

future of advanced cyber-physical microsystems

Professor Jan Madsen DTU Compute Technical University of Denmark $\int \frac{17}{17} e^{i\pi}$ $\int e^{i\pi} e^{i\pi}$

sensor swarm

mobile

cloud

computing

sensor swarm

microsystem

microelectronics

microelectronics

2014: 20.000.000.000

1947: 1

1971: 2.300

2008: 47.000.000

cyber-physical systems

smaller, faster, cheaper

DTU COMPUTE

part 1

DTU

- microfluidics
 - motivation
 - -technology
 - -design
 - applications

microfluidics

biochemical computing - ∰ why?

- Biotech
 - DNA analysis
- Medicine
 - Clinical diagnosis
 - Therapeutics
- Ecology
 - Monitoring the quality of air/water/food
- Pharmacy
 - Screening
 - Synthesis of new drugs

room

table

coin

smaller fluid volumes

4 mL of PCR master mix

\$191

100 reactions at 50 µL
each =
\$1.91 / reaction

1000 reactions at 5 µL
each =
\$0.19 / reaction

smaller sample sizes

Milliliters

Microliters

faster reactions

1/2 the size

1/8 the volume

8x the concentration!

DTU

64x faster!!!

size matters!

Size matters!

1 Liter - kitchen-sized fluidics!

DTU COMPUTE

Size matters!

What's a microliter? 1/1.000.000'th of a Liter/ Volume of a poppy seed

DTU

Size matters!

What's a nanoliter? Volume of a laser-printed period $1/1000^{th}$ the volumen of a poppy seed

DTU

Size matters

What's a picoliter? Volume of a human cell 1/1000th the volumen of a printed period

What's a femtoliter? Volume of a bacteria 1/1000th the volumen of a human cell

DTU COMPUTE

miniaturization

cyber-physical systems

computer v.s. biochip

1971 - 2.300 transistors

Intel 4004 4-bit 10um, 2.300 transistors

2002 – 2.056 valves

Science 18 October 2002: Vol. 298 no. 5593 pp. 580-584

microfluidic technology

microfluidics

switch configurations

DTU

Biochip Architecture

Microfluidic very
large scaleValves combined to form more
complex units, e.g, switches, mixers,
multiplexers, micropumps.

Microfluidic mixer

Biochip Architecture

Microfluidic mixer

microfluidics

Microfluidic Mixer: Operational Phases

(iii) Op1

open
closed

(iv) Op2

Phase	v_1	v_2	<i>v</i> ₃	<i>v</i> ₄	v_5	v_6	v_7	v_8	<i>v</i> 9
1. Ip1	0	0	1	0	0	0	0	0	1
2. Ip2	0	1	0	0	0	0	1	0	0
3. Mix	1	0	0	Mix	Mix	Mix	0	1	0
4. Op1	0	0	1	0	0	0	0	0	1
5. Op2	0	1	0	0	0	0	1	0	0

microfluidic storage device

http://groups.csail.mit.edu/cag/biostream/

Flow-Based Biochip Architecture

Schematic view

Functional view

DTU

microfluidic design

DTU COMPUTE

cyber-physical systems

32

microfluidic design

Biocoder

Plasmid DNA Extraction – Miniprep (Excerpt)

Equipment:

Incubator

o Centrifuge

tubes

Sterile 1.5-ml

Solutions/reagents:

- Rich medium (LB, YT, or Terrific medium) containing appropriate antibiotic Alkaline Lysis Solution I
- (50 mM Glucose, 25 mM Tris-HC (pH 8.0), 10 mM EDTA (pH 8.0))
- freshly prepared Alkaline Lysis Solution II (0.2 N NaOH, 1% SDS (w/v))
- Alkaline Lysis Solution III (5 M sodium acetate, glacial acetic acid)
- a single colony of transformed bacteria

Steps:

1. Preparation of cells

Inoculate 2 ml Rich medium (LB, YT, or Terrific medium) containing appropriate antibiotic with a single colony of transformed bacteria and incubate with shaking for 12 hrs (overnight) at 37°C.

