Model Checking, Performance Evaluation, Synthesis and Optimization of Cyber-Physical Systems

Kim G. Larsen

[0 5 5

Model Checking, Performance Evaluation, Synthesis and Optimization of Cyber-Physical Systems

Kim G. Larsen

[0] [5] [5]

EMSIG Autumn School 2015

Overview

- Timed Automata / UPPAAL
 - Verification
- Stochastic Priced Timed Automata / UPPAAL SMC
 - Performance Evaluation
 - SMC in a Nutshell
 - Stochastic Hybrid Automata
- Timed Games / UPPAAL TIGA
 - Controller Syntesis

Train Crossing Brick Sorting,Production Cell, HYDAC Case

Stochastic Priced Timed Games / UPPAAL STRATEGO

Kim Larsen [3]

- Optimal & Safe Synteses
- Conclusion

Train Crossing Schedulability Analysis Wireless Sensor Networks Energy Aware Building

Train Crossing Go-To-Work Adaptive Cruice Control Floor Heating

Train Crossing

Timed Games

Timed Automata & Model Checking

State (L1, x=0.81) Transitions (L1, x=0.81) -2.1 ->(L1, x=2.91) ->(goal, x=2.91)

E⟨⟩ goal ? A⟨⟩ goal ? A[] ¬ L4 ?

EMSIG Autumn School 2015

Kim Larsen [5]

Timed Games & Synthesis

Question Does their exist a strategy that guarantees A<> Goal ?

Strategy: $\sigma: (\ell, v) \mapsto \{\lambda, c_{act}\}$

EMSIG Autumn School 2015

Decidability of Timed Games

Theorem [AMPS98, HK99]

Reachability and safety timed games are decidable and EXPTIME-complete. Furthermore memoryless and "region-based" strategies are sufficient.

 \sim classical regions are sufficient for solving such problems

Theorem [AM99,BHPR07,JT07]

Optimal-time reachability timed games are decidable and EXPTIME-complete.

[AM99] Asarin, Maler. As soon as possible: time optimal control for timed automata (HSCC'99).
 [BHPR07] Brihaye, Henzinger, Prabhu, Raskin. Minimum-time reachability in timed games (ICALP'07).
 [JT07] Jurdziński, