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microelectronics
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microelectronics

1947: 1 2008: 47.000.000

2014: 20.000.000.000

1971: 2.300
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smaller, faster, cheaper

DTU COMPUTE cyber-physical systems 6



programming

DTU COMPUTE 7

BC = A + B design 01100101101

R

cyber-physical systems

T



programming

DTU COMPUTE 8

B

T

design

R

SOLUTION

?

?

cyber-physical systems



part 1

• microfluidics
– motivation
– technology
– design
– applications
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microfluidics
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biochemical computing –
why?

• Biotech
– DNA analysis

• Medicine
– Clinical diagnosis
– Therapeutics

• Ecology
– Monitoring the quality of air/water/food

• Pharmacy
– Screening
– Synthesis of new drugs
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biolab
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smaller fluid volumes

4 mL of PCR master mix

$191

100 reactions at 50 µL 
each =
$1.91 / reaction

1000 reactions at 5 µL 
each =
$0.19 / reaction



smaller sample sizes

Milliliters Microliters



faster reactions

1/2 the size

1/8 the volume

8x the concentration!

64x faster!!!



size matters!
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Size matters!

1 Liter – kitchen-sized fluidics!
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Size matters!

Volume of a poppy seed

What’s a microliter? 1/1.000.000’th of a Liter
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Size matters!

1/1000th the volumen of a poppy seed

What’s a nanoliter? Volume of a laser-printed period
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Size matters

1/1000th the volumen of a printed period

What’s a picoliter? Volume of a human cell

1/1000th the volumen of a human cell

What’s a femtoliter? Volume of a bacteria
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miniaturization
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computer v.s. biochip

Science 18 October 2002: Vol. 298 no. 5593 pp. 580-584Intel 4004 4-bit 10um, 2.300 transistors

1971 – 2.300 transistors 2002 – 2.056 valves
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microfluidic technology
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microfluidics

Microfluidic	  valve
(6 × 6 µm2)

1.000.000	  valves	  /	  cm2
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switch configurations
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Biochip Architecture

Microfluidic	  mixer

Microfluidic	  very	  
large	  scale	  

integration	  (mVLSI)

Valves	  combined	  to	  form	  more	  
complex	  units,	  e.g,	  switches,	  mixers,	  
multiplexers,	  micropumps.
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Biochip Architecture
Microfluidic	  mixer
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[http://groups.csail.mit.edu/cag/biostream/]

microfluidics
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Microfluidic Mixer: 
Operational Phases
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microfluidic storage device

http://groups.csail.mit.edu/cag/biostream/
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Flow-Based Biochip 
Architecture

Schematic view Functional view
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microfluidic design
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microfluidic design
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Biocoder

?



Application and Platform 
Models



Flow paths in the architecture

?



Flow paths in the 
architecture

• Fluid transport latencies are comparable to operation 

execution times

• Handling communication is important!

• Enumerate flow paths in the architecture



F1

F3

• A flow path is 
reserved until 
completion of the 
operation, resulting 
in routing constraints

Flow paths



F15F14
Scheduling

F19

?



Scheduling
F30-1

F26-1

A composite route



microfluidic control
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microfluidic control
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challenge

the pretty picture the reality!
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off-chip control
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Minimize number of control pins



control synthesis

• Scheduling determines when valves are to be switch 
on/off

• Control synthesis layouts the control flow layer
• Sharing of control lines?



control synthesis

Could be green!

But if all X=0, we can 
remove the control of 

this valve

2

3



control synthesis



did we solve the problem?
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on-chip control?
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Monolithic membrane valves

Grover,  W.  H.,  Skelley,  A.  M.,  Liu,  C.  N.,  Lagally,  E.  T.,  &  Mathies,  R.  A.  (2003).  Monolithic  membrane  valves  and  diaphragm  pumps  for  practical  large-scale  integration  into  glass  microfluidic  devices.  
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Monolithic membrane valves
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W.H.	  Grover	  et	  al.,	  Sensors	  and	  Actuators	  B 89,	  315	  (2003).
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integration
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Integration

[Courtesy,	  Winnie	  Svendsen,	  NaBIS,	  DTU	  Nanotech]DTU COMPUTE cyber-physical systems 62



microfluidic technologies
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Krisna Bhargava, USC Viterbi School of Engineering

3D printed 
microfluidics
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Paper-based microfluidic 



digital microfluidics
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Digital microfluidic design
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Biochemical application
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Mapping biochemical applications 
onto microfluidic biochips  

• Allocation A
– Determine modules Mk from library L

• Binding B
– Assign each operation Oi to a module Mk

• Schedule S
– Determine start time ti

start of each operation Oi

• Placement P
– Place modules on the m × n array

• Synthesis Ψ
– Given <G, C, L>, find Ψ = <A,B,S,P> which

minimize the schedule length δG
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D1(4)D1(4)

M2(4)

Scheduling
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module-based design tasks
Allocation

Binding  &  Scheduling Placement  &  Routing



routing-based synthesis



routing-based synthesis

O7

O8

O9
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routing-based synthesis



when will the operations 
complete?