2. Measure out 1.5 ml of culture into sterile 1.5-ml microcentrifuge tube. Centrifuge at maximum speed for 30 secs at 4°C; gently aspirate out the supernatant and discard it. Leave the pellet as dry as possible.

3. Lysis of Cells

Add 100 µl of Alkaline Lysis Solution I. Resuspend pellet by vortexing or by shaking vigorously.

4. Add 200 µl of freshly prepared Alkaline Lysis Solution II. Close the tube tightly and invert the tube 5 times. Do not vortex! Store the tube on ice.

Application and Platform Models

Table 2: Component Library (L): Flow Layer Model

		Execution
Component	Phases (P)	Time (<i>C</i>)
Mixer	Ip1/ Ip2/ Mix / Op1/ Op2	0.5s
Filter	Ip/ Filter/ Op1/ Op2	20s
Detector	Ip/ Detect / op	5s
Separator	Ip1/ Ip2/ Separate/ Op1/ Op2	140s
Heater	Ip/ Heat/ Op	20° C/s

Flow paths in the architecture

Flow paths in the architecture

- Fluid transport latencies are comparable to operation execution times
- Handling communication is important!
- Enumerate flow paths in the architecture

$F_1 = (In_1, S_1, Mixer_1), 2 s$	$F_{18} = (Mixer_2, S_6, S_7, S_8, S_{10}, Out_1), 3.5 \text{ s}$	Routing Constraints:
$F_2 = (In_1, S_1, S_2, Mixer_2), 2.5 \text{ s}$	$F_{19} = (Mixer_3, S_7, S_6, S_5, Out_2, 3 s)$	-
$F_3 = (In_1, S_1, S_2, S_3, Mixer_3), 3 s$	$F_{20} = (Mixer_3, S_7, S_6, S_5, Heater_1), 3 s$	$F_1: F_2 \vee F_3 \vee F_4 \vee F_7 \vee F_{24}$
$F_4 = (In_2, S_4, S_3, S_2, S_1, Mixer_1), 3.5 \text{ s}$	$F_{21} = (Mixer_3, S_7, Filter_1), 2 s$	$F_2: F_1 \lor F_3 \lor F_4 \lor F_5 \lor F_7 \lor F_{24} \lor F_{25}$
$F_5 = (In_2, S_4, S_3, S_2, Mixer_2), 3 s$	$F_{22-x} = (Mixer_3, S_7, S_8, Storage-8), 2.5 s$	$F_3: F_1 \vee F_2 \vee F_4 \vee F_5 \vee F_6 \vee F_7 \vee F_{24}$
$F_6 = (In_2, S_4, S_3, Mixer_3), 2.5 \text{ s}$	$F_{23} = (Mixer_3, S_7, S_8, S_{10}, Out_1), 3 \text{ s}$	$\vee F_{25} \vee F_{26}$
$F_{7-x} = (In_1, S_1, S_2, S_3, S_4, Storage-8), 3.5 s$	$F_{24-x} = (Storage-8, S_4, S_3, S_2, S_1, Mixer_1), 3.5 \text{ s}$	$F_4: F_1 \vee F_2 \vee F_3 \vee F_5 \vee F_6 \vee F_7 \vee F_8$
$F_{8-x} = (In_2, S_4, Storage-8), 2 s$	$F_{25-x} = (Storage-8, S_4, S_3, S_2, Mixer_2, 3 s)$	$\vee F_{24} \vee F_{25} \vee F_{26}$
$F_9 = (Mixer_1, S_5, Out_2), 2 s$	$F_{26-x} = (Storage-8, S_4, S_3, Mixer_3), 2.5 \text{ s}$	$F_5: F_2 \vee F_3 \vee F_4 \vee F_6 \vee F_7 \vee F_8 \vee F_{24}$
$F_{10} = (Mixer_1, S_5, Heater_1), 2 s$	$F_{27-x} = (Storage-8, S_8, S_7, S_6, S_5, Heater_1), 3.5 s$	$\vee F_{25} \vee F_{26} \vee F_{27}$
$F_{11} = (Mixer_1, S_5, S_6, S_7, Filter_1), 3 s$	$F_{28-x} = (Storage-8, S_8, S_7, Filter_1), 2.5 s$	$F_6: F_3 \lor F_4 \lor F_5 \lor F_7 \lor F_8 \lor F_{24} \lor F_{25}$
$F_{12-x} = (Mixer_1, S_5, S_6, S_7, S_8, Storage-8), 3.5 s$	$F_{29-x} = (Storage-8, S_8, S_{10}, Out_1), 2.5 \text{ s}$	$\vee F_{26}$
$F_{13} = (Mixer_1, S_5, S_6, S_7, S_8, S_{10}, Out_1), 4 s$	$F_{30-x} = (Heater_1, S_9, S_{10}, S_8, Storage-8), 3 s$	$F_7: F_1 \vee F_2 \vee F_3 \vee F_4 \vee F_5 \vee F_6 \vee F_8$
$F_{14} = (Mixer_2, S_6, S_5, Out_2), 2.5 \text{ s}$	$F_{31} = (Heater_1, S_9, S_{10}, Out_1), 2.5 \text{ s}$	$\vee F_{24} \vee F_{25} \vee F_{26}$
$F_{15} = (Mixer_2, S_6, S_5, Heater_1), 2.5 \text{ s}$	$F_{32-x} = (Filter_1, S_9, S_{10}, S_8, Storage-8), 3 s$	
$F_{16} = (Mixer_2, S_6, S_7, Filter_1), 2.5 \text{ s}$	$F_{33} = (Filter_1, S_9, S_{10}, Out_1), 2.5 \text{ s}$	$F_{33}: F_{13} \lor F_{18} \lor F_{23} \lor F_{29} \lor F_{30} \lor F_{31}$
$F_{17-x} = (Mixer_2, S_6, S_7, S_8, Storage-8), 3 s$		$\vee F_{32}$

