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Infusion Pumps

Infusion pumps are medical
devices that deliver fluids,

(nutrients and medications) \';“‘g
into a patient’s body in a .
controlled manner

Infusion pumps are used
worldwide in patient care,
as well as in the home
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Patient-Controlled Analgesia (PCA)

* Purpose
— Pain-relief treatment M
(opioids, e.g., morphine)
* Operation parameters
— VTBI (Volume To Be Infused)
— Basal rate

— Bolus dose

e additional amount of drug
can be requested by the patient

Bolus-Request button
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PHYSIOLOGICAL CLOSED-LOOP PCA
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Closed Loop Safety Interlock
-Se Case: PCA Monitoring p | E

= Patients are commonly given patient-
controlled analgesics after surgery

= Crucial to care, but numerous issues
related to safety

[

_;;;;:',3'

GGG
(=] (=[] |

o]
=

£
i

|

A 49-year old woman underwent an uneventful operation (total abdominal hysterectomy and bilateral
salpingo-oophorectomy). Postoperatively, the patient complained of severe pain and received
intravenous morphine sulfate in small increments. She began receiving a continuous infusion of
morphine via a patient controlled analgesia (PCA) pump. A few hours after leaving the PACU [post
anethesia care unit] and arriving on the flow, she was found pale with shallow breathing, a faint
pulse, and pinpoint pupils. The nursing staff called a "code", and the patient was resuscitated and
transferred to the intensive care unit on a respirator. Based on family wishes, life support was
withdrawn and the patient died. Review of the case implicated a PCA overdose. Delayed detection of
respiratory compromise in patients undergoing PCA therapy is not uncommon because monitoring of
respiratory status has been confounded by excessive nuisance alarms.

[hatcliff]
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Causes of Overinfusion

* Incorrect dose

— Varying sensitivity: hard to predict the right dose
* Many hospitals disable basal infusion

 Excessive bolus

— “PCA by proxy” makes the problem worse

 Free flow of medication

 Many of these causes cannot be mitigated by
the device itself!
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Patient Controlled Analgesia (PCA)

* Patient presses button, pump delivers PCA Pump
opiod (with patient button)
* Nurse monitors patient’s respiratory
state.
* |f there is a problem manually
intervene

Patient

Nurse

Monitoring system
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PCA Closed-loop System

Goal: Improve the safety of PCA PCA Pump
uses (with patient button)

Approach: Integrate monitors with
an intelligent “controller” to:

— Detect respiratory disturbance
— Safety lock over infusion
— Activate nurse-call

Paﬁent
i 4
) Supervisor
Nurse call P
onitoring system
Penn 2015.11.10 EMSIG SchooM g sy 9 PRE C|SE

Engineering



Control Loop

Pulse Oximeter

Signal Processing
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Modeling approach

* Matlab/Simulink captures detailed dynamics

e Simulation provides timing data to tune the
more abstract UPPAAL model

e Formal verification in UPPAAL

[PCA Case Study]

1 Timingdata (

[ Matlab Model | { UPPAAL Model |
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Patient Modeling

e Pharmacokinetics:

— How infusion rate affects drug concentration in
the bloodstream

* Pharmacodynamics:

— How patient vital signs depend on drug

The choice of

concentration output is
important, too
T T T T T T T T
infusion pharmaco- » drug pharmaco- » RR, HR,
rate | kinetics | concentration | dynamics | SpO,,...
- .- e - - .- e -
input hidden state output
Penn 2015.11.10 EMSIG School 12 PRE C |SE
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Patient Model

* Derived from pharmacokinetics model for
intravenous delivery of anesthetic drugs

C —(ki12 + ks + ko) ka1 ka1 | [Ch =
?2 = k12 —k12 0 Col + 101
o k13 0 —k31| |Cs 0
A B
'y
d=[1 0 0]|C
—— la

Modeling Patient specific kij € [kij — Akij, kij + Akz‘j}
behavior — model with uncertain

parameters

* Pharmacodynamics is much more complex

Vi € [Vl—AV,VNLAV}

— Not modeled in this case study
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Patient Model Outputs

SpO, level and heart rate
Crmin + @167 + age™ %" + aze™ !

