
future of advanced
cyber-physical
microsystems
Professor Jan Madsen
DTU Compute
Technical University of Denmark

computing

cloudmobilesensor swarm

DTU COMPUTE cyber-physical systems 2

computing

sensor swarm

+ +

microsystem

DTU COMPUTE cyber-physical systems 3

microelectronics

DTU COMPUTE cyber-physical systems 4

microelectronics

1947: 1 2008: 47.000.000

2014: 20.000.000.000

1971: 2.300

DTU COMPUTE cyber-physical systems 5

smaller, faster, cheaper

DTU COMPUTE cyber-physical systems 6

programming

DTU COMPUTE 7

BC = A + B design 01100101101

R

cyber-physical systems

T

programming

DTU COMPUTE 8

B

T

design

R

SOLUTION

?

?

cyber-physical systems

part 1

• microfluidics
– motivation
– technology
– design
– applications

DTU COMPUTE cyber-physical systems 9

microfluidics

DTU COMPUTE cyber-physical systems 10

biochemical computing –
why?

• Biotech
– DNA analysis

• Medicine
– Clinical diagnosis
– Therapeutics

• Ecology
– Monitoring the quality of air/water/food

• Pharmacy
– Screening
– Synthesis of new drugs

DTU COMPUTE cyber-physical systems 11

biolab

DTU COMPUTE cyber-physical systems 12

room table coin

smaller fluid volumes

4 mL of PCR master mix

$191

100 reactions at 50 µL
each =
$1.91 / reaction

1000 reactions at 5 µL
each =
$0.19 / reaction

smaller sample sizes

Milliliters Microliters

faster reactions

1/2 the size

1/8 the volume

8x the concentration!

64x faster!!!

size matters!

DTU COMPUTE cyber-physical systems 16

Size matters!

1 Liter – kitchen-sized fluidics!

DTU COMPUTE cyber-physical systems 17

Size matters!

Volume of a poppy seed

What’s a microliter? 1/1.000.000’th of a Liter

DTU COMPUTE cyber-physical systems 18

Size matters!

1/1000th the volumen of a poppy seed

What’s a nanoliter? Volume of a laser-printed period

DTU COMPUTE cyber-physical systems 19

Size matters

1/1000th the volumen of a printed period

What’s a picoliter? Volume of a human cell

1/1000th the volumen of a human cell

What’s a femtoliter? Volume of a bacteria

DTU COMPUTE cyber-physical systems 20

miniaturization

DTU COMPUTE cyber-physical systems 21

computer v.s. biochip

Science 18 October 2002: Vol. 298 no. 5593 pp. 580-584Intel 4004 4-bit 10um, 2.300 transistors

1971 – 2.300 transistors 2002 – 2.056 valves

DTU COMPUTE cyber-physical systems 22

microfluidic technology

DTU COMPUTE cyber-physical systems 23

microfluidics

Microfluidic	
 valve
(6 × 6 µm2)

1.000.000	
 valves	
 /	
 cm2

DTU COMPUTE 24cyber-physical systems

switch configurations

DTU COMPUTE cyber-physical systems 25

Biochip Architecture

Microfluidic	
 mixer

Microfluidic	
 very	

large	
 scale	

integration	
 (mVLSI)

Valves	
 combined	
 to	
 form	
 more	

complex	
 units,	
 e.g,	
 switches,	
 mixers,	

multiplexers,	
 micropumps.

DTU COMPUTE cyber-physical systems 26

Biochip Architecture
Microfluidic	
 mixer

DTU COMPUTE cyber-physical systems 27

[http://groups.csail.mit.edu/cag/biostream/]

microfluidics

DTU COMPUTE cyber-physical systems 28

Microfluidic Mixer:
Operational Phases

DTU COMPUTE cyber-physical systems 29

microfluidic storage device

http://groups.csail.mit.edu/cag/biostream/

DTU COMPUTE cyber-physical systems 30

Flow-Based Biochip
Architecture

Schematic view Functional view

DTU COMPUTE cyber-physical systems 31

microfluidic design

DTU COMPUTE cyber-physical systems 32

microfluidic design

DTU COMPUTE 33

B

R

T

designC = A + B 01100101101

cyber-physical systems

LOC
LOC

Biocoder

?

Application and Platform
Models

Flow paths in the architecture

?

Flow paths in the
architecture

• Fluid transport latencies are comparable to operation

execution times

• Handling communication is important!