Flow paths _{In}

 A flow path is reserved until completion of the operation, resulting in routing constraints

$F_1 = (In_1, S_1, Mixer_1), 2 \text{ s}$	$F_{18} = (Mixer_2, S_6, S_7, S_8, S_{10}, Out_1), 3.5 \text{ s}$	Routing Constraints:
$F_2 = (In_1, S_1, S_2, Mixer_2), 2.5 \text{ s}$	$F_{19} = (Mixer_3, S_7, S_6, S_5, Out_2, 3 s)$	
$F_3 = (In_1, S_1, S_2, S_3, Mixer_3), 3 \text{ s}$	$F_{20} = (Mixer_3, S_7, S_6, S_5, Heater_1), 3 s$	$F_1: F_2 \vee F_3 \vee F_4 \vee F_7 \vee F_{24}$
$F_4 = (In_2, S_4, S_3, S_2, S_1, Mixer_1), 3.5 \text{ s}$	$F_{21} = (Mixer_3, S_7, Filter_1), 2 s$	$F_2: F_1 \lor F_3 \lor F_4 \lor F_5 \lor F_7 \lor F_{24} \lor F_{25}$
$F_5 = (In_2, S_4, S_3, S_2, Mixer_2), 3 s$	$F_{22-x} = (Mixer_3, S_7, S_8, Storage-8), 2.5 s$	$F_3: F_1 \vee F_2 \vee F_4 \vee F_5 \vee F_6 \vee F_7 \vee F_{24}$
$F_6 = (In_2, S_4, S_3, Mixer_3), 2.5 \text{ s}$	$F_{23} = (Mixer_3, S_7, S_8, S_{10}, Out_1), 3 \text{ s}$	$\vee F_{25} \vee F_{26}$
$F_{7-x} = (In_1, S_1, S_2, S_3, S_4, Storage-8), 3.5 s$	$F_{24-x} = (Storage-8, S_4, S_3, S_2, S_1, Mixer_1), 3.5 \text{ s}$	$F_4: F_1 \vee F_2 \vee F_3 \vee F_5 \vee F_6 \vee F_7 \vee F_8$
$F_{8-x} = (In_2, S_4, Storage-8), 2 s$	$F_{25-x} = (Storage-8, S_4, S_3, S_2, Mixer_2, 3 s)$	$\vee F_{24} \vee F_{25} \vee F_{26}$
$F_9 = (Mixer_1, S_5, Out_2), 2 s$	$F_{26-x} = (Storage-8, S_4, S_3, Mixer_3), 2.5 \text{ s}$	$F_5: F_2 \vee F_3 \vee F_4 \vee F_6 \vee F_7 \vee F_8 \vee F_{24}$
$F_{10} = (Mixer_1, S_5, Heater_1), 2 s$	$F_{27-x} = (Storage-8, S_8, S_7, S_6, S_5, Heater_1), 3.5 s$	$\vee F_{25} \vee F_{26} \vee F_{27}$
$F_{11} = (Mixer_1, S_5, S_6, S_7, Filter_1), 3 s$	$F_{28-x} = (Storage-8, S_8, S_7, Filter_1), 2.5 s$	$F_6: F_3 \lor F_4 \lor F_5 \lor F_7 \lor F_8 \lor F_{24} \lor F_{25}$