Patient Response to Drug

Heart Rate and SpO2

80 T T
: " : =
Patient Critical Regions
e ;
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Key Safety Property

Pump stops in time if total delay <=t_;

Pulse Oximeter | _________ - Supervisor

Signal Processing | = —> Algorithm

. \ Levels | . .
Time STl - Processing Time
" Output S l
' Physiological | { Pump
\\‘Sigfals'// \ Commands ;

Drug Absorption | | Pump Processing

Function

-
N

<«— Drug Infusion «— |[Time

Total delay is the sum of: :
tPOdel: worst case delay from PO (1s) | | Drug Requent) LA Tme
tnet: worst case delay from network (0.5s) Patient Mode E .
tSup: worst case delay from Supervisor (0.2s)
tPump: worst case delay from pump (0.1s)
tP2PO: worst case latency for pump to stop (2s)
tcrit: shortest time the patient can spend in the alarming region before going critical
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CG

UPPAAL Model

sum = sum + samplebuffer , i =i+ 1, Iclock :== 0

Pulse Oximeter module:
* Averages samples in a window; size of window

depends on the measured value => variable delay

Sup eady?
o e e -~ $1 jclock <=1
. SN

sum = sum + samplebuffer ,i:=i+ 1, kclock :=0
s10

Iclock <=1 .

=8, Jclgck == 0, sum:=0
e47|lklock:=0,sum:=0
ho_result < 94 and po_r

.= 1 ar
) sult > 8;

1 ar -

sum = sum + samplebuffer ,i=i+1,Iclock =0

resultr y
po_result :==sum /i

s9
Iclock <= 1 .

po_result :=sum /i

po_result := sum /i
tre

>=1ar
sum := sum + samplebuffer ,i:=i+ 1, Idock :=0
rosultre setwindowsize po_result == sum /i sum := sum + samplebuffer , i =i+ 1 ,Iclock =0
po_result == sum /i
po_result :==sum/i 1z
s8
Iclock <=1 .
resultre
po_result == sum/i
»=1andi < po_result == sum /i
sum := sum + samplebuffer , i:=i+ 1, Iclock =0 ultre;
Iclock <=1
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po_result :== sum /i

tre:

1

Iclock <=1
sum = sum + samplebuffer ,i=i+ 1, lclock =0

=1 ar
Iclock <=1

EMSIG School ampere

1 andi -

Iclock <=1
16

sum = sum + samplebuffer ,i=i+1,lklock =0

=i+1,lclock =0

sum := sum + samplebuffer



Properties verified with UPPAAL

80

* Once SpO2 drops below pain threshold, it N
eventually goes back up

240

A[] (samplebuffer < pain_thresh -> A <> :
samplebuffer >= pain_thresh) al

0 L I L I I
0 1000 2000 3000 4000 5000  BOOO 7000 8OO0 9000 10000

Time [s]

Critical » The pump is stopped if patient enters alarming
A[] ( samplebuffer < alarm_thresh ->
A<> (PCA.Rstopped V PCA.Bstopped)

Alarming

Critical

Alarming

Safe
» The patient can not go into the critical region
A[] (samplebuffer >= critical)
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Effects of unreliable network

* Problem:
— The pump may not receive stop commands

e Solution:

— Send a ticket: permission to run for a certain
period of time

* Open-loop stability

— We need to determine how long the pump can
run without endangering the patient

. 1 H5'™* — heur|/SPO2 gqin
Atsafe ~ tsafe = ——1In | ~2 ‘/ |p|B2q|| +1
AL\ 1Sy (1170l + )
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Patient Modeling Challenge

 We have proved safety with respect to a model
* One of the risks of model-based development:

— How good is the model?

* There usually is some agreement on the model
— Less agreement on parameter ranges

 Narrow parameter ranges => some patients do not fit
the model

* Wide parameter ranges => less effective model
— Pump will shut down too soon for most patients
— Tradeoff between patient safety and patient happiness?
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Evidence-based certification

* Suggested by: Software for Dependable Systems:
Sufficient Evidence? D. Jackson, M. Thomas, and L.1.
Millett, Eds., National Academies Press, 2007

* Evidence-based certification
— How do we organize and evaluate evidence?

— Assurance cases?

EH%II}eIgrmg 2015.11.10 EMSIG School 20 PRE C|SE



Assurance Cases

e To construct an assurance
case we need to: Goal

— make an explicit set of claims about the
system (safety, security, reliability,

performance, etc.)