• Enumerate flow paths in the architecture

F1

F3

• A flow path is
reserved until
completion of the
operation, resulting
in routing constraints

Flow paths

F15F14
Scheduling

F19

?

Scheduling
F30-1

F26-1

A composite route

microfluidic control

DTU COMPUTE cyber-physical systems 41

microfluidic control

DTU COMPUTE 42

B

R

T

designC = A + B 01100101101

cyber-physical systems

LOC
LOC

challenge

the pretty picture the reality!

DTU COMPUTE cyber-physical systems 43

off-chip control

DTU COMPUTE cyber-physical systems 44

Minimize number of control pins

control synthesis

• Scheduling determines when valves are to be switch
on/off

• Control synthesis layouts the control flow layer
• Sharing of control lines?

control synthesis

Could be green!

But if all X=0, we can
remove the control of

this valve

2

3

control synthesis

did we solve the problem?

DTU COMPUTE cyber-physical systems 48

on-chip control?

DTU COMPUTE cyber-physical systems 49

DTU COMPUTE cyber-physical systems 50

on-chip bubble logic

Monolithic membrane valves

Grover, W. H., Skelley, A. M., Liu, C. N., Lagally, E. T., & Mathies, R. A. (2003). Monolithic membrane valves and diaphragm pumps for practical large-­scale integration into glass microfluidic devices.

Grover, W. H., Skelley, A. M., Liu, C. N., Lagally, E. T., & Mathies, R. A. (2003). Monolithic membrane valves and diaphragm pumps for practical large-­scale integration into glass microfluidic devices.

Grover, W. H., Skelley, A. M., Liu, C. N., Lagally, E. T., & Mathies, R. A. (2003). Monolithic membrane valves and diaphragm pumps for practical large-­scale integration into glass microfluidic devices.

Grover, W. H., Skelley, A. M., Liu, C. N., Lagally, E. T., & Mathies, R. A. (2003). Monolithic membrane valves and diaphragm pumps for practical large-­scale integration into glass microfluidic devices.

Grover, W. H., Skelley, A. M., Liu, C. N., Lagally, E. T., & Mathies, R. A. (2003). Monolithic membrane valves and diaphragm pumps for practical large-­scale integration into glass microfluidic devices.

Grover, W. H., Skelley, A. M., Liu, C. N., Lagally, E. T., & Mathies, R. A. (2003). Monolithic membrane valves and diaphragm pumps for practical large-­scale integration into glass microfluidic devices.

Monolithic membrane valves

Grover, W. H., Skelley, A. M., Liu, C. N., Lagally, E. T., & Mathies, R. A. (2003). Monolithic membrane valves and diaphragm pumps for practical large-­scale integration into glass microfluidic devices.

W.H.	
 Grover	
 et	
 al.,	
 Sensors	
 and	
 Actuators	
 B 89,	
 315	
 (2003).

DTU COMPUTE cyber-physical systems 60

integration

DTU COMPUTE cyber-physical systems 61

Integration

[Courtesy,	
 Winnie	
 Svendsen,	
 NaBIS,	
 DTU	
 Nanotech]DTU COMPUTE cyber-physical systems 62

microfluidic technologies

DTU COMPUTE cyber-physical systems 63

Krisna Bhargava, USC Viterbi School of Engineering

3D printed
microfluidics

DTU COMPUTE cyber-physical systems 64

Paper-based microfluidic

digital microfluidics

DTU COMPUTE cyber-physical systems 66

Digital microfluidic design

DTU COMPUTE cyber-physical systems 67

Biochemical application

5

21

7

sink

source

In S1

dilute

In S3

In B

6

43
In S2 In R2

mix

dilute

In B
98

dilute

In B mix In S2

10 11

12 13

module Operation Area	

(cells)

Time	
 (sec)

M1 Mixing 2x4 3

M2 Mixing 2x2 4

D1 Dilution 2x4 4

D2 Dilution 2x2 5

library	
 L
application	
 G

array	
 C

Mapping biochemical applications
onto microfluidic biochips

• Allocation A
– Determine modules Mk from library L

• Binding B
– Assign each operation Oi to a module Mk

• Schedule S
– Determine start time ti

start of each operation Oi

• Placement P
– Place modules on the m × n array

• Synthesis Ψ
– Given <G, C, L>, find Ψ = <A,B,S,P> which

minimize the schedule length δG

D1(4) M1(3)

D1(4)D1(4)