$F_{12-x} = (Mixer_1, S_5, S_6, S_7, S_8, Storage-8), 3.5 s$	$F_{29-x} = (Storage-8, S_8, S_{10}, Out_1), 2.5 \text{ s}$	$\vee F_{26}$
$F_{13} = (Mixer_1, S_5, S_6, S_7, S_8, S_{10}, Out_1), 4 s$	$F_{30-x} = (Heater_1, S_9, S_{10}, S_8, Storage-8), 3 s$	$F_7: F_1 \vee F_2 \vee F_3 \vee F_4 \vee F_5 \vee F_6 \vee F_8$
$F_{14} = (Mixer_2, S_6, S_5, Out_2), 2.5 \text{ s}$	$F_{31} = (Heater_1, S_9, S_{10}, Out_1), 2.5 \text{ s}$	\vee $F_{24} \vee$ $F_{25} \vee$ F_{26}
$F_{15} = (Mixer_2, S_6, S_5, Heater_1), 2.5 \text{ s}$	$F_{32-x} = (Filter_1, S_9, S_{10}, S_8, Storage-8), 3 s$	
$F_{16} = (Mixer_2, S_6, S_7, Filter_1), 2.5 \text{ s}$	$F_{33} = (Filter_1, S_9, S_{10}, Out_1), 2.5 \text{ s}$	$F_{33}: F_{13} \lor F_{18} \lor F_{23} \lor F_{29} \lor F_{30} \lor F_{31}$
$F_{17-x} = (Mixer_2, S_6, S_7, S_8, Storage-8), 3 \text{ s}$		$\vee F_{32}$

microfluidic control

microfluidic control

challenge

the pretty picture

the reality!

off-chip control

control synthesis

- Scheduling determines when valves are to be switch on/off
- Control synthesis layouts the control flow layer
- Sharing of control lines?

control synthesis

Valve	Time Steps (s)					
No.	0	2	4	5	8	
1	0	0	Х	Х	0	
2	0	0	1	1	0	
3	0	1	0	0	1	
4	1	0	0	0	0	
5	0	1	0	0	1	
6	0	0	1	1	0	
7	1	0	0	0	0	
8	0	0	Mix	Mix	0	
9	0	0	Mix	Mix	0	
10	0	0	Mix	Mix	0	
27	0	0	Х	Х	Х	
28	0	0	1	1	1	
29	0	1	0	0	0	

Could be green!

But if all X=0, we can remove the control of this valve

control synthesis

did we solve the problem?

on-chip control?

on-chip bubble logic

DTU

Monolithic membrane valves

Monolithic membrane valves

W.H. Grover et al., Sensors and Actuators B 89, 315 (2003).

