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MODELING AND ANALYSIS OF  
BG CONTROL IN  
ARTIFICIAL PANCREAS 
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Intro BG and problems in general 

•  29 million Americans have diabetes (9.3% of the U.S. population) 
–  Type 1: pancreas does not produce insulin 
–  Type 2: cells do not respond normally to insulin 

•  A challenging control problem: 
–  Hypoglycemia (low blood glucose) —> seizures, coma, death 
–  Hyperglycemia (high blood glucose) —> infections, nerve damage, amputation 
–  Two driving forces: carbohydrates and insulin 
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Modeling and Verification of Artificial Pancreas 
•  Artificial Pancreas: “continuous glucose monitoring + 

controller + insulin pump” 
–  No fully autonomous controller has been approved by 

regulators yet 
–  Current systems are semi-closed-loop: human and 

controller share control authority 

•  Towards verification of outpatient glucose control 
–  Need to consider the full model (additional nonlinearities in 

the meal pathway) 
–  Uncertainties of meal input 

•  Meal time: Current insulin pumps rely on user self-report 
mealtimes 

•  Carb count: user-estimated carb amount 
–  Uncertainties of control actions 

•  Unlike caregivers in the operating room, outpatients do not 
necessarily follow guidelines 

•  Need to model their control “behaviors” 
–  Verification of a non-linear physiological model with a 

controller, a human behavior model, and uncertain meal 
inputs 
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–  Mode-Switching Controller 
–  Hybrid System Model 

•  Proof-of-Concept Implementation in dReach 
•  Concluding Remarks 
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Intraoperative Glucose Control 

•  Intraoperative glycemic control is important 
–  Stress-induced hyperglycemia —> higher risk of infection 
–  Hypoglycemia —> life threatening 

•  Current practice: Caregivers manually adjust insulin rate following rule-
based protocols 

•  Existing protocols are empirically designed to an “average” patient 
–  Question: how to verify that a protocol is safe for a patient population? 
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Physiological Model 

•  First-principle high-fidelity model 
•  First FDA-accepted simulator as a substitute to animal tests in pre-

clinical trials 
–  UVA/Padova Type 1 Diabetes Simulator 

•  Non-linear hybrid system with 13 continuous states and 32 
individualized parameters 
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Intraoperative Physiological Model 

•  Surgical scenario: 
–  Patients do not eat (no meal absorption) 
–  Insulin & glucose go directly into plasma (intravenous infusion) 
–  Glucose is measured directly from blood 

•  Non-linear hybrid system with 7 continuous states and 18 
individualized parameters 
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•  Insulin Physiology: 
–  Plasma: 
–  Remote tissue: 
–  Transportation: 
–  RGC action: 
–  Liver: 

•  Glucose-System 
–  Plasma: 

–  Remote tissue: 

Intraoperative Physiological Model 
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State and Parameter Ranges 

•  Ranges of 7 states 

•  Ranges of 18 parameters 
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Challenges of Using the T1DMS Model 

•  Only 1 state (glucose level) is measurable 
•  Most parameters (except body weight) cannot be directly measured 
•  Current best practice: 

–  FDA holds 300 “virtual subjects” for black-box testing of a controller in pre-
clinical trials 

•  No formal guarantee with respect to the full state and parameter space 
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An Intraoperative Glucose Controller 
•  Previous work: a mode-switching controller (30min sampling interval) 

•  Comparison with the existing clinical protocol in simulation study 
–  FDA-accepted simulator with 10 “virtual subjects” (realizations of parameters) 
–  Reduced hypoglycemia and glucose variability 

•  Question: is the controller safe for all “virtual subjects”? 
•  Verification problem: 

–  Given the physiological model and the controller, during the surgery time              
given any model parameter    and initial condition         , does glucose level    
stays in the safe region?        
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Perioperative Monitoring Period 

•  Glucose monitoring typically starts 30 minutes before surgeries 
•  Extreme glucose measurements during the perioperative period will 

delay the start of surgery 

15 

Surgery  
Starts Glucose Level 

(mg/dL) 