— produce the supporting evidence / Strategy /

— provide a set of arguments that link the /\
claims to the evidence

— make clear the context, including Sub-Goal Sub-Goal
assumptions and judgments underlying

the arguments
e Safety case is a special kind:
— Claims are limited to safety

Argument without Evidence is unfounded
Evidence without Argument is unexplained
- Time Kelley, 2008
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Argument Strategy for Closed-Loop PCA

* |dentify residual risk
— Not all hazards are eliminated

* Argue about added hazard mitigation
* |dentify added risk

— New hazards
— New sources of existing hazards

* Argue that reduction of residual risk
outweighs new risks

&t PRECISE



Safety Case: Top Level

G1

The PCA closed-loop system is at
least as safe as a stand-alone
infusion pump, with respect to the
overdose hazard

$1
Argument by risk-benefit analysis

G2.1

closed-loop system is acceptable

The introduced risk due to hazards of

G2.2
The residual risk of the stand-alone pump
is adequately mitigated by the closed-

C1.2
Define risk-benefit analysis

c1.1

The closed-loop system is built
using an infusion pump for
which a stand-alone safety
case exists

)

G2.3

The benefit of closed-loop system
outweighs its introduced risk

loop system

S2.1
Argue over all hazards

[

c21
List of hazards that
may introduce risk

O

G3.1 G3.2 G3.3 G3.4
The risk of delivering The risk of not delivering The risk of pump having The ri ;
. . . . int tati f e risk due to caregiver
wrong ticket is small ticket is small Egck)zﬂ ;ns:anrglrle ation o behaviour adaptation is small
Penn 2015.11.10 EMSIG School
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New Risks

Sensor failures
Controller failures

Network failures

Pump failures

Human factors

'

S2.1
Argue over all hazards

c21
List of hazards that
may introduce risk

G3.1 G3.2
The risk of delivering The risk of not delivering
wrong ticket is small ticket is small

<O O

G3.3

The risk of pump having
wrong interpretation of

ticket is small

G34
The risk due to caregiver
behaviour adaptation is small

<

<&
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The Assurance Case Structure of Closed-
loop PCA System

G1

The PCA closed-loop system is at
least as safe as a stand-alone
infusion pump, with respect to the
overdose hazard

S1
/ Argument by risk-benefit analysis

G2.1 G2.2
The introduced risk due to hazards of The residual risk of the stand-alone pump
closed-loop system is acceptable is adequately mitigated by the closed-
loop system
s2.1 c2.1
List of hazards that
Argue over all hazards . -
may introduce risk

G3.1
The risk of delivering
wrong ticket is small

G3.2 G3.3
The risk of not delivering The risk of pump having
ticket is small wrong interpretation of

O

Penn 2015.11.10

Engineering

C1.1

The closed-loop system is built
using an infusion pump for
which a stand-alone safety
case exists

C1.2
Define risk-benefit analysis

G2.3
The benefit of closed-loop system
outweighs its introduced risk

O

G3.4
The risk due to caregiver
behaviour adaptation is small

: ticket is small

<&

EMSIG School
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MODEL-BASED DEVELOPMENT OF GENERIC
PCA (PATIENT CONTROLLED ANALGESIC)
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Infusion Pump Safety

* During 2005 and 2009, FDA received approximately
56,000 reports of adverse events associated with the use

of infusion pumps
* 1% deaths, 34% serious injuries
e 87 infusion pump recalls to address safety problems
* The most common types of problems
— Software Defect
— User Interface Issues
— Mechanical or Electrical Failure

U.S. Food and Drug Administration, Center for Devices and Radiological Health. White Paper:
Infusion Pump Improvement Initiative, April 2010

LT V)L
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PCA Hazards

e QOverinfusion

— Opioids can cause respiratory distress
* the patient can stop breathing

e Airinline
— Air bubbles entering blood stream with
medication

 Underinfusion

— Can limit effectiveness of pain management

Mml!
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Hazards -> Safety Requirements

 Prescribed dose cannot be exceeded
* Prescribed rate is closely adhered to

* When an alarm is raised, the pump should be
stopped quickly enough

 Minimum interval between boluses should be
enforced
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High Assurance Development

e Use formal methods for modeling,
verification, and code generation

 GPCA (Generic PCA) project

— Develop a set of artifacts

* Design documents, models, verification results, code,
etc.