M2(4)

Scheduling

5

21

7

sink

source

In S1

In S3

In B

6

43
In S2 In R2

In B
98

In B In S2

10 11

12 13

S6

5

7

12

13

t t+4 t+8

M1

D1

M2

D1

D1

t

t+4

Scheduling

5

t+3

7
13

12

S

Overlapping	
 modules

Concurrent	

biochemical	

applications	

6
5

7
12
13

t t+4 t+8

M1

D1

M2

D1
D1

5

6

S

t+11t+7t+4

D2
D2

5

6

S

7
12 13

S
6

5
7
12

13

t t+4

M1

D1

M2

D1
D1

t+7 t+11 t+15

t

Scheduling with placement

t+8

D2
D2

5

7

S
6

5
7

12
13

t t+4

M1

D1

M2

D2
D2

t+8 t+11 t+15

t

t+4

S12

13 6

12

13

Scheduling with placement

5

t

t
D2

Scheduling with dynamic
placement

D2

5
6
5

7
12
13

t t+4

M1

D1

M2

D2
D2

t+9 t+15

t+4 t+8

12

13

12

13

7

D2 6

6

module-based design tasks
Allocation

Binding & Scheduling Placement & Routing

routing-based synthesis

routing-based synthesis

O7

O8

O9

routing-based synthesis

routing-based synthesis

routing-based synthesis

routing-based synthesis

routing-based synthesis

routing-based synthesis

routing-based synthesis

routing-based synthesis

routing-based synthesis

routing-based synthesis

when will the operations
complete?

• For module-based synthesis
we know the completion time
from the module library.

• But now there are no
modules, the droplets can
move anywhere.
– How can we find out the

operation completion times?

characterizing operations

• If the droplet does not
move: very slow mixing by
diffusion

• If the droplet moves, how
long does it take to
complete?

• Mixing percentages:
p0, p90, p180 ?

characterizing operations

• We know how long an
operation takes on modules

• Starting from this, can
determine the percentages?

decomposing modules
Safe,	
 conservative	
 estimates

p90 = 0.1%, p180 = -0.5%,
p0 = 0.29% and 0.58%

Moving	
 a	
 droplet	
 one	
 cell	
 takes	
 0.01	
 s.

routing-based synthesis

(a) Schedule (b) Placement at t = 0.03 (c) t ∈ (0.03, 2.20] (d) t = 2.28 (e) t ∈ (2.28, 4.34]

Figure 5: Routing-based synthesis example

Another reason for the reduction of δG is the increase in the num-
ber of electrodes used for forward movement. As discussed in Sec-
tion 2.3, forward movement reduces flow reversibility inside the
droplet, leading to a faster completion of the reconfigurable opera-
tions, such as mixing and dilution.

4. ROUTING-BASED SYNTHESIS
The problem presented in the previous section is NP-complete [4].

Our strategy is derived from GRASP [7] and decides the routes R
taken by droplets during the execution of reconfigurable operations.
The allocation, binding and scheduling for non-reconfigurable op-
erations are decided using a greedy approach when these operations
are needed by the synthesis of reconfigurable operations.
The proposed algorithm is presented in Fig. 6 and takes as input

the application graph G, the biochip array C and the percentages of
mixing during droplet movement µ = {p01, p

0
2, p

90, p180}, and pro-
duces an implementation Ψ = < A, B, S, P,R >, which minimizes
the schedule length δG.
Let us first discuss the synthesis of routes R for the reconfig-

urable operations. At each time t, a set of droplets corresponding
to currently executing reconfigurable operations are present on the
microfluidic array. A droplet can be in one of the two states: (1)
merge — when it needs to come into contact with another droplet;
and (2) mix — when it performs a mixing or dilution operation.
For example, the droplets corresponding to operations O3 and O4

in Fig. 5b are in the merge state, as they need to be routed to a
common location on the array in order to form the droplet corre-
sponding to the operation O8. Once it is formed, the O8 droplet
is routed on a sequence of electrodes until the mixing operation is
completed. Thus, we say that in Fig. 5c the droplet corresponding
to operation O8 is in the mix state.
We use two lists, Lmerge and Lmix, to capture the operations that

are performed on the microfluidic array at time t and are in the
merge and mix states, respectively. Lmerge is initialized by consid-
ering the operations in the graph that are ready to be scheduled
(line 4). The list Lmix is initially empty (line 5).
The main part of the algorithm is the while loop, lines 6–32,

which terminates when all operations have finished. In each iter-
ation, we increment the current time tcurrent (line 31) and perform
the following three steps: (1) We decide the new positions of the
droplets present on the chip at tcurrent, i.e.,Oi ∈ Lmerge∪Lmix (lines 7–
10); (2) In the second step, we introduce droplets on the array in
the mix state, in case their predecessor droplets have merged on the
chip (lines 11–19); (3) Finally, when the reconfigurable operations
have finished executing (the droplets are mixed or diluted), we re-
member the finishing time (line 22) and put the resulting droplets
in the merge state (line 29).