• For module-based synthesis 
we know the completion time 
from the module library.

• But now there are no 
modules, the droplets can 
move anywhere. 
– How can we find out the 

operation completion times?



characterizing operations

• If the droplet does not 
move: very slow mixing by 
diffusion

• If the droplet moves, how 
long does it take to 
complete?

• Mixing percentages:
p0,  p90,  p180  ?



characterizing operations

• We know how long an 
operation takes on modules

• Starting from this, can 
determine the percentages?



decomposing modules
Safe,	   conservative	   estimates

p90 = 0.1%,     p180 = -0.5%, 
p0 = 0.29%   and 0.58%

Moving	  a	  droplet	  one	  cell	   takes	  0.01	  s.



routing-based synthesis

(a) Schedule (b) Placement at t = 0.03 (c) t ∈ (0.03, 2.20] (d) t = 2.28 (e) t ∈ (2.28, 4.34]

Figure 5: Routing-based synthesis example

Another reason for the reduction of δG is the increase in the num-
ber of electrodes used for forward movement. As discussed in Sec-
tion 2.3, forward movement reduces flow reversibility inside the
droplet, leading to a faster completion of the reconfigurable opera-
tions, such as mixing and dilution.

4. ROUTING-BASED SYNTHESIS
The problem presented in the previous section is NP-complete [4].

Our strategy is derived from GRASP [7] and decides the routes R
taken by droplets during the execution of reconfigurable operations.
The allocation, binding and scheduling for non-reconfigurable op-
erations are decided using a greedy approach when these operations
are needed by the synthesis of reconfigurable operations.
The proposed algorithm is presented in Fig. 6 and takes as input

the application graph G, the biochip array C and the percentages of
mixing during droplet movement µ = {p01, p

0
2, p

90, p180}, and pro-
duces an implementation Ψ = < A, B, S, P,R >, which minimizes
the schedule length δG.
Let us first discuss the synthesis of routes R for the reconfig-

urable operations. At each time t, a set of droplets corresponding
to currently executing reconfigurable operations are present on the
microfluidic array. A droplet can be in one of the two states: (1)
merge — when it needs to come into contact with another droplet;
and (2) mix — when it performs a mixing or dilution operation.
For example, the droplets corresponding to operations O3 and O4

in Fig. 5b are in the merge state, as they need to be routed to a
common location on the array in order to form the droplet corre-
sponding to the operation O8. Once it is formed, the O8 droplet
is routed on a sequence of electrodes until the mixing operation is
completed. Thus, we say that in Fig. 5c the droplet corresponding
to operation O8 is in the mix state.
We use two lists, Lmerge and Lmix, to capture the operations that

are performed on the microfluidic array at time t and are in the
merge and mix states, respectively. Lmerge is initialized by consid-
ering the operations in the graph that are ready to be scheduled
(line 4). The list Lmix is initially empty (line 5).
The main part of the algorithm is the while loop, lines 6–32,

which terminates when all operations have finished. In each iter-
ation, we increment the current time tcurrent (line 31) and perform
the following three steps: (1) We decide the new positions of the
droplets present on the chip at tcurrent, i.e.,Oi ∈ Lmerge∪Lmix (lines 7–
10); (2) In the second step, we introduce droplets on the array in
the mix state, in case their predecessor droplets have merged on the
chip (lines 11–19); (3) Finally, when the reconfigurable operations
have finished executing (the droplets are mixed or diluted), we re-
member the finishing time (line 22) and put the resulting droplets
in the merge state (line 29).

RoutingBasedSynthesis(G, C, µ)

1 tcurrent = 0
2 tstartOi

= 0, ∀Oi ∈ G

3 t
f inish

Oi
= 0, ∀Oi ∈ G

4 Lmerge = ConstructMergeList(G)
5 Lmix = ∅

6 while ∃Oi ∈ G ∧ t
f inish

Oi
= 0 do

7 // Step 1: move droplets present on the array
8 for all Oi ∈ Lmerge ∪ Lmix do
9 PerformMove(Oi, C, R)
10 end for
11 // Step 2: if droplet finished merging
12 for all Oi ∈ Lmerge ∧ Oi is merged do
13 // update Lmerge