— Community resource to apply and compare
various development methods

— Inform FDA on model-based development
practices

— http://rte.cis.upenn.edu/medical/gpca/gpca.html
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Generic PCA (GPCA) Project

PCA Infusion Pump

GPCA Model

Penn
Engineering

2015.11.10

Assurance Case

Model-Based
Implementation

Reference Model

EMSIG School

GPCA Hazard
Analysis

Hazard Analysis

Safety
Requirements

L

GPCA Safety
Requirements

“ PRECISE



FDA's GPCA Model

* An abstract representation of software used in a typical PCA infusion
pump.
 The model is built in Simulink and Stateflow.

e State Controller

— Describes a drug administration process such
as parameter setting and bolus request.

L lﬂ Data Input

* Alarm Detecting Component } — :
— Check hardware conditions and process alarm | pogso ) :

on any hardware failure. 1 s Dot comte :

« GPCA Environment | — |
* User Interface IL - ‘ |

*  System model ____:_______—_L__i_J

* The GPCA model interacts with pump | | "
hardware such as motor and sensors N

through the System Model.
The System Architecture of GPCA Model
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GPCA reference implementation

* FDA initiated
— GPCA Safety Requirements
— GPCA Model (Simulink/Stateflow)

* Goal: Develop a GPCA reference
implementation

* Provide evidence that the
implementation satisfies the safety
requirements

— Property verification
— Code synthesis

e Organize evidence for certification
— Assurance cases for safety
— Confidence cases

» All artifacts to be available as open
source

— http://rtg.cis.upenn.edu/gip.php3

Penn 2015.11.10 EMSIG School
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[ Formal Modeling & )
Verification

¥

-
I
I
I
I
I
I
I
I
: Automated
I
I
I
I
I
I
I
I
I
I

Implementation

GPCA Reference
Implementation

Model-Based Development of
GPCA Reference Implementation
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Phase 1: Formal Verification

|GPCA Safety Requirements
"

___.;____~
-, S
)

( Manual translation ’,

~~.—-

I

—_—

UPPAAL Queries

L

(l
\ Formal Verification

-~ -
-

l

-
-

Verification Result (Yes/No)

Validation Result

<
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GPCA Model
(Simulink/Stateflow)

JL___
-~
~

~

e
: )
(\ Manual translation y

Y

-~ -
-

I

Test sequences

UPPAAL Model

Pump Hardware

Platform Library

Yy ..

Validation

~~——--_—--——’

-—
-

____J'____~

#~ Code- -Synthesis N\
«_ (TIMES tool)

— ——
- S

Manual ~
Implementatlon R4

-

T

Platform-Independent Code
(C code)

Model Trace

Platform-Dependent
Code

—‘_-

Seo Compllatlon

~——_1_——

--~

#~ Code-Interfacing ~

-

4

4mplementat|on

Executable Image

of the target platform
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Formalization of the FD
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A
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A

L PowerButton

A's GPCA model

Infusion Session
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Sub Machine
A 4
Check Drug
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Formalization of the FDA’

Alrm_POSTFailure
Power ON = faise POST_WAIT e e PowerOff m — ConfirmPowerOr
E PowerButt Post_In\ Pfogress 1 POSTDone ‘
X1=0, Power_ON = true = MCDR_In_Progress = tue E_inerﬂulmn‘ s —
PowerDown x1 <= MAX_POST_WAIT 5
‘ = | —l POST :—:__-;
5 u o
- POSTFailure jg— Cond_1_I b Z
g 3
vS ;1\ -
POSTDone L
E_CheckAdminSect —
4
>
Check Drug
| — —
Routine
«—
E_Newlnfus on
|
E_ConfigurelnfusionProgram
—
Level One_Alarm
<

GPCA model

Infusion Session

Sub Machine

Alrm_LevelOneHardwareFaiure

Penn
Engineering

2015.11.10

The GPCA State Controller
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Environment: User Actions

EfConfirmDoscRatE! ChangeDoseRate!

E_Startinfusion! E_ChangeVTBI!

E_ConfimVTBI!
E_ConfimConcentration!
E Prime!

E CheckAdminSet!

E CheckAdminSet 1!

_Newinfusion!

E Pauselnfusion!

kDrug'

E_PowerButton!

E_Re stBolus! e

E Cancel!

E_ConfimPauselnfusion!

E_ClearAlarm!

E Stoplnfusion! e
E_ConfigurelnfusionProgram!