Tailon Volvo Test Chilp 070214 uku

Carry Out

X2f

Micropneumatic Digital Logic Structures for Integrated Microdevice Computation and Control

Erik C. Jensen, William H. Grover, and Richard A. Mathies

integration

Integration

microfluidic technologies

3D printed microfluidics

DTU COMPUTE

KrisnacyBerarpgavial USSterWsiterbi School of Engineeraing

Paper-based microfluidic

digital microfluidics

Digital microfluidic design

Biochemical application

library \mathcal{L}

module	Operation	Area (cells)	Time (sec)
M1	Mixing	2x4	3
M2	Mixing	2x2	4
D1	Dilution	2x4	4
D2	Dilution	2x2	5

array C

Mapping biochemical applications

- Allocation ${\mathcal A}$
 - Determine modules \mathcal{M}_k from library \mathcal{L}
- Binding ${\mathcal B}$
 - Assign each operation O_i to a module \mathcal{M}_k
- Schedule S
 - Determine start time t_i^{start} of each operation O_i
- Placement \mathcal{P}
 - Place modules on the $m \times n$ array
- Synthesis Ψ
 - Given <G, C, \mathcal{L} >, find $\Psi = \langle \mathcal{A}, \mathcal{B}, \mathcal{S}, \mathcal{P} \rangle$ which minimize the schedule length $\delta_{\mathcal{G}}$

Scheduling

DTU

Scheduling

Overlapping modules

Concurrent biochemical applications

Scheduling with placement

Scheduling with placement

Scheduling with dynamic placement

t+4

7

12

13

t

6

5

D2

module-based design tasks

Allocation

Operation	Area(cells)	Time(s)
Mix/Dlt	2x4	2.8
Mix/Dlt	1x4	4.6
Mix/Dlt	2x3	5.6
Mix/Dlt	2x2	9.96

- For module-based synthesis we know the completion time from the module library.
 - But now there are no modules, the droplets can move anywhere.
 - How can we find out the operation completion times?

characterizing operations[∰]

- If the droplet does not move: very slow mixing by diffusion
- If the droplet moves, how long does it take to complete?
- Mixing percentages:
 p⁰, p⁹⁰, p¹⁸⁰ ?

characterizing operations[∰]

Operation	Area(cells)	Time(s)	•
Mix/Dlt	2x4	2.8	
Mix/Dlt	1x4	4.6	•
Mix/Dlt	2x3	5.6	
Mix/Dlt	2x2	9.96	

- We know how long an operation takes on modules
- Starting from this, can determine the percentages?

decomposing modules

Safe, conservative estimates

 $\begin{array}{rll} p^{90} &=& 0.1\%, & p^{180} = -0.5\%, \\ p^{0} &=& 0.29\% & and & 0.58\% \end{array}$

Operation	Area(cells)	Time(s)
Mix/DIt	2x4	2.8
Mix/Dlt	1x4	4.6
Mix/Dlt	2x3	5.6
Mix/Dlt	2x2	9.96

Moving a droplet one cell takes 0.01 s.

routing- vs. module-based≝

Routing-Based Synthesis

Module-Based Synthesis

OpenDrop

OpenDrop Digital Microfluidics on Printed Circuit Board

digital microfluidics on paper! ₩

summary part 1

• microelectronic

- microfluidic
 - continous flow microfluidics
 biochips
 - -on-chip control
 - -digital microfluidics biochips

part 2

micromolecular systems

biochip books

- fault-tolerant digital microfluidic biochips
 - Paul Pop, Mirela Alistart,
 Elena Stuart, Jan Madsen
 - Springer 2015

Part Meridia Alacar David State State Fault-Tolerant Digital Microfluidic Biochips Frederice and rectors

- Microfluidic very large scale integration (VLSI): modeling, simulation, testing, compilation and physical synthesis
 - Paul Pop,Wajid Hassan Minhass,
 Jan Madsen, Seetal Potluri
 - Springer 2016

thank you for your attention!

jama@dtu.dk

 $f(x+\Delta x) = \sum_{i=0}^{\infty} \frac{(\Delta x)^i}{i!} f^{(i)}(x)$