Time 

180 

60 
70 

130 
NOT  ADMIT 

NOT  ADMIT 

30 min 

NOT  SAFE 

NOT  SAFE 



Hybrid System Model: EGP/RGC Conditions 
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EGP > 0 
RGC > 0 

Hybrid System Model: “Not Admit” State 
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Hybrid System Model: “Not Safe” State 
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EGP > 0 
RGC > 0 

Hybrid System Model: Update Control Inputs 
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•  Model: Intraoperative glucose control system with non-linear dynamics 
•  Off-the-shelf tool that can directly encode the model 

–  Possible choices include dReach, Flow*, KeYmaera 
–  Other tools (e.g., HyTech, PHAVer, SpaceEx) require transforming the non-

linear hybrid system into a suitable form 
–  Chose dReach for a proof-of-concept implementation 

•  dReach model has 30 continuous states 
–  7 physiological states 
–  18 parameters (with zero derivatives) 
–  2 inputs (insulin rate u and glucose rate m), updated every 30 minutes  
–  1 state to record the last glucose reading, updated every 30 minutes 
–  1 global time state, and 1 local timer state 

Implementation in dReach 
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Preliminary Results on dReach  
•  Goal: “Reach the Unsafe state” 

–  dReach returns UNSAT means “safe” 

•  Full state: Initialize 7 states to their full ranges 
•  Full parameter: Initialize 18 parameters to their full ranges 
•  x0 and p0 are the nominal values (single points provided by the FDA model) 
•  dReach version 2.15.01 on a Linux server with a Intel(R) Xeon(R) E5-2667 

v2 3.30GHz CPU and 64 GB memory  
•  Path length of 7 corresponds to a maximum surgery duration of 2.5 hrs 
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Concluding Remarks 

•  An intraoperative glucose control benchmark 
–  Practical relevance: Diabetes affects a large, fast growing population 
–  Technical importance: No formal guarantee yet on the control performance 

given the space of uncertain states and parameters 
–  Computationally challenging: dReach could not finish search depth of 4 after 30 

hours given the full state and parameter variance ranges 

•  A general benchmark for medical CPS 
–  Under-actuated, limited-sensing, un-identifiable parameters, hybrid systems 

with nonlinear dynamics 
–  The purpose of formal verification in medicine is for pre-clinical trials 

•  [ADHS 2015] An Intraoperative Glucose Control Benchmark for Formal 
Verification. Sanjian Chen, Matthew O'Kelly, James Weimer, Oleg Sokolsky, Insup 
Lee. ADHS (IFAC Conf. on Analysis and Design of Hybrid Systems), Oct 14-16, 
2015. 

24 



25 

Thanks! Questions? 
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Type 1 Diabetes (T1D) on Insulin Pumps 

•  Sensor-augmented subcutaneous insulin therapy 
–  30% - 40% T1D patients in the US use insulin pumps 
–  Requires user supervision 
–  Critical needs for understanding the impact of insulin pumps on diabetic users, 

as highlighted in a American Association of Clinical Endocrinologists report 
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Goal and Problem Statement 

•  The correctness of the closed-loop glycemic control system 
depends crucially on human interaction 
–  A fully automated closed-loop system that requires no user supervision is not 

likely to be available in the near future.  

•  There is a need for understanding and modeling user behavior 
–  Analyze the effects of user behavior on glycemic control 
–  User behavior models can also be used for closed-loop safety analysis 

•  Problem: how to extract user models from the real patients’ data? 
–  An important yet largely open research problem 
–  Challenges: 

1.  From messy data to meaningful model 
2.  Individual behavior? Population clustering? 
3.  Model validation 
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Approach Overview 

1.  Extracting user behavior models from data 
2.  Individualize parameters of glucose/insulin physiological model 
3.  Closed-loop analysis: probabilistic model checking 
4.  Patient education/peer-support: how behaviors affect outcomes 
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Clinical Dataset 

•  The dataset involves 55 T1D patients 
–  Age 45.7 ± 15.3, body weight 79.2 ± 21.9 kg 
–  Average time duration 31 days 