E ConfirmStoplnfusion!
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Environment : Hardware Conditions

Cond-6-3 implies “An infusion error Empty Reservoir is detected

during the ongoing infusion process”
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Formalization of the Safety
Requirements

* Not all safety requirements can be translated into temporal logic formula.

e Categorization of the safety requirements.
Category 1) A safety requirement can be formalized and verified in the UPPAAL model.
(~20 out of 97 requirements)
. No bolus dose shall be possible during the POST
. The pump shall issue an alert if paused for more than t minutes
Category 2) A safety requirement can be formalized, but the GPCA model needs additional
information to verify it. (¥23 out of 97 requirements)

. If the suspend occurs due to a fault condition, the pump shall be stopped immediately
without completing the current pump stroke.

lfz)n%rlgelrmg 2015.11.10 EMSIG School 39 PRE C|SE



Formalization of the Safety
Requirements

* Not all safety requirements can be translated into temporal logic formula.

e Categorization of the safety requirements.

Category 1) A safety requirement can be formalized and verified in the UPPAAL model.
(~20 out of 97 requirements)
. No bolus dose shall be possible during the POST
. The pump shall issue an alert if paused for more than t minutes

Category 2) A safety requirement can be formalized, but the GPCA model needs additional
information to verify it. (¥23 out of 97 requirements)
. If the suspend occurs due to a fault condition, the pump shall be stopped immediately
without completing the current pump stroke.
Category 3) A safety requirement cannot be formalized, but can be validated at the
implementation level. (~31 out of 97 requirements)

. The flow rate for the bolus dose shall be programmable.

Category 4) A safety requirement cannot be formalized because the statement is too vague
or related to the environment of the GPCA model. (~23 out of 97 requirements)

I"

. Flow discontinuity at low flows should be minimal (“minimal” is not clear).

. A key that is depressed shall not be identified as a distinct key press for a period of t seconds
(related to Ul).
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Phase 2: Implementation

GPCA Safety Requirements
"

___;____~
-’ S
1

( Manual translation ’,

~~.—-

I

[

UPPAAL Queries

L.

(l
\ Formal Verification

-~ -
-

l

-
-

Verification Result (Yes/No)

Validation Result

”
CR
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Code Synthesis

* Advantages of automated implementation

— An automated implementation improves the
qguality of embedded software by preserving the
properties of model verification.

* Practical obstacles in automated
implementation

— There is a gap between abstract model and
implementation

&tenn PRECISE



Types of the GPCA Pump Source Code

1. GPCA model code (Platform-independent)
— GPCA model is synthesized into C-code using TIMES tool.
— This code implements control-flow of the GPCA model depending on user-
action and hardware conditions.
2. Glue code to interface to the target platform (Platform-
dependent)
— Clock implementation using the target platform APIs.
— Environmental interface (for user and GPCA hardware).

3. Code for abstracted functionalities

— Pump-motor driving code on transition to Infusion-Normal-Operation to
inject drug to patient (e.g., providing electrical signal to the pump motor)

— Code for updating dose rate on ChangeDoseRate state (e.g., maintaining
variables for dose rate that is updated by user request)

&tenn PRECISE



— —_—
T ® 9:41am AR @ o:41
GIP-UI

G P C A P rOJ e Ct — Fy—

.Rx Morphine 5 MG/ML

PCA only

°nx Morphine 0.5 MG/ML
1 —

CONTINOUS ONLY

* Open platform for medical —_
device research

‘le MEPERIDINE 10 MG/ML

LOAD DOSE

ZH @ 9:43.am

GIP-UI
Dosage History

e Support a variety of pump
hardware

GPCA Implementation

(Beagleboard-OMAP 3530 User Interface

25
20 19
15 15 15
14 y
8o 2 2 2
210 i q
a 9
0 | I
123 456 7 8 9101112
Time
M Given
o e ®

Pause Stop

q TCP/IP Connection
g : @ (to Tester)

¥ J
) 7

Sensor/Actuator |

Controller
(Atmegal281)

RS232 Connectio
(to Controller)

2015.11.10



—
Tl @ 9:41am M @ 9:41m

GIP-UI
o

Select Mode .Rx Morphine 1 MG/ML

GPCA Implementation Testbed

.Rx Morphine 5 MG/ML

PCA only
1 —
CONTINOUS ONLY
1 —
PCA and CONTINOUS

Om( Morphine 0.5 MG/ML

.I'(x MEPERIDINE 10 MG/ML

LOAD DOSE

ZH @ 9:43.am

GIP-UI
Concentration: NA Running

Mode: PCA and Continious
Concentration: 0.5 MG/ML
PCA Dose: 2 MG
Four Hour Limit: 15 MG
Lock out time: 30 mins
Rate: 5 MG/HR

9 10 11 12

2 3456 7 8
Time
M Given

Pause Stop

*We note that the Android Ul design is motivated from CADD —Solis Ambulatory

Infusion System. The functionalities are instantiated from the GPCA model. Controller
(Atmega1281)

Sensor/Actuator |

RS232 Connectio
(to Controller)

Penn 2015.11.10 EMSIG School
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The Cross-Platform Software Modeling: PCA
Infusion Pump Systems

* PCA Infusion Pump Systems

— Inject drugs by pressing the
bolus request button.

