTab.

6.2.1 MainActivity

The MainActivity is the activity that starts at application startup. It uses the
main.xml as its layout file, which is a layout file containing three buttons, which
can be seen on Figure 6.3.

Figure 6.3: An image of the MainActivity layout.

A code snippet of the MainActivity’s code can be seen in Listing 6.1.

1 .
2 .
3 .
4 public class MainActivity extends Activity implements OnClickListener {
5
6 private Button bMyProfile, bAllProfiles, bAllDepartments, bAddDummyData;
7 private Intent direct;
8 private long guardianId;
9 public Helper helper;

10 public static Profile guardian;
11 public static Profile child;
12 public static int color;
13

39

14 @Override
15 public void onCreate(Bundle savedInstanceState){
16 super.onCreate(savedInstanceState);
17
18 .
19 .
20 .
21
22 helper = new Helper(this);
23
24 Bundle extras = getIntent().getExtras();
25 if (extras != null) {
26 guardianId = extras.getLong("currentGuardianID");
27 color = extras.getInt("appBackgroundColor");
28 guardian = helper.profilesHelper.getProfileById(guardianId);
29 }
30
31 setContentView(R.layout.main);
32
33 initializeViews();
34 }
35
36 private void initializeViews() {
37 findViewById(R.id.UpperLayout).setBackgroundColor(color);
38
39 bMyProfile = (Button) findViewById(R.id.bMyProfile);
40 bMyProfile.setOnClickListener(this);
41 bAllProfiles = (Button) findViewById(R.id.bAllProfiles);
42 bAllProfiles.setOnClickListener(this);
43 bAllDepartments = (Button) findViewById(R.id.bAllDepartments);
44 bAllDepartments.setOnClickListener(this);
45 bAddDummyData = (Button) findViewById(R.id.bAddDummyData);
46 if (guardian == null) {
47 bAddDummyData.setOnClickListener(this);
48 } else {
49 bAddDummyData.setVisibility(View.GONE);
50 }
51 }
52
53 @Override
54 public void onClick(View v) {
55 direct = new Intent(this, FragParentTab.class);
56
57 switch (v.getId()) {
58 case R.id.bMyProfile:
59 if (guardian != null) {
60 direct.putExtra("tabView", FragParentTab.TABPROFILE);
61 startActivity(direct);
62 } else {
63 Toast.makeText(this, R.string.noprofile, Toast.LENGTH_SHORT).show();
64 }
65 break;
66 case R.id.bAllProfiles:
67 direct.putExtra("tabView", FragParentTab.TABALLPROFILES);
68 startActivity(direct);
69 break;
70 case R.id.bAllDepartments:
71 direct.putExtra("tabView", FragParentTab.TABALLDEPARTMENTS);
72 startActivity(direct);
73 break;
74 .
75 .
76 .
77 }
78 }
79 }

Listing 6.1: The MainActivity class

As the activity starts it gets the information of which guardian who is cur-
rently logged in to the GIRAF system and what background color the Oasis App
is currently set to by the Launcher. When one of the buttons is clicked, the
MainActivity will start the FragParentTab activity and put the corresponding
integer in the intent’s extra data.

40

6.2.2 FragParentTab

The FragParentTab is the activity, which is started by the MainActivity activity.
The activity has the responsibillity of managing what view to show, by using
fragments. We chose fragments because we wanted a tab layout. An example
of the tab layout view can be seen in Figure 6.4.

Figure 6.4: An image of the FragParentTab layout.

The FragParentTab activity can be seen in Listing 6.2.

1 .
2 .
3 .
4 public class FragParentTab extends Activity {
5
6 private int tabView;
7 public final static int TABPROFILE = 0;
8 public final static int TABAPP = 1;
9 public final static int TABMEDIA = 2;

10 public final static int TABALLPROFILES = 3;
11 public final static int TABALLDEPARTMENTS = 4;
12 public final static int TABCHILD = 5;
13 public final static int TABCHILDAPP = 6;
14 public final static int TABCHILDMEDIA = 7;
15 static FragmentManager t;
16
17 @Override
18 protected void onCreate(Bundle savedInstanceState) {
19 super.onCreate(savedInstanceState);
20
21 .
22 .
23 .
24
25 Bundle extras = getIntent().getExtras();
26 if (extras != null) {

41

27 tabView = extras.getInt("tabView");
28 } else {
29 tabView = -1;
30 }
31
32 setContentView(R.layout.fragments_view);
33
34 findViewById(R.id.fragUpperLayout).setBackgroundColor(MainActivity.color);
35
36 t = getFragmentManager();
37
38 switch(tabView) {
39 case TABPROFILE:
40 t.beginTransaction().add(R.id.fDetails, new TabManagerProfile()).commit();
41 break;
42 case TABALLPROFILES:
43 t.beginTransaction().add(R.id.fDetails, new TabManagerAllProfiles()).commit();
44 break;
45 case TABALLDEPARTMENTS:
46 t.beginTransaction().add(R.id.fDetails, new TabManagerAllDepartments()).commit();
47 break;
48 case TABCHILD:
49 t.beginTransaction().add(R.id.fDetails, new TabManagerChild()).commit();
50 }
51 }
52
53 public static void switchTab(int tabViewId) {
54
55 switch(tabViewId) {
56 case TABPROFILE:
57 t.beginTransaction().replace(R.id.fDetails, new TabManagerProfile()).commit();
58 break;
59 case TABMEDIA:
60 t.beginTransaction().replace(R.id.fDetails, new TabManagerMedia()).commit();
61 break;
62 case TABAPP:
63 t.beginTransaction().replace(R.id.fDetails, new TabManagerApp()).commit();
64 break;
65 case TABCHILD:
66 t.beginTransaction().replace(R.id.fDetails, new TabManagerChild()).commit();
67 break;
68 case TABCHILDMEDIA:
69 t.beginTransaction().replace(R.id.fDetails, new TabManagerChildMedia()).commit();
70 break;
71 case TABCHILDAPP:
72 t.beginTransaction().replace(R.id.fDetails, new TabManagerChildApp()).commit();
73 break;
74 }
75 }
76
77 @Override
78 protected void onResume() {
79 super.onResume();
80 t = getFragmentManager();
81 }
82 }

Listing 6.2: The FragParentTab class

The activity controls which fragment it must show and this is done in two
ways. The first way is when the activity is created, it decides which fragment to
show, by using the integer it gets from the MainActivity. This integer repre-
sents a fragment class of every tab layout view. This fragment is then added to
the fragment stack.

The other way is when a fragment wants to replace itself with another frag-
ment. Here the fragment calls the switchTab method, in the FragParentTab
activity, with the replacing view integer as a parameter.

42

6.2.3 Utilizing the Oasis Lib

Before utilizing the methods within the Oasis Lib, the developer must include
the library. It is also necassary to instantiate a helper object before it can be
used. When instantiating the object it is necassary to input the current activ-
ity’s context as a parameter. This is needed to give the Oasis Lib the information
about where it is called from. An example of how to instantiate the helper ob-
ject, can be seen in Listing 6.3.

1 Helper helper = new Helper(getActivity().getApplicationContext());

Listing 6.3: Example of Instantiating a helper object.

After the instantiation it is possible to call all the methods within the Oasis
Lib. An example of calling a method can be seen in Listing 6.4.

1 guardian = helper.profilesHelper.getProfileById(guardianId);

Listing 6.4: Call method from the Oasis Lib.

43

CHAPTER 7

Testing

In the chapter aspects of dynamic white box testing will be explained in Sec-
tion 7.1. Furthermore the results of the usability test will be presented in Sec-
tion 7.2.1 on page 55.

7.1 Dynamic White Box Testing

To ensure the correctness of the Oasis Lib we enforced dynamic white box test-
ing through unit tests [Pat, pp106] [IEE93]. The Oasis Lib is used by all GIRAF
applications this means that if a bug exists in the Oasis Lib there is a poten-
tial bug in all GIRAF applications. Therefore the Oasis Lib must be thoroughly
tested to make sure that few or no bugs exists.

The Oasis Local Db will be tested along with the Oasis Lib, this is more effi-
cient as more code will be tested in every test, but it has the drawback that if a
bug appears more code will have to be investigated in order to locate the bug.

