Seluxit Case Study

Brian Boyles brian@seluxit.com <u>Marco Muñiz</u> muniz@cs.aau.dk

In Collaboration With:

EMSIG Autumn School October 2015

What do we need to consider?

• External environment

- External environment
- Doors opening and closing

- External environment
- Doors opening and closing
- Pipes heating a room may influence other rooms

- External environment
- Doors opening and closing
- Pipes heating a room may influence other rooms
- Constraints on the number of open valves

How does the system currently works?

How does the system currently works?

• Every 15 minutes there is a reading of the room temperatures.

How does the system currently works?

- Every 15 minutes there is a reading of the room temperatures.
- Every 15 minutes a Bang-Bang controller operates the valves.

What is our goal?

What is our goal? Synthetize a near to optimal controller

Stochastic Hybrid Game for Floor Heating

The floor heating for n rooms and m doors is a *stochastic hybrid game*

$$\mathcal{G}_{n,m} = (\mathcal{C}, \mathcal{U}, X, \mathcal{F}, \delta)$$

- C is a controller with controllable modes $V = \{v_1, \ldots, v_n\}$,
- $\mathcal U$ is the environment with uncontrollable modes $D = \{d_1, \ldots, d_m\}$,
- $X = \{T_1, \ldots, T_n\}$ is a finite set of continuous (real-valued) variables,
- $\mathcal{F}_{\nu,d}: \mathbb{R}_{>0} \times \mathbb{R}^X \to \mathbb{R}^X$ is the flow-function for each $\nu \in V$ and $d \in D$,
- δ is a family of density functions, indicating the switching among uncontrollable modes D.

Thermodynamics

The evolution of the room temperatures $\mathcal{F}_{v,d}$ are the solutions to the following differential equations:

$$rac{d}{dt}T_i(t)=\sum_{j=1}^n A^d_{i,j}(T_j(t)-T_i(t))+B_i(T_{ ext{env}}(t)-T_i(t))+H^{ ext{v}}_{j,i}\cdot v_j \ dt$$

Where:

- A^d represents the heat exchange coefficients among the different rooms given the door configuration d,
- *B* represents the heat exchange coefficients between the environment and each room,
- H^{v} represents the heat exchange coefficients among each pipe and the rooms it heats given the valve configuration v,

Optimal Controlling

Given strategy σ^{H} , $\mathcal{G}_{n,m} \upharpoonright \sigma^{H}$ is a stochastic process.

Optimal Controlling

Given strategy σ^{H} , $\mathcal{G}_{n,m} \upharpoonright \sigma^{H}$ is a stochastic process.

Goal

Synthesize a near-optimal strategy σ^H which minimizes the expected distance

 $\sigma^{H} = \operatorname{argmin}_{\sigma} \mathbb{E}^{\mathcal{G}}_{\sigma, H}(\operatorname{dist})$

Optimal Controlling

Given strategy σ^{H} , $\mathcal{G}_{n,m} \upharpoonright \sigma^{H}$ is a stochastic process.

Goal

Synthesize a near-optimal strategy σ^H which minimizes the expected distance

$$\sigma^{H} = \operatorname{argmin}_{\sigma} \mathbb{E}^{\mathcal{G}}_{\sigma,H}(\mathsf{dist})$$

Distance measure the integrated deviation of the current room temperatures wrt. the target temperatures.

$$dist = \int_0^H \sum_i^n (T_i^g - T_i(t))^2 \cdot W_i \ dt$$

• Infinite state space with non-linear continuous dynamics.

- Infinite state space with non-linear continuous dynamics.
- Stochastic non-observable behavior of the doors.

- Infinite state space with non-linear continuous dynamics.
- Stochastic non-observable behavior of the doors.
- There are 2¹¹ choices for the controller every 15 minutes.

- Infinite state space with non-linear continuous dynamics.
- Stochastic non-observable behavior of the doors.
- There are 2¹¹ choices for the controller every 15 minutes.
- The temperature of a room is tightly connected to the temperatures of the other rooms.

- Infinite state space with non-linear continuous dynamics.
- Stochastic non-observable behavior of the doors.
- There are 2¹¹ choices for the controller every 15 minutes.
- The temperature of a room is tightly connected to the temperatures of the other rooms.
- Opening one valve can influence several rooms.