— Used for the pain-treatment.

* The cross-platform model

— A model captures the common
behavior for infusion
operations.

* Safety-Assured Development of the GPCA Infusion Pump Software, Kim et
al.,, EMSOFT2011

* Heterogeneous Target
Platforms
— Different platforms may have

different way of implementing
the abstracted behavior.
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The Cross-Platform MBD

 Comparison of Infusion Pump Platforms

Abbott/Hospira Lifecare 4100 PCA PLUS Il
(1) Ul Data Port

(2) Pump motor
(Stepper or DC)

(3) Low Reservoir
Detection switch

(4) Empty Reservoir
Detection switch

(5) Patient Pendant

(6) Optical switch
(for precise flow-control)

(7) Buzzer
(for alarm)
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The Cross-Platform Software Modeling

* A model encodes the { Abstract Model ]
platform-independent
behavior of the system ﬂ
— Independent from a
Pa rticular plathrm. [Platform Independent]
Code
* The implemented systems & %
ConSiSt Of two types Of COde Platform Independent Platform Independent
Code Code
1. Platform Independent > S 4
Platform Dependent Platform Dependent
COde i Code 1 | i Code 2 |
2. Platform De pendent COde Hardware Platform 1 Hardware Platform 2
Implemented System 1 Implemented System 2

R4
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Gap: Synchrony Assumption in Modeling

* Synchrony Assumption

Abstract Model — The program reacts to external events

instantaneously.

— Pros: greatly simplifies formal analysis of
real-time systems.

— Cons: real systems cannot guarantee the
Concrete assumption due to computation delay.
Implementation

External Event

A
1. ReadTime Computation Phase Realtime
2. Read Input i 7 \l' >
3. Input-Transition read_time(x) | input_trans(x,ia) output_trans(x,oa)
4. Write Output
5. Output-Transition read_input(ia) write_output (oa)
L’?ﬁ’ Penn 2015.11.10 EMSIG School % PREE€ISE
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Platform and System Boundaries

* A platform is a collection of hardware and software
components that are heterogeneous across different

systems

* MC-boundary

— Monitored variable

* (e.g.) Bolus button (sensor) status
— Controlled variable

* (e.g.) Pump motor (actuator) status

* |O-boundary Platform

— Input variable

* (e.g.) Boolean value abstracting
sensor input

— Output variable

* (e.g.) Integer value abstracting
actuator output

—

=
—
=

*m, i, o, c are motivated from Parnas’ four-variable model

R4

> Penn
!‘, Eng]'neering

Implementation

: [Platform-Independent | :

Code

T Qo
Input Output
Device Device

Hardware

Real Environment
(e.g. Patients)

PRECISE



Our Revised Approach

 Modeling and Analysis
— Formalize 1/O timing mapping between a model and
implementations using Parnas’ four variables

* Code generation techniques
— Platform-independent code generation method based on timed
automata
— Platform-dependent code generation method using code snippet
repositories and AADL models

* Integration techniques
— Formal verification and testing methods that can check how well
the platform-independent code is composed with a platform

— Timing parameter adjustment method using integer-linear
programming for the platform-integration

LT V)L
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Our Revised Code Synthesis

Platform-Independent

(PART1)
Platform-Independent
Development

[PI-Phase]

v

Platform-Independent
Code

Platform-Dependent
Code

(PART2)
Platform-Dependent
Development
[PD-Phase]

(PART3)

Integration
[ITG-Phase]

Implemented System

Source Code

Infusion Pump
Hardware Platform

frmmmmn ey

Specification
A
Timing <" Design Space
Requirements \\ Separation
+ __________________
; v
i PIa't'f'orn'w S
! Specification
Penn 3215.11.10

EMSIG School
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Platform-Independent Timing Aspects

e Every pump shall meet common input/output timing
constraints for its safe operation in the environmental context

If a patient requests a drug, a pump shall start infusion within X sec

If an occlusion condition occurs, a pump sha‘l raise an audible alarm within Y ms