As this project have been developed using the agile development method
Scrum we have not devised a full test plan as this is not needed [Pat, pp263].
The focus of the tests will be on test-to-pass [Pat, pp66]. This ensures that the
Oasis Lib will function as intended, though there is no guarantee that the Oasis
Lib will work if invalid parameters are used.

45

7.1.1 The Test Designs

A test design have been elaborated for each method in the helper classes of
the Oasis Lib [Pat, pp281]. Examples of the test designs are presented in the
following tables.

The test design in Table 7.1 is for the authenticateProfile()method. This
test design tests if a profile can be authenticated. This is an essential method
for the GIRAF platform, and therefore it is tested both using test-to-pass and
test-to-fail tests to ensure that this method is particular robust.

Identifier: TD00001
Feature to be tested: Authenticate profile.

Approach:
An automated test will be made to authenticate a
profile by its certificate.

1. Enter a profile with a specific certificate in the
database.

2. Authenticate the profile by its certificate.

Test case identification: Check valid certificate Test Case ID# 00001
Check too long certificates Test Case ID# 00002
Check too short certificates Test Case ID# 00003
Check invalid certificates Test Case ID# 00004

Pass/fail criteria:
All valid profile certificates that matches the certifi-
cate in the database must be accepted as well as all
invalid certificates must be rejected.

Table 7.1: Test Design for authenticatingProfile().

The test design in Table 7.2 on the facing page is for the getProfileById()
method. This is also an important method for the GIRAF system, therefore it is
tested with the same mix of test-to-pass and test-to-fail tests. The tests ensures
the robustness of the method.

46

Identifier: TD00002
Feature to be tested: Get profile by id.

Approach:
An automated test will be made in order to ensure
that the Oasis Library supports getting a profile by
its id from the database.

1. Add Profiles to the database.

2. Get profile by id and verify the output.

Test case identification:
Check valid id present in the database Test Case ID#
00005
Check id not in the database Test Case ID# 00006
Check negative id Test Case ID# 00007

Pass/fail criteria:
The profile matching the id should be returned else
null should be returned.

Table 7.2: Test Design for getProfileById().

The test design in Table 7.3 on the next page is for the getChildrenByGuardian()
method. The test ensures the method performs as intended under normal op-
eration. This is done with a single test-to-pass test, which tests if children asso-
ciated to a guardian can be retrieved from the database.

47

Identifier: TD00003
Feature to be tested: Get children by guardian.

Approach:
An automated test will be made to ensure that the
Oasis Library supports getting all children associ-
ated with one guardian.

1. Children and guardians should be added to
the database.

2. Associations between some children and
guardians should be made.

3. Get children by guardian should be called and
the output verified.

Test case identification:
Check valid guardian with children associated Test
Case ID# 00008

Pass/fail criteria:
The list of children should match the children asso-
ciated with the guardian.

Table 7.3: Test Design for getChildrenByGuardian.

7.1.2 The Test Cases

For each test design in Section 7.1.1 on page 46, one or more test cases has
been created [Pat, pp283]. Each test case ensures a part of the tested method
performs as intended in the test situation. The test cases for the test designs
presented in Section 7.1.1 on page 46 will be shown in the following tables: Ta-
ble 7.4 on the facing page, Table 7.5 on the next page, Table 7.6 on the facing
page, Table 7.7 on page 50, Table 7.8 on page 50, Table 7.9 on page 50, Table 7.10
on page 51, and Table 7.11 on page 51.

48

Identifier: TC00001

Test item:
Valid Certificate handling of the
authenticateProfile() method.

Input specification: A valid certificate.
Output specification: The model of the authenticated profile.
Environmental needs: A database is needed and the profile model.
Special procedural re-
quirements:

None.

Intercase dependencies: None.

Table 7.4: Test Case for valid certificate handling of the
authenticateProfile() method.

Identifier: TC00002

Test item:
Certificate length too short handling of the
authenticateProfile() method.

Input specification: A certificate shorter than 200 chars.
Output specification: Null.
Environmental needs: A database is needed and the profile model.
Special procedural re-
quirements

None.

Intercase dependencies: None.

Table 7.5: Test Case for certificate length too short handling of the
authenticateProfile() method.

Identifier: TC00003

Test item:
Certificate length too long handling of the
authenticateProfile() method.

Input specification: A certificate longer than 200 chars.
Output specification: Null.
Environmental needs: A database is needed and the profile model.
Special procedural re-
quirements:

None.

Intercase dependencies: None.

Table 7.6: Test Case for certificate length too long handling of the
authenticateProfile() method.

49

Identifier: TC00004

Test item:
Invalid Certificate handling of the
authenticateProfile() method.

Input specification: An invalid certificate.
Output specification: Null.
Environmental needs: A database is needed and the profile model.
Special procedural re-
quirements:

None.

Intercase dependencies: None.

Table 7.7: Test Case for invalid certificate handling of the
authenticateProfile() method.

Identifier: TC00005

Test item:
Valid id present in the database handling of the
getProfileById() method.

Input specification: A valid id.
Output specification: The profile matching the id.
Environmental needs: A database is needed and the profile model.
Special procedural re-
quirements:

None.

Intercase dependencies: None.

Table 7.8: Test Case for valid id handling of the getProfileById() method.

Identifier: TC00006

Test item:
Invalid id not present in the database handling of
the getProfileById() method.

Input specification: An invalid id.
Output specification: Null.
Environmental needs: A database is needed and the profile model.
Special procedural re-
quirements:

None.

Intercase dependencies: None.

Table 7.9: Test Case for invalid id handling of the getProfileById() method.

50

Identifier: TC00007

Test item:
Negative id handling of the getProfileById()
method.

Input specification: A negative id.
Output specification: Null.
Environmental needs: A database is needed and the profile model.
Special procedural re-
quirements:

None.

Intercase dependencies: None.

Table 7.10: Test Case for negative id handling of the getProfileById()
method.

Identifier: TC00008

Test item:
Valid guardian with children associated handling of
the getChildrenByGuardian() method.

Input specification: A valid guardian.
Output specification: A list of associated children.
Environmental needs: A database is needed and the profile model.
Special procedural re-
quirements:

None.

Intercase dependencies: None.

Table 7.11: Test Case for valid guardian with children associated handling of the
getChildrenByGuardian() method.

7.1.3 Unit Test Implementation

All the tests cases have been used to construct the 89 unit tests, which have
helped in the development of the Oasis Lib. The tests have been split up into
three parts; initialization, execution, and assertion.

The unit test for the testAuthenticateProfileWithValidCertificate()
method can be seen in Listing 7.1 on the following page. The method starts
by initializing the environment. This means that a random valid certificate is
created and a profile – the expected profile – is entered in the database and the
certificate for the profile is set to the newly created certificate.

After the initialization the method is executed and the retrieved profile is
stored as the actual profile in order to have some data for the assertion. At the
end an assertEquals is called to ensure that the expected profile is the same
as the actual profile. If this is the case the test passes, otherwise the test fails
and the two profiles are printed in the test log.

51

1 public void testAuthenticateProfileWithValidCertificate() {
2 Random rnd = new Random();
3 StringBuilder cert = new StringBuilder();
4 for (int i = 0; i < 200; i++)
5 {
6 cert.append((char)(rnd.nextInt(26) + 97));
7 }
8 String certificate = cert.toString();
9 Profile expectedProfile = new Profile("Test", "Profile", null,

Profile.pRoles.GUARDIAN.ordinal(), 12345678, null, null);
10
11 long id = mActivity.helper.profilesHelper.insertProfile(expectedProfile);
12 expectedProfile.setId(id);
13
14 mActivity.helper.profilesHelper.setCertificate(certificate, expectedProfile);
15
16 Profile actualProfile = mActivity.helper.profilesHelper.authenticateProfile(certificate);
17
18 assertEquals("Should return profile; Test Profile", expectedProfile, actualProfile);
19 }

Listing 7.1: The testAuthenticateProfileWithValidCertificate()
method.

The unit test for the testAuthenticateProfileWithInvalidCertificate()
method can be seen in Listing 7.2. This method also starts by initializing its en-
vironment but in this method the created certificate is invalid. The rest of the
initialization is the same as in the valid test and the execution is the same as
well. In this test assertNull is used to confirm that there is not retrieved a
profile from the database due to an invalid certificate.