14 Remove(Oi, Lmerge)
15 // schedule successors
16 ScheduleSuccessors(Oi)
17 // update Lmix

18 Add(Oi, Lmix)
19 end for
20 // Step 3: if droplet finished mixing
21 for all Oi ∈ Lmix ∧ Oi is mixed do
22 t

f inish

Oi
= tcurrent

23 // update Lmix

24 Remove(Oi, Lmix)
25 if Oi is a dilution operation then
26 ScheduleSuccessors(Oi)
27 end if
28 // update Lmerge

29 Add(Oi, Lmerge)
30 end for
31 tcurrent = tcurrent + 1
32 end while
33 return Ψ

Figure 6: Routing-based synthesis for DMBs

Let us present each step in more detail. In step 1, for each droplet
present on the microfluidic array, we have to decide the next posi-
tion (line 9). There is a large number of position combinations
that has to be considered. We take the decision individually for
each droplet, using the PerformMove function which takes as in-
put the reconfigurable operation Oi, the biochip array C and the
current routes R. We use a randomized greedy approach similar
to GRASP: for each droplet we construct a Restricted Candidate
List (RCL), containing the three best feasible moves to be per-
formed. Then, a move from the RCL is randomly selected and the
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taken by droplets during the execution of reconfigurable operations.
The allocation, binding and scheduling for non-reconfigurable op-
erations are decided using a greedy approach when these operations
are needed by the synthesis of reconfigurable operations.
The proposed algorithm is presented in Fig. 6 and takes as input

the application graph G, the biochip array C and the percentages of
mixing during droplet movement µ = {p01, p

0
2, p

90, p180}, and pro-
duces an implementation Ψ = < A, B, S, P,R >, which minimizes
the schedule length δG.
Let us first discuss the synthesis of routes R for the reconfig-

urable operations. At each time t, a set of droplets corresponding
to currently executing reconfigurable operations are present on the
microfluidic array. A droplet can be in one of the two states: (1)
merge — when it needs to come into contact with another droplet;
and (2) mix — when it performs a mixing or dilution operation.
For example, the droplets corresponding to operations O3 and O4

in Fig. 5b are in the merge state, as they need to be routed to a
common location on the array in order to form the droplet corre-
sponding to the operation O8. Once it is formed, the O8 droplet
is routed on a sequence of electrodes until the mixing operation is
completed. Thus, we say that in Fig. 5c the droplet corresponding
to operation O8 is in the mix state.
We use two lists, Lmerge and Lmix, to capture the operations that

are performed on the microfluidic array at time t and are in the
merge and mix states, respectively. Lmerge is initialized by consid-
ering the operations in the graph that are ready to be scheduled
(line 4). The list Lmix is initially empty (line 5).
The main part of the algorithm is the while loop, lines 6–32,

which terminates when all operations have finished. In each iter-
ation, we increment the current time tcurrent (line 31) and perform
the following three steps: (1) We decide the new positions of the
droplets present on the chip at tcurrent, i.e.,Oi ∈ Lmerge∪Lmix (lines 7–
10); (2) In the second step, we introduce droplets on the array in
the mix state, in case their predecessor droplets have merged on the
chip (lines 11–19); (3) Finally, when the reconfigurable operations
have finished executing (the droplets are mixed or diluted), we re-
member the finishing time (line 22) and put the resulting droplets
in the merge state (line 29).

RoutingBasedSynthesis(G, C, µ)

1 tcurrent = 0
2 tstartOi

= 0, ∀Oi ∈ G

3 t
f inish

Oi
= 0, ∀Oi ∈ G

4 Lmerge = ConstructMergeList(G)
5 Lmix = ∅

6 while ∃Oi ∈ G ∧ t
f inish

Oi
= 0 do

7 // Step 1: move droplets present on the array
8 for all Oi ∈ Lmerge ∪ Lmix do
9 PerformMove(Oi, C, R)
10 end for
11 // Step 2: if droplet finished merging
12 for all Oi ∈ Lmerge ∧ Oi is merged do
13 // update Lmerge

14 Remove(Oi, Lmerge)
15 // schedule successors
16 ScheduleSuccessors(Oi)
17 // update Lmix

18 Add(Oi, Lmix)
19 end for
20 // Step 3: if droplet finished mixing
21 for all Oi ∈ Lmix ∧ Oi is mixed do
22 t

f inish

Oi
= tcurrent

23 // update Lmix

24 Remove(Oi, Lmix)
25 if Oi is a dilution operation then
26 ScheduleSuccessors(Oi)
27 end if
28 // update Lmerge

29 Add(Oi, Lmerge)
30 end for
31 tcurrent = tcurrent + 1
32 end while
33 return Ψ

Figure 6: Routing-based synthesis for DMBs

Let us present each step in more detail. In step 1, for each droplet
present on the microfluidic array, we have to decide the next posi-
tion (line 9). There is a large number of position combinations
that has to be considered. We take the decision individually for
each droplet, using the PerformMove function which takes as in-
put the reconfigurable operation Oi, the biochip array C and the
current routes R. We use a randomized greedy approach similar
to GRASP: for each droplet we construct a Restricted Candidate
List (RCL), containing the three best feasible moves to be per-
formed. Then, a move from the RCL is randomly selected and the
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