A

________________________________________

(Pump 3)

P (Pump 1) (Pump 2)
cnn 2015.11.10 EMSIG School -
Engineering PRE ClSE



Platform-Independent Model

* A platform-independent model abstracts 1/0
timed behavior at the mc-boundary

(a) Model-Level (b) Implementation-Level
Platform-lndependent ______ Code Generation ___I_T?ET_E_TE?E?E:A_ _____________ [T?{?T_e_ntahon °
Model i i
rosssssssssssssssssWossssssssssssssse . 2 .
ANNN : | Platform-Independent|: i |Platform-Independent]:
: Code Code ;

input output ------------ . iﬁ @0

. it Lo
i Input Output Input Output
| i |_Device A || Device A |i | Device B || DeviceB |:

L\ P :
Venﬁca.hon : Hardware P Hardware
Environment i Platform A Platform B

Model | i > mq} {c m 4} {lc

Real Environment

R4

o Penn

B Engincering s 1 0, € are motivated from'Parnds’ four-variable model PRECASE



Implication of Platform-Independent Model

* What it expresses... Implementation

SN NN NSNS NN NN NN NN NN EEEEEENEEEEEEE -
= .

— External |/O interaction timing | Platform-Independent | }

— 1/0 dependency commonly implemented Code
across different platforms

e What it hides... Platform _|

— Internal 1/0 interaction timing

— Platform-specific I/O processing
mechanism m 4} Ue

Real Environment

 The timing abstraction
— Allows the code to be composed with multi-platforms

— Provides correctness criteria of many different compositions

* e.g., an implementation conforms to the timing requirements verified
in the platform-independent model

R4

En%?lelgrhlg 8615.11.10 EMSIG School PR E _C‘ u|‘ SE



Timing Semantics Mapping in

Implementation | ...cotion

Platform-Independent
Code :

: 'ﬁ @0
X==40‘?0| ﬂ Input Output |:
Stoplinfusion! Platform _| i[ Device Device |i
""""""" ? Hardware Platform
| X>=50 | e

ion!
| Startinfusion! | m{d Il
X <=4000
Real Environment
[Implementation-Level Timed Behavior]
M-Input I-Input O-Output C-Output
(m-BolusReq) (i-BolusReq) (o-StartInfusion) (c-Startinfusion)
A\
Platform-Input | Platform-Independent Code Platform-Output
Processing : Processing | Processing >
E di leyel delay: [50,100] time
--------------------- xpected imp- ; , mmemmmmememeeeeee D
Penn 615.11.10 BY&E 989V PRE C|SE
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Platform-Dependent Timing Aspect 1

* Each platform has different architectural
option to implement platform-independent
timing semantics

[Platform A]
- A periodic thread that samples the electrical R ~

. A l, \‘
signal changes in the bolus request button | BolusReq? ! Stoolnfusion!
. , pinfusion!

(e.g., polling) .~ s \

[Platform B] [ Bolus ‘{Infusion]
- An aperiodic thread that is invoked upon when  (Requested)  Startinfusion!

a change in the signal is detected
(e.g., interrupts)

<Platform-Independent Model>

LT V)L
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Platform-Dependent Timing Aspect 2

e Each platform has different programming interface
to implement a particular architectural option

<Example: FreeRTOS Programming Interface>

[Task callback function]

void cbBolusReq (void* pvParameters){ el
portTickType xLastWakeTime; l/ S
xLastWakeTime = xTaskGetTickCount(); |
for(;;){ \ Stopinfusion!

//Wait for the next cycle ~ TSeo_=-
vTaskDelayUntil(&xLastWakeTime, periodEmptyRsv );

//Perform action here .
f

//(1)Read Bolus Infusi
//(2)Compute equested]  Startinfusion! ntusion
//(3)Write

<Platform-Independent Model>

Other platforms have different code patterns and APIs
Penn 3815.11.10 EMSIG School
¥ Engineering P R E C l S E



Platform-Dependent Timing Aspects

Each pump has a different way of implementing the platform-
independent timing aspects

« (E.g.) Different interaction mechanisms with sensors/actuators
— Polling or interrupt-based mechanisms
* (E.g.) Different timing overhead for I/O device drivers

* (E.g.) Different scheduling mechanisms
— Periodic or aperiodic scheduling

< Different > Different
Aspects Aspects
(Pump 1) (Pump 3)
Penn 8015.11.10 EMSIG School PREC| S -
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Platform-Independent
Specification