1 public void testAuthenticateProfileWithInvalidCertificate() {
2 Random rnd = new Random();
3 StringBuilder cert = new StringBuilder();
4 for (int i = 0; i < 200; i++)
5 {
6 cert.append((char)(rnd.nextInt(26) + 65));
7 }
8 String certificate = cert.toString();
9 Profile expectedProfile = new Profile("Test", "Profile", null,

Profile.pRoles.GUARDIAN.ordinal(), 12345678, null, null);
10
11 long id = mActivity.helper.profilesHelper.insertProfile(expectedProfile);
12 expectedProfile.setId(id);
13
14 mActivity.helper.profilesHelper.setCertificate(certificate, expectedProfile);
15
16 Profile actualProfile = mActivity.helper.profilesHelper.authenticateProfile(certificate);
17
18 assertNull("Should return null", actualProfile);
19 }

Listing 7.2: The testAuthenticateProfileWithInvalidCertificate()
method.

The remaining tests from the test suite have been created using the same
structure; an initialization phase, an execution phase, and one or more asser-
tions. These tests can be seen in the source code of the Oasis App.

52

7.1.4 The Test Results

The result for the unit tests are 88 out of 89 tests passed and this can be seen in
Figure 7.1.

Figure 7.1: The result from all the performed unit tests.

The test that failed is testGetChildrenByDepartmentAndSubDepartments()
and the result can be seen in Figure 7.2 on the next page.

53

Figure 7.2: The result from the profilesHelper tests.

The individual results for the rest of the test suite can be seen in Appendix 19
on page 113.

54

7.2 Usability Test

We decided to have a usability test performed on the Oasis App even though it
was not completed. This gives a unique opportunity to modify the application
before it is done.

The approach for the usability test can be found in 1.8 on page 7. The ques-
tions for the usability test of the Oasis App can be seen in 18 on page 112.

7.2.1 Results and Observations

The result of the usability test can be seen in Table 7.12.

Issues Description
Cosmetic: Profile id was showing.

"Add child" not clear how to.
Serious: Too many options, missing the overview.

Difficult finding a child profile.
Critical: Data availability unclear.

Table 7.12: The issues found in the usability test.

The result shows the following number of issues; two cosmetic issues, two
serious issues, and one critical issue.

55

Part IV

Epilogue

57

CHAPTER 8

Discussion

In the follow sections we will discuss the used development method and the
system architecture.

8.1 Development Method

In the following section we will discuss the development method, as described
in Section 1.4 on page 5.

8.1.1 Agile Development

Using the agile development method, has given us the ability to adjust accord-
ing to the requirements coming from the other groups. The Oasis Lib has been
subject for many requirements, coming during sprints, and the agile develop-
ment method has made it easy to adjust to requirements as they came.

8.1.2 Meetings

In the initial planning phase of the project we held several meetings to discuss
which product should be made. During the project we have been meeting in
the multi project group for the start of each sprint, as well as an evaluation at
the end of each sprint. These meetings have given us the ability to follow what
the other groups are doing at all times, and therefore plan a bit ahead of the
requirements that might come.

59

8.1.3 Sprint Length

On the meetings at the start of each sprint, we decided how long the sprint
should run. Most sprints ended up being around seven half days of work. This
sprint length was fitting for our group because we could finish some tasks, while
keeping up with what the other groups needed.

8.1.4 Project Owner

In this project we had no project owner, this made it a bit harder to decide
things in the multi project meetings, as every person had to agree. However
it added the option to influence the project, as an individual, instead of one
person deciding it all. In some situations a project owner would have been able
to make a decision and we could have avoided a lot of pointless discussion.

8.2 System architecture

In the following section we will discuss the system architecture for Oasis, as
described in section 2.3 on page 14.

When designing the architecture, there are multiple ways we could do it. We
will list the options we have, their pros and cons, and argue why we choose the
one we did.

The pros and cons can be seen in the following tables; Table 8.1 on the fac-
ing page, Table 8.2 on page 62, Table 8.3 on page 62, Table 8.4 on page 63.

8.2.1 Choosing the architecture

One of the requirements for the system was accessibility of data in offline mode.
This requirement rules out the two options without a local database. The main
difference between the two solutions left, is that one requires more develop-
ment time, and the other forces the tablets to be updated every time the exter-
nal database changes. Seeing that we could manage the increased development
time, from developing two software layers, this solution seems like the more
optimal one. Therefore we choose the one described in Table 8.3 on page 62.

60

Pros: Cons:

• Reduced development time,
as you only have to develop
one software layer

• Access to data in offline
mode

• It is not recommended to
have direct access to the
external database, due to
the loss of security and the
maintainability will be more
complex

• If more applications wants
to access the external
database, then a lot of
connections will be made

• If a change is made in the
external database structure,
one has to update the tablet
to use it

Table 8.1: Oasis Lib with direct connection to an external database and with a
local database

61

Pros: Cons:

• Data are always synchro-
nized

• Reduced development time,
as you only have to develop
one software layer

• No access to data, if the ex-
ternal database is offline

• If a change is made in the
external database structure,
one has to update the tablet
to use it

• It is not recommended to
have direct access to the
external database, due to
the loss of security and the
maintainability will be more
complex

• If more applications wants
to access the external
database, then a lot of
connections will be made

Table 8.2: Oasis Lib with direct connection to an external database and without
a local database

Pros: Cons:

• The external database can
be changed without updat-
ing the tablet

• Access to data, if the external
database is offline

• Increased development
time, as you have to develop
two software layers

• Increased development
time, as you have to setup
two databases

• Data is not always synchro-
nized

Table 8.3: Oasis Lib with connection to software layer on the server and with a
local database

62

Pros: Cons:

• The external database can
be changed without updat-
ing the tablet

• Data is always synchronized

• No access to data if the ex-
ternal database is offline

• Increased development
time, as you have to develop
two software layers

• Data is not always synchro-
nized

Table 8.4: Oasis Lib with connection to software layer on the server and without
a local database

63

CHAPTER 9

Conclusion

In this chapter we described the things we concluded along the project.

9.1 GIRAF Problem Definition

In the multi project we made a problem definition. The problem definition is
as follows:

How can we ease the daily life for children with ASD and their
guardians, while complying with the study regulation?

To comply with the study regulations, we (the multi project) have designed
and implemented a system called GIRAF. To ensure that every project group has
the opportunity to be up to date of the progress of the multi project, we (the
multi project) agreed on using the same development method 1.4 on page 5.

9.2 Oasis Problem Definition

In Oasis we have specified the multi project problem definition to fit our project.
The problem definition is a follows:

How can we provide a set of tools, which can help develop appli-
cations for the GIRAF system?

65

We have designed and implemented an administration module for the GI-
RAF system. The administration module consists of three parts; a local database,
called Oasis Local Db, a library, called Oasis Lib, and an administration appli-
cation, called Oasis App. The Oasis Local Db ensures that the data is saved cor-
rectly. The Oasis Lib ensures that the different applications of the GIRAF system
can interact with Oasis Local Db. The Oasis App ensures that the guardians can
manage profiles of the GIRAF system, directly on the tablets.

9.3 Oasis

We began by examining the previous student reports, to check if there was any
aspects we could reuse in the project. After that we examined the possibilities
of how to save data on an Android device, which lead us to start working on the
architecture of the local database. Along with that we gathered requirements
from the other groups to start working on the architecture of the library. When
we finished the Oasis Local Db and the Oasis Lib we started working on the
Oasis App. The Oasis App shows some of the capabilities of the Oasis Lib, and
by the same time give the guardians a possibility on managing the different
profiles of the GIRAF system.

9.4 Testing

To verify the quality of the multi project, we conducted a usability test. The test
subjects consisted of the customers of the multi project. The test highlighted
some issues in the Oasis App, which could be corrected by the next group of
developers, the issues can be seen in Section 7.2.1 on page 55. We created unit
tests for the Oasis Lib. The tests were made at the end of the project period. This
should be an ongoing process instead of doing them at the end of the semester.
The tests ensures indirectly, that the Oasis Local Db works.