RoutingBasedSynthesis(G, C, µ)

1 tcurrent = 0
2 tstartOi

= 0, ∀Oi ∈ G

3 t
f inish

Oi
= 0, ∀Oi ∈ G

4 Lmerge = ConstructMergeList(G)
5 Lmix = ∅

6 while ∃Oi ∈ G ∧ t
f inish

Oi
= 0 do

7 // Step 1: move droplets present on the array
8 for all Oi ∈ Lmerge ∪ Lmix do
9 PerformMove(Oi, C, R)
10 end for
11 // Step 2: if droplet finished merging
12 for all Oi ∈ Lmerge ∧ Oi is merged do
13 // update Lmerge

14 Remove(Oi, Lmerge)
15 // schedule successors
16 ScheduleSuccessors(Oi)
17 // update Lmix

18 Add(Oi, Lmix)
19 end for
20 // Step 3: if droplet finished mixing
21 for all Oi ∈ Lmix ∧ Oi is mixed do
22 t

f inish

Oi
= tcurrent

23 // update Lmix

24 Remove(Oi, Lmix)
25 if Oi is a dilution operation then
26 ScheduleSuccessors(Oi)
27 end if
28 // update Lmerge

29 Add(Oi, Lmerge)
30 end for
31 tcurrent = tcurrent + 1
32 end while
33 return Ψ

Figure 6: Routing-based synthesis for DMBs

Let us present each step in more detail. In step 1, for each droplet
present on the microfluidic array, we have to decide the next posi-
tion (line 9). There is a large number of position combinations
that has to be considered. We take the decision individually for
each droplet, using the PerformMove function which takes as in-
put the reconfigurable operation Oi, the biochip array C and the
current routes R. We use a randomized greedy approach similar
to GRASP: for each droplet we construct a Restricted Candidate
List (RCL), containing the three best feasible moves to be per-
formed. Then, a move from the RCL is randomly selected and the

(a) Schedule (b) Placement at t = 0.03 (c) t ∈ (0.03, 2.20] (d) t = 2.28 (e) t ∈ (2.28, 4.34]

Figure 5: Routing-based synthesis example

Another reason for the reduction of δG is the increase in the num-
ber of electrodes used for forward movement. As discussed in Sec-
tion 2.3, forward movement reduces flow reversibility inside the
droplet, leading to a faster completion of the reconfigurable opera-
tions, such as mixing and dilution.

4. ROUTING-BASED SYNTHESIS
The problem presented in the previous section is NP-complete [4].

Our strategy is derived from GRASP [7] and decides the routes R
taken by droplets during the execution of reconfigurable operations.
The allocation, binding and scheduling for non-reconfigurable op-
erations are decided using a greedy approach when these operations
are needed by the synthesis of reconfigurable operations.
The proposed algorithm is presented in Fig. 6 and takes as input

the application graph G, the biochip array C and the percentages of
mixing during droplet movement µ = {p01, p

0
2, p

90, p180}, and pro-
duces an implementation Ψ = < A, B, S, P,R >, which minimizes
the schedule length δG.
Let us first discuss the synthesis of routes R for the reconfig-

urable operations. At each time t, a set of droplets corresponding
to currently executing reconfigurable operations are present on the
microfluidic array. A droplet can be in one of the two states: (1)
merge — when it needs to come into contact with another droplet;
and (2) mix — when it performs a mixing or dilution operation.
For example, the droplets corresponding to operations O3 and O4

in Fig. 5b are in the merge state, as they need to be routed to a
common location on the array in order to form the droplet corre-
sponding to the operation O8. Once it is formed, the O8 droplet
is routed on a sequence of electrodes until the mixing operation is
completed. Thus, we say that in Fig. 5c the droplet corresponding
to operation O8 is in the mix state.
We use two lists, Lmerge and Lmix, to capture the operations that