Our Approach

Online Synthesis

Compute a strategy for the near future.

Our Approach

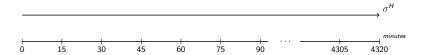
Online Synthesis Compute a strategy for the near future.

Compositional Synthesis

Synthesis for subsets of the controllable actions.

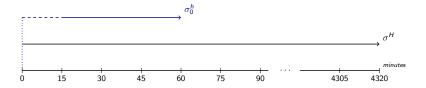
This talk

The Case StudyDescription

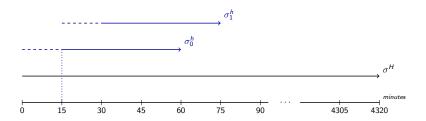

2 Stochastic Hybrid Games

- Thermodynamics
- Challenges

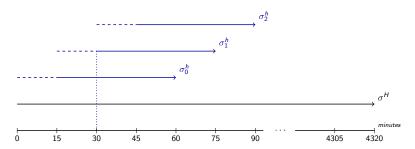
Online Synthesis


4 Compositional Synthesis

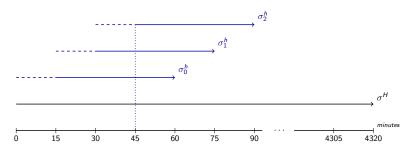
For n rooms, a Horizon H of 3 days and controlling every 15 min.


For n rooms, a Horizon H of 3 days and controlling every 15 min.

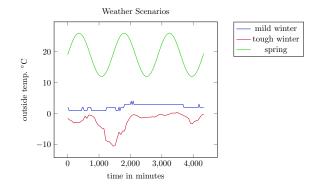
Compute a strategy σ^h for the next 45 min.


For n rooms, a Horizon H of 3 days and controlling every 15 min.

Compute a strategy σ^h for the next 45 min.


For n rooms, a Horizon H of 3 days and controlling every 15 min.

Compute a strategy σ^h for the next 45 min.

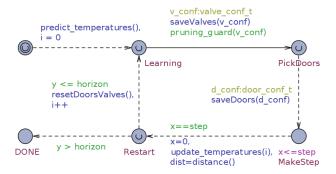

For n rooms, a Horizon H of 3 days and controlling every 15 min.

Compute a strategy σ^h for the next 45 min.

For *n* rooms for the online and offline controllers there are 2^{3n} vs. 2^{288n} decisions.

Scenarios

Situation


- Vacation: T(0) about 14 °C and T^g about 22 °C.
- Stability: $T(0) = T^g$ about 22 °C.

Bang-Bang

- Bang-Bang
- Bang-Bang-Cap-Aware

- Bang-Bang
- Bang-Bang-Cap-Aware
- Brute-Force

- Bang-Bang
- Bang-Bang-Cap-Aware
- Brute-Force
- Stratego-ON

Results for 5 Rooms

Scenario	Controller	dist	Time (sec.)
mild winter vacation	Bang-Bang	62704	< 1
	Bang-Bang-Cap-Aware	39755	< 1
	Brute-Force	38072	~ 4.3
	Stratego-ON	36449	\sim 99.3
tough winter	Bang-Bang	248367	< 1
	Bang-Bang-Cap-Aware	155090	< 1
vacation	Brute-Force	138034	~ 5.9
	Stratego-ON	137071	~ 111.9
	Bang-Bang	24834	< 1
mild winter	Bang-Bang-Cap-Aware	18405	< 1
stability	Brute-Force	17289	~ 5.8
	Stratego-ON	16717	~ 148.3
tough winter stability	Bang-Bang	199688	< 1
	Bang-Bang-Cap-Aware	121776	< 1
	Brute-Force	108403	~ 4.5
	Stratego-ON	106944	~ 139.5
spring stability	Bang-Bang	4297	< 1
	Bang-Bang-Cap-Aware	4297	< 1
	Brute-Force	3878	~ 5.9
	Stratego-ON	3784	~ 181.5