66

CHAPTER 10

Future Work

A number of tasks did not get completed in this semester. As this project is
going to be continued by others students, we will provide an overview of some
of the changes we did not complete.

10.1 Server Synchronization

One of the main things which did not get completed was the synchronization
with Savannah. This was due to components not being ready at the time the
task was scheduled. In the continuation of the project, this can be implemented
by using the components which Savannah provides. Completing this task will
make the sync status component in the launcher work properly. Another im-
provement which can be implemented in a future continuation of the project,
is the ability to synchronize images on the device, and update the paths dynam-
ically.

10.2 Unit Tests

Unit testing is an essential part of the project. We created unit test for all the
helper classes in the Oasis Lib, but for a major part it was only test-to-pass tests.
Therefore the Oasis Lib can be made more robust by implemting test-to-fail
tests. In the future it can be beneficial to make unit tests for the Oasis Local Db

67

and the Oasis App. This would make the administration module more robust,
because every “part” of the module is tested.

10.3 Certificates

Certificates is one of the core elements in the Launcher, and this is reflected in
the Oasis Lib.

A feature that can be implemented for the certificates, is the possibility to
set a time limit on the certificate, thereby enforcing a renewal of the certificate
after the time limit has been exceeded. This would make the system more se-
cure, but would rely on the users printing out new QR-codes, and the Oasis Lib
to generate new QR-codes.

10.4 Media Table

As seen in the database schema in 4.1 on page 23, a media should be capable
of having either a department or a profile as its owner id. The Oasis Lib only
supports a profile as the owner of a media. The option for departments to be
owners should be added, to make the Oasis Lib fully represent the database
schema.

10.5 Oasis App

The Oasis App shows how the Oasis Lib can be utilized. A couple of changes
and improvements can be done.

One thing which can be done is refactoring of the code. This refactoring
would lower the amount of classes, increase the readability, and help with the
understanding of the Oasis App source code.

Besides that the Oasis App is still missing some functionality. The function-
ality that is missing is; view other guardians profiles, create new media, create
new applications, and create and manage settings of the applications and pro-
files.

The usability test showed that the Oasis App can use a better visual design
to give a better overview of the application.

68

Part V

Appendix

69

CHAPTER 11

Requirements from Wombat

I behøver ikke smide det ind i objekter, da vi har vi allerede lavet objekter til
vores data.
Hvis vi blot kan få dataen i en eller anden form for array, er det helt fint.

Vi ved ikke helt hvad for noget data der skal gemmes i settings, men vi har
forstået på Henrik at man selv kan definere det når man gemmer.
Template

Function template
Her skriver man funktionen skal kunne
Data
Her skriver man hvilken data man gerne vil modtage
Damer
Create

Funktion createAutistSettings
Lave multiple Settings der er forbundet til en Autist

Funktion createLastUsedGuardian
Lave LastUsed liste der er forbundet til en Guardian
Retrieve

Funktion retrieveGuardianAutists
Man skal kunne hente Guardian samt alle autister der er linket til denne guardian.

71

Data
Guardian
Navn på guardian
Autister

Funktion retrieveAutistSettings
Man skal kunne hente en specifik autist.
Data
Autist
Navn på autist
Settings på autist

Funktion retrieveLastUsed
Hente LastUsed liste fra en guardian
Data
Guardian
LastUsed
Update

Funktion updateAutistSetting
Update setting på en bestemt autist

Funktion updateLastUsedGuardian
Update en bestemt guardians LastLused
Delete

Funktion deleteSettingAutist
Slette en setting for en bestemt autist
Funktion deleteLastUsedGuardian
Slette LastUsed liste på en guardian

72

CHAPTER 12

Project Backlog

Here is the full project backlog for the project.

73

ID Name Area Prioritet Estimat Dependency How to demo Note Status

19
Sync with the
online database Server 1 10 Server

Enter data to the local
db and sync with the
online db. Open the
online db and validate
that the data is entered Not started

27 Oasis app App 5 30 OasisLib Show the app Done

1
Create table
scheme for profiles Database 5 2 None CRUD via demo app Done

2
Create table
scheme for media Database 5 2 None CRUD via demo app Done

3

Create table
scheme for
departments Database 5 2 None CRUD via demo app Done

4

Create table
scheme for
certificates Database 5 2 None CRUD via demo app Done

5

Create table
scheme for a list of
apps Database 5 2 None CRUD via demo app Done

6
Create table
scheme for apps Database 5 2 None CRUD via demo app Done

7
Create view model
for a profile Model 3 1 Profile table CRUD via demo app Done

8
Create view model
for a media Model 3 1 Media table CRUD via demo app Done

9
Create view model
for a department Model 3 1 Department table CRUD via demo app Done

10
Create view model
for a certificate Model 3 1 Certificate table CRUD via demo app Done

11
Create view model
for a list of apps Model 3 1 List of apps table CRUD via demo app Done

12
Create view model
for an app Model 3 1 Apps table CRUD via demo app Done

13
Create a profile
controller Controller 4 3

Profile table
Profile model CRUD via demo app Done

14
Create a media
controller Controller 4 3

Media table
Media model CRUD via demo app Done

15

Create a
department
controller Controller 4 3

Department table
Department model CRUD via demo app Done

16
Create a certificate
controller Controller 4 3

Certificate table
Certificate model CRUD via demo app Done

17
Create a list of
apps controller Controller 4 3

List of apps table
List of apps model CRUD via demo app Done

18
Create an app
controller Controller 4 3

Apps table
Apps model CRUD via demo app Done

20
Elaborate on the
database design Database 7 10 None New database scheme Done

21
Update the
database tables Database 10 5 None CRUD via demo app Done

22
Update the data
models Model 10 5 Database tables CRUD via demo app Done

23
Update the
controller Controller 10 5

Database tables, Data
models CRUD via demo app Done

24 Database scheme Database 10 5 None Show the db scheme Done
25 Settings model Model 8 20 Database tables CRUD via demo app Done
26 Stats model Model 8 20 Database tables CRUD via demo app Done
30 GunGame Server Social 100 100 Savannah Open CS and play Done
31 Common report Report 15 5 Earlier sections Report pdf Done

32

Update the
database tables
v0.3 Database 10 5 None CRUD via demo app Done

33
Update the data
models v0.3 Model 10 5 Database tables CRUD via demo app Done

34
Update the
controller v0.3 Controller 10 5

Database tables, Data
models CRUD via demo app Done

35

Update and
implement the
hasControllers in
the other helpers HasControllers 10 10 Done

36
insertTag should
return tagId TagHelper 15 2 Done

37

attachTagsToMedia()
removeTagsAttachmentToMedia
insertMedia should
return mediaId MediaHelper 12 12 Done

38

profilesHelper
should handle
settings = null
make pRole enum ProfilesHelper 5 5 Done

39

loac should handle
settings and stats
= null ListOfAppsController 5 5 Done

40

Add new fields to
app model record
Update
getter/setter AppModel 20 4 Done

41

Add new columns
to appHelper
columns insertApp
should return
appId AppHelper 20 5 Done

42

Add columns icon,
packageName,
activityName to
database App DB 20 5 Done

43

auc iduser and cert
should be primary
key make aRole
enum AuthUsersDB 10 4 Done

44
Refactor local db
code Database 12 2 Done

45 Java doc All 3 3 Done
46 Dummy data All 20 5 Done

47
Correct commen
report Report 25 10 Done

48

Minor error
correction in the
library Library 4 5 Done

49

Add extra
functionality to the
library Library 4 5 Done

50
Create report
structure Report 2 10 Read the report Done

51 Unit tests Library 15 20
See the result of the
test suite Done

52 Usability Oasis app 10 10
See the result of the
usability test Done

53 Report content Report 5 200 Read the report Done
54 Improve Oasis App Oasis app 5 10 Oasis lib Show app Not started

Oasis Project Backlog

Figure 12.1: An overview of the Oasis project backlog.

74

CHAPTER 13

Burndown Charts and Sprint Backlogs

Here are an overview of all the sprints in this project.