are performed on the microfluidic array at time t and are in the
merge and mix states, respectively. Lmerge is initialized by consid-
ering the operations in the graph that are ready to be scheduled
(line 4). The list Lmix is initially empty (line 5).
The main part of the algorithm is the while loop, lines 6–32,

which terminates when all operations have finished. In each iter-
ation, we increment the current time tcurrent (line 31) and perform
the following three steps: (1) We decide the new positions of the
droplets present on the chip at tcurrent, i.e.,Oi ∈ Lmerge∪Lmix (lines 7–
10); (2) In the second step, we introduce droplets on the array in
the mix state, in case their predecessor droplets have merged on the
chip (lines 11–19); (3) Finally, when the reconfigurable operations
have finished executing (the droplets are mixed or diluted), we re-
member the finishing time (line 22) and put the resulting droplets
in the merge state (line 29).

RoutingBasedSynthesis(G, C, µ)

1 tcurrent = 0
2 tstartOi

= 0, ∀Oi ∈ G

3 t
f inish

Oi
= 0, ∀Oi ∈ G

4 Lmerge = ConstructMergeList(G)
5 Lmix = ∅

6 while ∃Oi ∈ G ∧ t
f inish

Oi
= 0 do

7 // Step 1: move droplets present on the array
8 for all Oi ∈ Lmerge ∪ Lmix do
9 PerformMove(Oi, C, R)
10 end for
11 // Step 2: if droplet finished merging
12 for all Oi ∈ Lmerge ∧ Oi is merged do
13 // update Lmerge

14 Remove(Oi, Lmerge)
15 // schedule successors
16 ScheduleSuccessors(Oi)
17 // update Lmix

18 Add(Oi, Lmix)
19 end for
20 // Step 3: if droplet finished mixing
21 for all Oi ∈ Lmix ∧ Oi is mixed do
22 t

f inish

Oi
= tcurrent

23 // update Lmix

24 Remove(Oi, Lmix)
25 if Oi is a dilution operation then
26 ScheduleSuccessors(Oi)
27 end if
28 // update Lmerge

29 Add(Oi, Lmerge)
30 end for
31 tcurrent = tcurrent + 1
32 end while
33 return Ψ

Figure 6: Routing-based synthesis for DMBs

Let us present each step in more detail. In step 1, for each droplet
present on the microfluidic array, we have to decide the next posi-
tion (line 9). There is a large number of position combinations
that has to be considered. We take the decision individually for
each droplet, using the PerformMove function which takes as in-
put the reconfigurable operation Oi, the biochip array C and the
current routes R. We use a randomized greedy approach similar
to GRASP: for each droplet we construct a Restricted Candidate
List (RCL), containing the three best feasible moves to be per-
formed. Then, a move from the RCL is randomly selected and the

routing-based synthesis

(a) Schedule (b) Placement at t = 0.03 (c) t ∈ (0.03, 2.20] (d) t = 2.28 (e) t ∈ (2.28, 4.34]

Figure 5: Routing-based synthesis example

Another reason for the reduction of δG is the increase in the num-
ber of electrodes used for forward movement. As discussed in Sec-
tion 2.3, forward movement reduces flow reversibility inside the
droplet, leading to a faster completion of the reconfigurable opera-
tions, such as mixing and dilution.

4. ROUTING-BASED SYNTHESIS
The problem presented in the previous section is NP-complete [4].

Our strategy is derived from GRASP [7] and decides the routes R
taken by droplets during the execution of reconfigurable operations.
The allocation, binding and scheduling for non-reconfigurable op-
erations are decided using a greedy approach when these operations
are needed by the synthesis of reconfigurable operations.
The proposed algorithm is presented in Fig. 6 and takes as input

the application graph G, the biochip array C and the percentages of
mixing during droplet movement µ = {p01, p