N

________________
- S~
e ~

ITG-Phase

v

Platform-Independent
Code

Platform-Dependent
Code

1

(PART3)

Integration
[ITG-Phase]

Implemented System

Source Code

Infusion Pump
Hardware Platform

frmmmmn ey

Timing < Design Space

Requirements “\._ Separation ./

T e

v

] Platform

i Specification
Penn 8015.11.10
*_¥ Engineering

EMSIG School
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Integration Issue (1/2)

* Usage of timing parameters of PIM
— Verification: determine I/O timing at the mc-boundary
— Code Generation: determine I/O timing at the jo-boundary

Platform-Independent Model

X:=0
BolusReq?

X2900 & X <1000

Stoplnfusion!

Bolus
Requested

Platform-Dependent Model

( o Baxter PCA Pump

1 / Platform(M2)
Bolus R t
By 0L BEAuES ! Pump-motor !
1 control
(18)/ e !

1 Detection ¢

/] !

e o

1 Empty- /(T Platform-
A

’_’Il Reservoir —%1 Independent [/
Routine l>\
_________

/. Detecion
QmD----/(17)
’_",{_ow-ReservoirI 8015.11.10 L !
/

(T5)

Detection

~\

>

Platform-Independent
Code Generation

Implementation
: |Platform-Independent]}
; Code ;

i bo
Platform Inp.ut Output
:_ _____ > Processn‘]g s ; DEVICe DeVICe ;
i ‘ Delay Hardware Platform
; G Do
Verification Real Environment
EMSIG School PRECISE



Integration Issue (2/2)

* The platform processing delay is added in the
code-level delay

(a) Platform-Independent Model

Input event Output event
(BolusReq) (Startinfusion)
% .......... model-level delay:[2,10]  —eeeem-: 4
- >
Time
(b) Implementation Code Generation
m-BolusReq i-BolusReq v o-Startinfusion  c-Startinfusion
T< [1,2] >T< ------------------ IS T0) [ —— > l< [1,2] -»|
; ; >
<-' -------------------- imp-level delay: [4,14] -'>
te--mmmoo----—-> Platform Processing Delay D .
Penn #15.11.10 EMSIG School PRE C | SE
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Proposed Approaches

- Taking into account platform processing delays

* Testing approach pare 2014

— Timing testing framework to check timing requirement
conformance and to measure the timing deviation due to
the platform-processing delays

* Model-checking approach pare 2015

— Systematic construction of the platform-specific models
(PSM) that better characterizes the implementation-level
timed behavior

 Timing parameter adjustment approach

— Adjusting timing parameters of the platform-independent
code to compensate the platform-processing delays

&tenn PRECISE



lllustration of the Parameter Adjustment
(a) Platform-Independent Model

Input event Output event
(BolusReq) (Startinfusion)
?_ __________ model-level delay: [2,10]  _________. %
—>
Time
(b) Implementation (before adjustment)
m-BolusReq i-BolusReq o-StartInfusion c-Startinfusion
e 12,2] sl L) [ —— > l< 1,2] -}
>

Delay-Bound Optimal

(c) Implementation (after adjustment) inclusion Adjustment

m-BolusReq i-BolusReq o-StartInfusion cStartInfu5|on
k-2 >T< ------- 0,6] >~ [1,2] - ¢ V

D J— imp-level delay: [2,10] = -—---------- >
m-BolusReq i-BolusReq o-Startinfusion  c-Startinfusion
k- 12,21 - (0] > [12] -3 ¢ x
>
Penn  se%1rmimp-level delay: [2,5] evsiz@hool PRECISE
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Summary of ITG-Phase

e (Case Study

— The experimental result shows that the implementation
with parameter adjustment better preserves the timing
requirements

* (1) PCA pump implementation without parameter adjustment
* (2) PCA pump implementation with parameter adjustment

* Benefits of the parameter adjustment method

— Checking composability in terms of timing requirement
conformance

— Finding min/max timing parameters of the platform-
independent code for the composition

* Complement to other approaches
— Testing approach pare 2014
— Model-checking approach pate 201s]
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* Modeling/Verification

— K. Altisen’s work: Implementation of timed automata : an issue of semantics or modeling (FORMAT
2005)

— Martin Wulf’s work: Almost ASAP semantics : From timed model to timed implementations (HSCC
2004)
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Thank You!
Questions?
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