75

Admin - Oasis

ID Name Prioritet Estimat How to demo Note Status

1
Create table
scheme for profiles 5 2

CRUD via demo
app Done

2
Create table
scheme for medias 5 2

CRUD via demo
app Done

3

Create table
scheme for
departments 5 2

CRUD via demo
app Done

4

Create table
scheme for
certificates 5 2

CRUD via demo
app Done

5

Create table
scheme for a list of
apps 5 2

CRUD via demo
app Done

6
Create table
scheme for apps 5 2

CRUD via demo
app Done

7
Create view model
for a profile 3 1

CRUD via demo
app Done

8
Create view model
for a media 3 1

CRUD via demo
app Done

9
Create view model
for a department 3 1

CRUD via demo
app Done

10
Create view model
for a certificate 3 1

CRUD via demo
app Done

11
Create view model
for a list of apps 3 1

CRUD via demo
app Done

12
Create view model
for an app 3 1

CRUD via demo
app Done

13
Create a profile
controller 4 3

CRUD via demo
app Done

14
Create a media
controller 4 3

CRUD via demo
app Done

15

Create a
department
controller 4 3

CRUD via demo
app Done

16
Create a certificate
controller 4 3

CRUD via demo
app Done

17
Create a list of
apps controller 4 3

CRUD via demo
app Done

18
Create an app
controller 4 3

CRUD via demo
app Done

Oasis Burndown Chart/Sprint1 Backlog

Figure 13.1: The burndown chart and sprint backlog from sprint 1.

76

Admin - Oasis

ID Name Prioritet Estimat How to demo Note Status
9 GunGame Server 100 100 Open CS and play Done

1
Update the
database tables 10 5

CRUD via demo
app Done

2
Update the data
models 10 5

CRUD via demo
app Done

3
Update the
controller 10 5

CRUD via demo
app Done

6 Database scheme 10 5
Show the db
scheme Done

4 Settings model 8 20
CRUD via demo
app Done

5 Stats model 8 20
CRUD via demo
app Done

9
Elaborate on the
database design 7 10

New database
scheme Done

9 BMI app 5 30 Show the app
Continued in next
sprint

7
Server xml
language 1 1 No demo Not started

8 SSL test app 1 20 Show the app Not started

Oasis Burndown Chart/Sprint2 Backlog

Figure 13.2: The burndown chart and sprint backlog from sprint 2.

77

Admin - Oasis

ID Name Prioritet Estimat How to demo Note Status
31 Common report 15 5 Earlier sections Report pdf Done

32

Update the
database tables
v0.3 10 5 None

CRUD via demo
app Done

33
Update the data
models v0.3 10 5 Database tables

CRUD via demo
app Done

34
Update the
controller v0.3 10 5

Database tables,
Data models

CRUD via demo
app Done

27 BMI app 5 30 OasisLib Show the app In progress

28
Server xml
language 1 1 None No demo Not started

29 SSL test app 1 20 OasisLib Show the app Not started

Oasis Burndown Chart/Sprint3 Backlog

Figure 13.3: The burndown chart and sprint backlog from sprint 3.

78

Admin - Oasis

ID Name Prioritet Estimat How to demo Note Status

35

Update and
implement the
hasControllers in
the other helpers 10 10 Done

36
insertTag should
return tagId 15 2 Done

37

attachTagsToMedia()
removeTagsAttachmentToMedia
insertMedia should
return mediaId 12 12 Done

38

profilesHelper
should handle
settings = null
make pRole enum 5 5 Done

39

loac should handle
settings and stats
= null 5 5 Done

40

Add new fields to
app model record
Update
getter/setter 20 4 Done

41

Add new columns
to appHelper
columns insertApp
should return
appId 20 5 Done

42

Add columns icon,
packageName,
activityName to
database 20 5 Done

43

auc iduser and cert
should be primary
key make aRole
enum 10 4 Done

44
Refactor local db
code 12 2 Done

45 Java doc 3 3 Done
46 Dummy data 20 5 Done

47
Correct commen
report 25 10 Done

Oasis Burndown Chart/Sprint4 Backlog

Figure 13.4: The burndown chart and sprint backlog from sprint 4.

79

Admin - Oasis

ID Name Prioritet Estimat How to demo Note Status
27 Oasis app 5 30 Show the app In progess

19
Sync with the
online database 1 10

Enter data to the
local db and sync
with the online db.
Open the online db
and validate that
the data is entered Not started

48

Minor error
correction in the
library 4 5 Done

Oasis Burndown Chart/Sprint5 Backlog

Figure 13.5: The burndown chart and sprint backlog from sprint 5.

80

Admin - Oasis

ID Name Prioritet Estimat How to demo Note Status
27 Oasis app 5 15 Show the app Done

49

Add extra
functionality to the
library 4 5 Done

50
Create report
structure 2 10 Read the report Done

Oasis Burndown Chart/Sprint6 Backlog

Figure 13.6: The burndown chart and sprint backlog from sprint 6.

81

Admin - Oasis

ID Name Prioritet Estimat How to demo Note Status

51 Unit tests 15 20
See the result of
the test suite Done

52 Usability 10 10
See the result of
the usability test Done

53 Report content 5 200 Read the report In progress

Oasis Burndown Chart/Sprint7 Backlog

Figure 13.7: The burndown chart and sprint backlog from sprint 7.

82

Admin - Oasis

ID Name Prioritet Estimat How to demo Note Status
53 Report content 5 190 Read the report Done

Oasis Burndown Chart/Sprint8 Backlog

Figure 13.8: The burndown chart and sprint backlog from sprint 8.

83

CHAPTER 14

Change Log

Here is the full change log for the Oasis Library – along with the models used in
it – and the Oasis Local Database.

14.1 OasisLib version 0.8

• Minor bug fixed to the controllers

14.2 OasisLib version 0.7

• Minor bug fixed to the controllers

14.3 OasisLib version 0.6

• Controllers

– Added AppsHelper.removeApp

– Renamed AppsHelper.modifyAppSettingsByProfile to AppsHelper.modifyAppByProfile

– Added AuthUsersController.removeAuthUser

– Added DepartmentsHelper.removeDepartment

– Added HasDepartmentController.removeHasDepartmentByDepartmentId

– Added HasDepartmentController.removeHasDepartmentByProfileId

84

– Added HasGuardianController.removeHasGuardianByProfile

– Added HasGuardianController.removeHasGuardian

– Added HasLinkController.removeHasLinkByMediaId

– Added HasLinkController.removeHasLinkBySubMediaId

– Added HasSubDepartmentController.removeHasSubDepartmentBySubDepartmentId

– Added HasSubDepartmentController.removeHasSubDepartmentByDepartmentId

– Added HasTagController.removeHasTagByTagId

– Added HasTagController.removeHasTagByMediaId

– Added ListOfAppsController.removeListOfAppsByProfileId

– Added ListOfAppsController.removeListOfAppsByAppId

– Added MediaDepartmentAccessController.removeMediaDepartmentAccessByMediaId

– Added MediaDepartmentAccessController.removeMediaDepartmentAccessByDepartmentId