0
2, p

90, p180}, and pro-
duces an implementation Ψ = < A, B, S, P,R >, which minimizes
the schedule length δG.
Let us first discuss the synthesis of routes R for the reconfig-

urable operations. At each time t, a set of droplets corresponding
to currently executing reconfigurable operations are present on the
microfluidic array. A droplet can be in one of the two states: (1)
merge — when it needs to come into contact with another droplet;
and (2) mix — when it performs a mixing or dilution operation.
For example, the droplets corresponding to operations O3 and O4

in Fig. 5b are in the merge state, as they need to be routed to a
common location on the array in order to form the droplet corre-
sponding to the operation O8. Once it is formed, the O8 droplet
is routed on a sequence of electrodes until the mixing operation is
completed. Thus, we say that in Fig. 5c the droplet corresponding
to operation O8 is in the mix state.
We use two lists, Lmerge and Lmix, to capture the operations that

are performed on the microfluidic array at time t and are in the
merge and mix states, respectively. Lmerge is initialized by consid-
ering the operations in the graph that are ready to be scheduled
(line 4). The list Lmix is initially empty (line 5).
The main part of the algorithm is the while loop, lines 6–32,

which terminates when all operations have finished. In each iter-
ation, we increment the current time tcurrent (line 31) and perform
the following three steps: (1) We decide the new positions of the
droplets present on the chip at tcurrent, i.e.,Oi ∈ Lmerge∪Lmix (lines 7–
10); (2) In the second step, we introduce droplets on the array in
the mix state, in case their predecessor droplets have merged on the
chip (lines 11–19); (3) Finally, when the reconfigurable operations
have finished executing (the droplets are mixed or diluted), we re-
member the finishing time (line 22) and put the resulting droplets
in the merge state (line 29).

RoutingBasedSynthesis(G, C, µ)

1 tcurrent = 0
2 tstartOi

= 0, ∀Oi ∈ G

3 t
f inish

Oi
= 0, ∀Oi ∈ G

4 Lmerge = ConstructMergeList(G)
5 Lmix = ∅

6 while ∃Oi ∈ G ∧ t
f inish

Oi
= 0 do

7 // Step 1: move droplets present on the array
8 for all Oi ∈ Lmerge ∪ Lmix do
9 PerformMove(Oi, C, R)
10 end for
11 // Step 2: if droplet finished merging
12 for all Oi ∈ Lmerge ∧ Oi is merged do
13 // update Lmerge

14 Remove(Oi, Lmerge)
15 // schedule successors
16 ScheduleSuccessors(Oi)
17 // update Lmix

18 Add(Oi, Lmix)
19 end for
20 // Step 3: if droplet finished mixing
21 for all Oi ∈ Lmix ∧ Oi is mixed do
22 t

f inish

Oi
= tcurrent

23 // update Lmix

24 Remove(Oi, Lmix)
25 if Oi is a dilution operation then
26 ScheduleSuccessors(Oi)
27 end if
28 // update Lmerge

29 Add(Oi, Lmerge)
30 end for
31 tcurrent = tcurrent + 1
32 end while
33 return Ψ

Figure 6: Routing-based synthesis for DMBs

Let us present each step in more detail. In step 1, for each droplet
present on the microfluidic array, we have to decide the next posi-
tion (line 9). There is a large number of position combinations
that has to be considered. We take the decision individually for
each droplet, using the PerformMove function which takes as in-
put the reconfigurable operation Oi, the biochip array C and the
current routes R. We use a randomized greedy approach similar
to GRASP: for each droplet we construct a Restricted Candidate
List (RCL), containing the three best feasible moves to be per-
formed. Then, a move from the RCL is randomly selected and the

(a) Schedule (b) Placement at t = 0.03 (c) t ∈ (0.03, 2.20] (d) t = 2.28 (e) t ∈ (2.28, 4.34]

Figure 5: Routing-based synthesis example

Another reason for the reduction of δG is the increase in the num-
ber of electrodes used for forward movement. As discussed in Sec-
tion 2.3, forward movement reduces flow reversibility inside the
droplet, leading to a faster completion of the reconfigurable opera-
tions, such as mixing and dilution.

4. ROUTING-BASED SYNTHESIS
The problem presented in the previous section is NP-complete [4].

Our strategy is derived from GRASP [7] and decides the routes R
taken by droplets during the execution of reconfigurable operations.
The allocation, binding and scheduling for non-reconfigurable op-
erations are decided using a greedy approach when these operations
are needed by the synthesis of reconfigurable operations.
The proposed algorithm is presented in Fig. 6 and takes as input

the application graph G, the biochip array C and the percentages of
mixing during droplet movement µ = {p01, p