•  Sensor-augmented insulin pump data 
–  CGM readings, mealtimes & carb counts, pump suggested boluses, user-

selected boluses 
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“Eat-Trust-Correct” Modeling Framework 
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•  Eat: how often the patient eats throughout a day, and how much 
carbohydrate he/she eats 

•  Trust: whether the patient follows the BWZ recommended bolus 
doses, and if not, how much dosage he/she adjusts  

•  Correct: how often the patient takes correction boluses and how much 
dosage he/she takes 
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Probabilistic User Behavior Models 
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•  We model the “Eat-Trust-Correct" user behavior as a discrete-time 
Markov chain  
–  Eat: distributions of mealtime and carb counts 
–  Trust: the likelihood of following pump-suggested boluses and distributions of 

dose adjustments 
–  Correct: distributions of correction-bolus frequencies and doses 
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Clutering for User Behavior Patterns 

•  Challenge:  
–  High-dimensional data for clustering 

•  Our approach: two-tier clustering heuristic 
–  1st stage: Probability Table —>  Vector of Row Cluster ID 
–  2nd stage: Vector of Row Cluster ID —> Patient Cluster ID 
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Eat Clusters 

•  Eat Type 1: 3 regular meals with low-carb inter-meal snacks 
•  Eat Type 2: 3 regular meals with moderate-carb inter-meal snacks 
•  Eat Type 3: no regular meal times 
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Correct Clusters 

•  Correct Type 1: infrequent high-dose correction boluses 
•  Correct Type 2: frequent correction boluses during daytime 
•  Correct Type 3: occasional correction boluses with peak frequencies at 

night and in the morning 
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Trust Clusters 
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User Behavior Patterns 

•  Summary of “Eat-Trust-Correct” behavior patterns 
–  3 Eat types, 4 Trust types, 3 Correct types 
–  Model validation: clinically relevant 
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Approach Overview 

1.  Extracting user behavior models from data 
2.  Individualize parameters of glucose/insulin physiological model 
3.  Closed-loop analysis: probabilistic model checking 
4.  Patient education/peer-support: how behaviors affect outcomes 
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Physiological Model 

•  Bergman model: compartmental physiological model 

•  Fit the parameters to reproduce the key glycemic statistics 
–  Ranges of parameters are given in clinical literature 
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Probabilistic Model Checking 

•  Probabilistic model checking using PRISM 
–  Modeling and analysis the quantitative properties of probabilistic models 
–  Exhaustively explore all possible model executions/paths 
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Closed-Loop Analysis 

•  Integrate individualized physiological model and behavioral models 

•  Clinical-relevant properties: 
–  Explore how changing behavior types may impact outcomes 
–  Hypoglycemia: % of CGM readings < 70 mg/dL 
–  Hyperglycemia: % of CGM readings > 180 mg/dL 

•  Modeling in PRISM 
–  User behavior model: discrete-time Markov chains 
–  Physiological model: discrete form of the Bergman model 
–  Pump/sensor model: finite-state machines 
–  Properties:  

•  assign cost functions to transitions (e.g., count adds 1 for every CGM<70) 
•  compute the total expected cost (e.g., total number of CGM readings <70 mg/dL) and divide 

it by the total number of CGM samples over a period of time (e.g., 3 days) 
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Example PRISM User Behavior 
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Results 

•  Switching behavior types may improve the glycemic control outcomes 
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Conclusion 
•  Methods for extracting user behavior models from a clinical dataset 

containing 55 T1D patients 
–  “Eat-Trust-Correct” probabilistic models based on data statistics and clustering 

•  Closed-loop analysis using probabilstic model checking suggests switching 
behavioral types may improve glycemic control outcomes 
–  More effective patient education and peer-support 

•  Future work 
–  Testing on larger clinical datasets 
–  Further development and validation of learning techniques 
–  Plug in other physiological models 

•  [ICHI 2015] A Data-Driven Behavior Modeling and Analysis Framework for 
Diabetic Patients. Sanjian Chen, Lu Feng, Michael Rickels, Amy Peleckis, Oleg 
Sokolsky and Insup Lee. IEEE Int. Conf. on Healthcare Informatics (ICHI), Oct 
21-23, 2015. 

44 



45 

Thanks! Questions? 