– Added MediaHelper.removeMedia

– Added MediaHelper.getMyPictures

– Added MediaHelper.getMySounds

– Added MediaHelper.getMyWords

– Added MediaProfileAccessController.removeMediaProfileAccessByProfileId

– Added MediaProfileAccessController.removeMediaProfileAccessByMediaId

– Added ProfilesHelper.removeProfile

– Added ProfilesHelper.getGuardians

– Added ProfilesHelper.getChildren

– Added ProfilesHelper.getCHildrenWithNoDepartment

– Added ProfilesHelper.getGuardiansWithNoDepartment

– Added ProfilesHelper.getGuardiansByChild

– Added TagsHelper.removeTag

14.4 OasisLib version 0.5

• Controllers

– Added MediaHelper.getMyMedia

– Added MediaHelper.getMediaIOwn

85

– Added MediaHelper.getPublicMedia

– Added ProfilesHelper.getProfilesByRole

– Added ProfilesHelper.getProfilesByDepartment

– Added ProfilesHelper.getGuardiansByDepartment

14.5 OasisLib version 0.4

• Controllers

– Added AppsHelper.removeAppAttachmentToProfile

– Added AppsHelper.getAppByIds

– Added AppsHelper.getAppByPackageName

– Added AppsHelper.getAppByPackageNameAndProfileId

– Added AppsHelper.getSettingByIds

– Added AppsHelper.getStatByIds

– Added HasDepartmentController.removeHasDepartment

– Added HasGuardianController.removeHasGuardian

– Added HasLinkController.removeHasLink

– Added HasSubDepartmentController.removeHasSubDepartment

– Added HasTagController.removeHasTag

– Added HasTagController.removeHasTagList

– Added ListOfAppsController.removeListOfApps

– Added MediaDepartmentAccessController.removeMediaDepartmentAccess

– Added MediaHelper.removeTagListFromMedia

– Added MediaHelper.removeSubMediaAttachmentToMedia

– Added MediaHelper.attachSubMediaToMedia

– Added MediaHelper.getSubMediaByMedia

– Added MediaProfileAccessController.removeMediaProfileAccess

– Added ProfilesHelper.getChildrenByDepartmentAndSubDepartments

– Added ServerHelper.getStatus

86

14.6 OasisLib version 0.3

• Controllers

– Added AppsHelper.attachAppToProfile

– Added AppsHelper.modifyAppSettingsByProfile

– Added AppsHelper.getAppsByProfile

– Added AuthUsersController.clearAuthUsersTable

– Added AuthUsersController.insertAuthUser

– Added AuthUsersController.setCertificate

– Added AuthUsersController.modifyAuthUser

– Added AuthUsersController.getAuthUsers

– Added AuthUsersController.getCertificatesById

– Added AuthUsersController.getIdByCertificate

– Added DepartmentsHelper.removeProfileAttachmentToDepartment

– Added DepartmentsHelper.removeSubDepartmentAttachmentToDepartment

– Added DepartmentsHelper.attachProfileToDepartment

– Added DepartmentsHelper.attachSubDepartmentToDepartment

– Added DepartmentsHelper.authenticateDepartment

– Added DepartmentsHelper.setCertificate

– Added DepartmentsHelper.getCertificatesByDepartment

– Added DepartmentsHelper.getDepartmentById

– Added DepartmentsHelper.getDepartmentByName

– Added DepartmentsHelper.getDepartmentsByProfile

– Added DepartmentsHelper.getSubDepartments

– Added HasDepartmentController.clearHasDepartmentTable

– Added HasDepartmentController.insertHasDepartment

– Added HasDepartmentController.getHasDepartments

– Added HasDepartmentController.getProfilesByHasDepartment

– Added HasDepartmentController.getDepartmentsByProfile

– Added HasDepartmentController.modifyHasDepartment

– Added HasGuardianController.clearHasGuardianTable

87

– Added HasGuardianController.insertHasGuardian

– Added HasGuardianController.getHasGuardians

– Added HasGuardianController.getChildrenByGuardian

– Added HasGuardianController.modifyHasGuardian

– Added HasLinkController.clearHasLinkTable

– Added HasLinkController.insertHasLink

– Added HasLinkController.getHasLinks

– Added HasLinkController.getSubMediaByMedia

– Added HasLinkController.modifyHasLink

– Added HasSubDepartmentController.clearHasSubDepartmentTable

– Added HasSubDepartmentController.insertHasSubDepartment

– Added HasSubDepartmentController.getHasSubDepartments

– Added HasSubDepartmentController.getSubDepartmentsByDepartment

– Added HasSubDepartmentController.modifyHasSubDepartment

– Added HasTagController.clearHasTagTable

– Added HasTagController.insertHasTag

– Added HasTagController.getHasTags

– Added HasTagController.getTagsByMedia

– Added HasTagController.getMediaByTag

– Added HasTagController.modifyHasTag

– Added ListOfAppsController.getListOfAppByAppIdAndByChildId

– Added ListOfAppsController.getListOfAppsByProfile

– Added ListOfAppsController.getSettingByAppIdAndByChildId

– Added ListOfAppsController.getStatBysAppIdAndByChildId

– Added MediaDepartmentAccessController.clearMediaDepartmentAccessTable

– Added MediaDepartmentAccessController.insertMediaDepartmentAccess

– Added MediaDepartmentAccessController.getMediaDepartmentAccesses

– Added MediaDepartmentAccessController.getMediaByDepartment

– Added MediaDepartmentAccessController.modifyMediaDepartmentAccess

– Added MediaHelper.removeMediaAttachmentToProfile

– Added MediaHelper.removeMediaAttachmentToDepartment

88

– Added MediaHelper.removeTagFromMedia

– Added MediaHelper.addTagsToMedia

– Added MediaHelper.addHasTag

– Added MediaHelper.attachMediaToProfile

– Added MediaHelper.attachMediaToDepartment

– Added MediaHelper.getMediaByTags

– Added MediaHelper.getMediaByDepartment

– Added MediaHelper.getMediaByProfile

– Added MediaHelper.getMediaById

– Added MediaProfileAccessController.clearMediaProfileAccessTable

– Added MediaProfileAccessController.insertMediaProfileAccess

– Added MediaProfileAccessController.getMediaProfileAccesses

– Added MediaProfileAccessController.getMediaByProfile

– Added MediaProfileAccessController.modifyMediaProfileAccess

– Added ProfilesHelper.removeChildAttachmentToGuardian

– Added ProfilesHelper.attachChildToGuardian

– Added ProfilesHelper.setCertificate

– Added ProfilesHelper.getChildrenByDepartment

– Added ProfilesHelper.getChildrenByGuardian

– Added ProfilesHelper.getGuardiansByDepartment

– Added ProfilesHelper.getProfilesByName

– Added TagsHelper.clearTagsTable

– Added TagsHelper.insertTag

– Added TagsHelper.modifyTag

– Added TagsHelper.getTags

– Added TagsHelper.getTagsByCaption

– Added TagsHelper.getTagsById

• Models

– Added AuthUser

– Added HasDepartment

89

– Added HasGuardian

– Added HasLink

– Added HasSubDepartment

– Added HasTag

– Added MediaDepartmentAccess

– Added MediaProfileAccess

14.7 OasisLib version 0.2

• Controllers

– Added AppsHelper.getAppsById

– Added AppsHelper.getAppsByName

– Added MediaHelper.getSingleMediaById

– Added MediaHelper.getMediaByName

– Added ProfilesHelper.authenticateProfile

– Added ProfilesHelper.getCertificatesByProfile

– Added ProfilesHelper.getProfileById

– Removed CertificateHelper

• Models

– Added Setting model

– Added Stat model

– Added Tag model

– Removed Certificate model

14.8 OasisDB version 0.2

• Database

– Added AuthUsers table

– Added HasDepartment table

– Added HasGuardian table

– Added HasLink table

90

– Added HasSubDepartment table

– Added HasTag table

– Added MediaDepartmentAccess table

– Added MediaProfileAccess table

– Added Tags table

– Removed Certificates table

14.9 OasisLib version 0.1

• Controllers

– Added AppsHelper.insertApp

– Added AppsHelper.modifyApp

– Added AppsHelper.getApps

– Added AppsHelper.clearAppsTable

– Added CertificateHelper.insertCertificate

– Added CertificateHelper.modifyCertificate

– Added CertificateHelper.getCertificates

– Added CertificateHelper.clearCertificateTable

– Added DepartmentsHelper.insertDepartment

– Added DepartmentsHelper.modifyDepartment

– Added DepartmentsHelper.getDepartments

– Added DepartmentsHelper.clearDepartmentsTable

– Added ListOfAppsHelper.insertListOfApps

– Added ListOfAppsHelper.modifyListOfApps

– Added ListOfAppsHelper.getListOfApps

– Added ListOfAppsHelper.clearListOfAppsTable

– Added MediaHelper.insertMedia

– Added MediaHelper.modifyMedia

– Added MediaHelper.getMedia

– Added MediaHelper.clearMediaTable

– Added ProfilesHelper.insertProfile

91

– Added ProfilesHelper.modifyProfile

– Added ProfilesHelper.getProfiles

– Added ProfilesHelper.clearProfilesTable

• Models

– Added App model

– Added Certificate model

– Added Department model

– Added ListOfApps model

– Added Media model

– Added Profile model

14.10 OasisLocalDB version 0.1

• Database

– Added Apps table

– Added Certificates table

– Added Departments table

– Added ListOfApps table

– Added Media table

– Added Profiles table

92

CHAPTER 15

Mail correspondence with Customer

15.0.1 Mail To Customer

Hej Kristine
Vi er blevet tildelt dig som kontakt person i forbindelse med vores projekt.