0
2, p

90, p180}, and pro-
duces an implementation Ψ = < A, B, S, P,R >, which minimizes
the schedule length δG.
Let us first discuss the synthesis of routes R for the reconfig-

urable operations. At each time t, a set of droplets corresponding
to currently executing reconfigurable operations are present on the
microfluidic array. A droplet can be in one of the two states: (1)
merge — when it needs to come into contact with another droplet;
and (2) mix — when it performs a mixing or dilution operation.
For example, the droplets corresponding to operations O3 and O4

in Fig. 5b are in the merge state, as they need to be routed to a
common location on the array in order to form the droplet corre-
sponding to the operation O8. Once it is formed, the O8 droplet
is routed on a sequence of electrodes until the mixing operation is
completed. Thus, we say that in Fig. 5c the droplet corresponding
to operation O8 is in the mix state.
We use two lists, Lmerge and Lmix, to capture the operations that

are performed on the microfluidic array at time t and are in the
merge and mix states, respectively. Lmerge is initialized by consid-
ering the operations in the graph that are ready to be scheduled
(line 4). The list Lmix is initially empty (line 5).
The main part of the algorithm is the while loop, lines 6–32,

which terminates when all operations have finished. In each iter-
ation, we increment the current time tcurrent (line 31) and perform
the following three steps: (1) We decide the new positions of the
droplets present on the chip at tcurrent, i.e.,Oi ∈ Lmerge∪Lmix (lines 7–
10); (2) In the second step, we introduce droplets on the array in
the mix state, in case their predecessor droplets have merged on the
chip (lines 11–19); (3) Finally, when the reconfigurable operations
have finished executing (the droplets are mixed or diluted), we re-
member the finishing time (line 22) and put the resulting droplets
in the merge state (line 29).

RoutingBasedSynthesis(G, C, µ)

1 tcurrent = 0
2 tstartOi

= 0, ∀Oi ∈ G

3 t
f inish

Oi
= 0, ∀Oi ∈ G

4 Lmerge = ConstructMergeList(G)
5 Lmix = ∅

6 while ∃Oi ∈ G ∧ t
f inish

Oi
= 0 do

7 // Step 1: move droplets present on the array
8 for all Oi ∈ Lmerge ∪ Lmix do
9 PerformMove(Oi, C, R)
10 end for
11 // Step 2: if droplet finished merging
12 for all Oi ∈ Lmerge ∧ Oi is merged do
13 // update Lmerge

14 Remove(Oi, Lmerge)
15 // schedule successors
16 ScheduleSuccessors(Oi)
17 // update Lmix

18 Add(Oi, Lmix)
19 end for
20 // Step 3: if droplet finished mixing
21 for all Oi ∈ Lmix ∧ Oi is mixed do
22 t

f inish

Oi
= tcurrent

23 // update Lmix

24 Remove(Oi, Lmix)
25 if Oi is a dilution operation then
26 ScheduleSuccessors(Oi)
27 end if
28 // update Lmerge

29 Add(Oi, Lmerge)
30 end for
31 tcurrent = tcurrent + 1
32 end while
33 return Ψ

Figure 6: Routing-based synthesis for DMBs

Let us present each step in more detail. In step 1, for each droplet
present on the microfluidic array, we have to decide the next posi-
tion (line 9). There is a large number of position combinations
that has to be considered. We take the decision individually for
each droplet, using the PerformMove function which takes as in-
put the reconfigurable operation Oi, the biochip array C and the
current routes R. We use a randomized greedy approach similar
to GRASP: for each droplet we construct a Restricted Candidate
List (RCL), containing the three best feasible moves to be per-
formed. Then, a move from the RCL is randomly selected and the

routing- vs. module-based
synthesis

Module-­‐Based	
 SynthesisRouting-­‐Based	
 Synthesis

OpenDrop

DTU COMPUTE cyber-physical systems 95

digital microfluidics on paper!

DTU COMPUTE cyber-physical systems 96

summary part 1

• microelectronic

• microfluidic
– continous flow microfluidics
biochips

– on-chip control
– digital microfluidics biochips

DTU COMPUTE cyber-physical systems 97

part 2

• micromolecular systems

DTU COMPUTE cyber-physical systems 98

biochip books

• fault-tolerant digital microfluidic
biochips
– Paul Pop, Mirela Alistart,
Elena Stuart, Jan Madsen

– Springer 2015

• Microfluidic very large scale integration
(VLSI): modeling, simulation, testing,
compilation and physical synthesis
– Paul Pop,Wajid Hassan Minhass,
Jan Madsen, Seetal Potluri

– Springer 2016

DTU COMPUTE cyber-physical systems 99

thank you for your attention!

jama@dtu.dk