Results for 5 Rooms

Scenario	Controller	dist	Time (sec.)
mild winter vacation	Bang-Bang	62704	< 1
	Bang-Bang-Cap-Aware	39755	< 1
	Brute-Force	38072	~ 4.3
	Stratego-ON	36449	\sim 99.3
tough winter vacation	Bang-Bang	248367	< 1
	Bang-Bang-Cap-Aware	155090	< 1
	Brute-Force	138034	~ 5.9
	Stratego-ON	137071	~ 111.9
	Bang-Bang	24834	< 1
mild winter	Bang-Bang-Cap-Aware	18405	< 1
stability	Brute-Force	17289	~ 5.8
	Stratego-ON	16717	~ 148.3
tough winter stability	Bang-Bang	199688	< 1
	Bang-Bang-Cap-Aware	121776	< 1
	Brute-Force	108403	~ 4.5
	Stratego-ON	106944	~ 139.5
spring stability	Bang-Bang	4297	< 1
	Bang-Bang-Cap-Aware	4297	< 1
	Brute-Force	3878	~ 5.9
	Stratego-ON	3784	~ 181.5

What about 11 rooms?

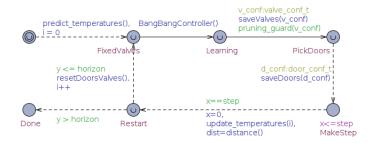
This talk

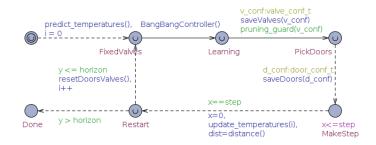
The Case StudyDescription

2 Stochastic Hybrid Games

- Thermodynamics
- Challenges

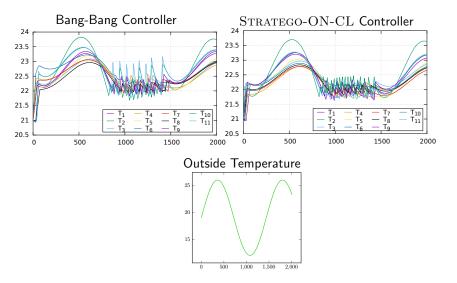
3 Online Synthesis


• Split the controllable actions into: controllable and fixed controllable actions

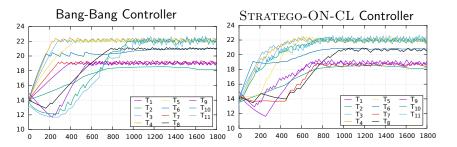

- Split the controllable actions into: controllable and fixed controllable actions
- Synthetize a strategy for every sub set of controllable actions.

- Split the controllable actions into: controllable and fixed controllable actions
- Synthetize a strategy for every sub set of controllable actions.
- Merge the strategies.

- Split the controllable actions into: controllable and fixed controllable actions
- Synthetize a strategy for every sub set of controllable actions.
- Merge the strategies.


Reduction in size:

 $(2^{5h} + 2^{6h})$ vs. 2^{11h} decision choices


Results for 11 Rooms

Scenario	Controller	dist	Time (sec.)
mild winter vacation	Bang-Bang	53550	< 1
	Bang-Bang-Cap-Aware	31718	< 1
	Brute-Force	35210	~ 237
	Stratego-ON-CL	29456	~ 834
tough winter vacation	Bang-Bang	163635	< 1
	Bang-Bang-Cap-Aware	82250	< 1
	Brute-Force	78170	~ 307
	Stratego-ON-CL	66399	~ 811
	Bang-Bang	9654	< 1
mild winter stability	Bang-Bang-Cap-Aware	9430	< 1
	Brute-Force	9219	~ 305
	Stratego-ON-CL	8978	~ 833
tough winter stability	Bang-Bang	82849	< 1
	Bang-Bang-Cap-Aware	37099	< 1
	Brute-Force	34366	~ 234
	Stratego-ON-CL	34117	~ 814
spring stability	Bang-Bang	4493	< 1
	Bang-Bang-Cap-Aware	4419	< 1
	Brute-Force	2761	~ 259
	Stratego-ON-CL	2649	~ 875

Simulation for Spring

Simulation for Winter Vacation