Som nævnt sidst så arbejder vi på at udvikle applikationer til android, som kan
bruges enten af jer som pædagoger og måske af autisterne på sigt. Vi vil ud-
vikle flere forskellige applikationer, og vi vil gerne løbende aftale møder med
dig, hvor vi kan vise det samlede produkt som er lavet. På den måde kan vi få
feedback på hvad der går godt og hvad der er knap så godt.

Vores udviklings gruppe består af tre personer og vi skal lave en applikation
der kan hjælpe med at lave profiler der passer til børnene.

Da vi stadig kun er i gang med at planlægge mener vi ikke at det er nød-
vendigt at holde et møde endnu. Men vi har nogen spørgsmål som vi gerne vil
have dig til at svare på:

Hvilke informationer gemmer i omkring det enkelte barn?

• Journal nummer?

• Person nummer?

• Navn?

• Alder?

• Særlige behov?

93

a - Ur

a1. Vil barnet kunne forstå at en hel cirkel kan have forskelligt tidsinterval? a1.1
Eller er det bedst hvis cirklen har et fast tidsrum fx 1 time?
a2. Hvis man skal måle et tidsinterval på uret, er det så bedst at lade uret
efterligne et almindeligt ur med 12 timer eller et stop-ur med kun 1 time?

b - Timeglas

b1. Vil barnet kunne forstå at det samme timeglas med den samme mængde
sand kan varierer i tid?
b2. Er det bedst at man varierer i mængden af sand i timeglasset eller at man
varierer i timeglassets størrelse?

c - Aktivitetstid

c1. Vil barnet kunne forstå at en linje der går hele vejen hen over skærmen kan
varierer i tidsinterval? c1.1 Eller er det bedre hvis linjen har et fast tidsinterval
og fx en halv linje derfor svarer til en halv time og en hel linje til en hel time?

d - Dagsplan

d1. Hvis man laver en visuel dagsplan er det så bedst at man laver et interval
som viser tiden imellem to aktiviteter, eller at man viser alle aktiviter i løbet af
dagen kombineret med en tidslinje?

15.0.2 Mail From Customer

Hej. Tak for jeres mail. Jeg skal besvare jeres mail så godt som muligt, og så må
i give lys hvis i har brug for at jeg uddyber.
Vedr. informationer vedr. barnet: Vi benytter et elektronisksystem som hedder,
EKJ, hvor alle oplysninger på børnene er gemt. Det vil sige, pers. nr., adresse
oplysninger, indbydelser, handleplaner og referater fra diverse møder.
UR: Hvis det er tydeligt vist at “tiden går” /skiven bliver mindre/forsvinder, som
tiden går, vil barnet forstå meningen med uret. For at indikere forskellig tid,
kan man benytte forskellige farvet baggrunde. Lilla:5 min. Grøn:10 min osv. Vi
benytter kun kortere tidsintervaller,(1. min. 3. min. 5 min. -op til ca. 10-15.
min) da 1 time er for abstrakt.
Timeglas: Hvis der er en tydelig markering af tidsintervallet, som beskrevet
ovenfor, er det muligt at bruge samme timeglas. Tror det vil give bedst forståelse
for barnet, hvis mængden af sand varieres efter tid.
Aktivitetstid og dagsplan: (Tror J) Aktivitetstid kan bruges ved, at tiden bliver

94

indikeret af mængden af aktiviteter. - Altså 3-5 viste aktiviteter af gangen, og
ikke så meget om det er en time eller 15 min. Tiden kunne være en mulighed
at tilføre, om nødvendigt. Mange af vores børn har manglende fornemmelse
for tid, og ofte har de brug for at se små konkrete sekvenser/beskeder frem for
mange over længere tid. Derfor vil jeg tror de bedst kan overskue ½ dag af gan-
gen, men stadig have mulighed for at have dagen på skemaet, hvor det kan vises
i sekvenser.
Jeg har samlet de to ovenstående punkter, da de nemt kommer til at gribe ind
i hinanden. Vores ugeskemaer i børnehaven er vist med internationale farver,
dem vil i ligeledes kunne benytte til at tydeliggøre ugedagene. Mandag: Grøn,
Tirs.: Lilla, Ons.: orange, tors.: blå, Fre.: gul, lør.: rød og søndag: hvid.
Håber dette er uddybende nok, ellers må i gerne skrive eller ringe til mig hvis
det er nemmere.
Ser frem til at hører fra jer igen.

95

CHAPTER 16

Notes from Interview

This is notes from an interview with Mette Als Andreasen, an educator at Birken
in Langholt, Denmark.

Når tiden løber ud (kristian har tage et billede):
Færdig - symbol
Gå til skema - symbol
Taget fra boardmaker

Kunne være godt hvis man kunne sætte egne billeder ind som start/stop
symboler.

Rød farve = nej, stop, aflyst.

De har sådan et ur på 60 minutter hvor tid tilbage er markeret med rød, og
så bipper den lige kort når den er færdig.
Det ville være fint hvis de kunne bruge sort/hvid til dem der ikke kan håndtere
farver, men også kan vælge farver.

Stop-ur:
en fast timer på 60 minutter + en customizable som ikke ser helt magen til ud,
som f.eks, kan være på 5, 10 eller 15 minutter for en hel cirkel.

timeglas:
skift farve på timeglassene, men ikke nødvendigvis gøre dem større. Kombinere
med mere/mindre sand. Eventuelt kombinere med et lille digitalt ur, til dem

96

der har brug for det, skal kunne slåes til og fra.

Dags-plan:
ikke særlig relevant til de helt små og ikke særligt velfungerende børn. Men
kunne være rigtig godt til de lidt ældre.
En plan går oppefra og ned, og hvis der så skal specificeres noget ud til ak-
tiviteterne, så er det fra venstre mod højre ud fra det nedadgående skema.

Til parrot:
Godt med rigtige billeder af tingene, som pædagogerne selv kan tage, eventuelt
også af aktiviteter, så pedagogerne kan have billeder af aktiviter som de kan liste
efter skeamet.

Der var mange skemaer rundt omkring, og der henviser det sidste billede i
rækken til næste skema, som hænger f.eks. på badeværelset eller i garderoben.

97

CHAPTER 17

Usability Documents

98

Kære ekspert

Vi vil gerne inviterer dig til at deltage i den første brugervenligheds test af GIRAF, en

Android applikation bygget til børn med autisme. Formålet med denne test vil være at

undersøge hvor brugervenlig applikationen er og hvor nemt eller svært det er at bruge den.

Derfor er det helt fint hvis du aldrig har set eller hørt om denne applikation før nu, da vi gerne

vil observerer, hvordan første gangs brugere så vel som brugere med kendskab til

applikationen, har det med denne applikationen.

Bemærk venligst at vi er ikke tester din kendskab til applikationen eller evner med en tablet,

men derimod om GIRAF applikationen er nem at bruge, vi har kun interesse i at kende til de

svagheder der ville være i applikationen. Dette betyder også at du ikke kan give nogle forkerte

svar, da du er eksperten.

Derfor vil vi gerne inviterer dig ud i vores brugervenligheds laboratorie, hvor vi kan studere din

brug af applikationen. Under brugervenligheds testen vil du blive givet en række opgaver, som

skal udføres. Yderligere vil du blive bedt om at tænke højt og fortælle alle tanker, indtryk og

valg du tager ved brug af applikationen under testen. Under testen af applikationen vil der

blive optaget både video og lyd, til at studere testen senere.

Dagen kommer til at bestå af:

Vi vil meget gerne høre fra dig hvis du har lyst og tid til at deltage i denne brugervenligheds

test, den 22/5 - 2012, på Aalborg Universitet.
For at vide hvornår på dagen du kan komme vil vi gerne, at du går ind på denne side

(http://www.doodle.com/d2h6swgbtsdf6z2b) skriver dit navn og vælger det tidspunkt på dagen

du helst vil komme, dette er svar nok for at vi ved du gerne vil komme.

Kommentarer og spørgsmål kan sendes retur til den mail invitationen kom fra.

På forhånd tak,
Android projektet
Software 6. semester
Aalborg Universitet
Selma Lagerlöfs vej 300, 9220 Aalborg

Figure 17.1: Invitation sent to the test persons of the usability test.

99

17.1 Briefing

Goddag og velkommen til denne brugervenlighedsundersøgelse.
Vi vil gerne starte med at takke dig for, at du vil hjælpe os med at gennemføre

denne brugervenlighedsundersøgelse. Vi læser op fra dette dokument for at
sikre os, at alle personer som deltager i vores studie for samme introduktion.
Hvis du har spørgsmål undervejs, er du naturligvis meget velkommen til at stille
disse spørgsmål.

Vi har i dette semester bygget et system til Android til at hjælpe børn med
autisme og deres pædagoger og forældre, og det er nu nået til et stadie hvor vi
gerne vil teste systemet. Denne test handler udelukkende om at finde proble-
mer og mangler i systemet, og ikke om at teste jeres viden af systemet, så alle
tanker I må have om produktet vil vi meget gerne høre.

Før vi starter første del af testen, vil jeg bede dig om at underskrive denne
samtykkeerklæring for at sikre, at du er indforstået med rammerne for studiet.
Derudover skal du også svare på et demografisk spørgeskema inden testen går
i gang.

Testen består af fire dele:

• Test af applikationer (20 min)

• De-briefing og spørgeskema (5 min)

• Test af Administrations applikation og web applikation (20 min)

• De-briefing og spørgeskema (5 min)

Undervejs vil der være en pause.
I de to tests vil du blive stillet en række opgaver som du skal løse. Læs

opgaveformuleringen grundigt og fortæl så test hjælperen hvad du mener op-
gaven går ud på. Derefter skal du forsøge at løse opgaven så godt som muligt.
Opgaverne skal løses i den rækkefølge de står således at du starter med opgave
1 og arbejder dig ned af.

Det er meningen at du skal tænke højt mens du løser opgaverne. Dvs. at
du siger hvad du har tænkt dig at gøre for at løse opgaven, hvilke ting du synes
virker uklare eller komplicerede og hvordan du tror systemet virker. For eksem-
pel vil det være godt hvis du nævner hvad du forventer en knap gør inden du
trykker på den.

Når testen er færdig vil der være nogle afsluttende spørgsmål som du skal
besvare omkring hvordan du synes testen er forløbet og hvad din opfattelse af
systemet er.

100

101

17.2 Questionnaires from usability

102

103

104

105

106

107

108

109

110

111

CHAPTER 18

Usability Assignments

Admin applikation er en applikation der skal bruges til at styre informationer
fra hver enkelt institution. Dette kan gøre ved at manipulere data omkring in-
stitutioner og brugere.

Usability Opgaver:

• Opret en ny barne profil med følgende informationer:

– navn: Thomas Thomasen

– telefonnummer: 12345678

– Afdeling: Myretuen

• Få vist den nu oprettede barne profils informationer.

• Find min profil og rediger navnet på profilen fra Tony Stark til dit eget
navn.

• Tilføj den nu oprettede Thomas Thomasen til mine børn.

• Tilføj Applikationerne Wombat og Parrot til barnet Thomas Thomasen.

• Fjern Thomas Thomasen fra afdelingen Myretuen.

• Tilføj Thomas Thomasen til afdelingen Bikuben.

112

CHAPTER 19

Unit Test Results

In this section the results for the remaining unit tests can be found.

113

Figure 19.1: The result from the appsHelper tests.

114

Figure 19.2: The result from the departmentHelper tests.

115

Figure 19.3: The result from the mediaHelper tests.

116

Figure 19.4: The result from the tagsHelper tests.

117

Bibliography

[All11a] Scrum Alliance. Advice on conducting the scrum of scrums meeting.
http://www.scrumalliance.org/articles/46-advice-on-conducting-
the-scrum-of-scrums-meeting, 2011.

[All11b] Scrum Alliance. Scrum alliance. http://www.scrumalliance.org/,
2011.

[Gra02] Temple Grandin. Teaching tips for children and adults with autism.
http://www.autism.com/ind_teaching_tips.asp, December 2002.

[IEE93] IEEE. Unit testing. http://aulas.carlosserrao.net/lib/exe/fetch.php?media=0910:1008-
1987_ieee_standard_for_software_unit_testing.pdf, December 1993.

[JB11] Steffan Bo Pallesen Jacob Bang, Lasse Linnerup Christiansen. Ad-
ministration module for giraf. http://people.cs.aau.dk/ ulrik/Gi-
raf/Admin.pdf, May 2011.

[JK] Jan Stage Jesper Kjeldskov, Mikael B. Skov. Instant Data Analysis:
Conducting Usability Evaluations in a Day. Last viewed: 2012-05-24.

[Mic12] Microsoft. Model view controller. http://msdn.microsoft.com/en-
us/library/ff649643.aspx, May 2012.

[Pat] Ron Patton. Software Testing.

[Sam] Samsung. Samsung tablet. http://www.samsung.com/global/microsite/galaxytab/10.1/index.html.

[SQL12a] SQLite. About sqlite. http://www.sqlite.org/about.html, May 2012.

118

[SQL12b] SQLite. Sqlite. http://www.sqlite.org/, May 2012.

[SQL12c] SQLite. Sqlite datatypes. http://www.sqlite.org/datatype3.html, May
2012.

[Tea12a] Android Development Team. Android 4.0.3 platform.
http://developer.android.com/sdk/android-4.0.3.html#relnotes,
March 2012.

[Tea12b] Android Development Team. Android architecture.
http://developer.android.com/guide/basics/what-is-android.html,
March 2012.

[Tea12c] Android Development Team. Cursor.
http://developer.android.com/reference/android/database/Cursor.html,
March 2012.

[Uni] Aalborg University. Studieordning for bacheloruddannelsen i soft-
ware. http://www.sict.aau.dk/digitalAssets/3/3331_softwbach_sept2009.pdf.
Last viewed: 2012-03-15.

[Wel09] Don Wells. extreme programming.
http://www.extremeprogramming.org/rules.html, 2009.

119

This page is left blank for the purpose of containing the attached CD-ROM.

	I GIRAF Introduction
	Introduction
	Motivation
	Target Group
	Working with Children with ASD

	Target Platform
	Development Method
	Problem Definition
	System Description
	Architecture
	Usability Test
	Approach

	II Oasis Introduction
	Initial Process
	Problem Definition
	Requirements
	System architecture

	The Process
	Sprints
	Sprint One
	Sprint Two
	Sprint Three
	Sprint Four
	Sprint Five
	Sprint Six
	Sprint Seven
	Sprint Eight

	III Design and Implementation
	Oasis Local Db
	Database Schema
	Structure
	Implementation
	Metadata
	Table
	Content Provider

	Oasis Lib
	Structure
	Implementation

	Oasis App
	Design
	Implementation
	MainActivity
	FragParentTab
	Utilizing the Oasis Lib

	Testing
	Dynamic White Box Testing
	The Test Designs
	The Test Cases
	Unit Test Implementation
	The Test Results

	Usability Test
	Results and Observations

	IV Epilogue
	Discussion
	Development Method
	Agile Development
	Meetings
	Sprint Length
	Project Owner

	System architecture
	Choosing the architecture

	Conclusion
	GIRAF Problem Definition
	Oasis Problem Definition
	Oasis
	Testing

	Future Work
	Server Synchronization
	Unit Tests
	Certificates
	Media Table
	Oasis App

	V Appendix
	Requirements from Wombat
	Project Backlog
	Burndown Charts and Sprint Backlogs
	Change Log
	OasisLib version 0.8
	OasisLib version 0.7
	OasisLib version 0.6
	OasisLib version 0.5
	OasisLib version 0.4
	OasisLib version 0.3
	OasisLib version 0.2
	OasisDB version 0.2
	OasisLib version 0.1
	OasisLocalDB version 0.1

	Mail correspondence with Customer
	Mail To Customer
	Mail From Customer

	Notes from Interview
	Usability Documents
	Briefing
	Questionnaires from usability

	Usability Assignments
	Unit Test Results
	Bibliography

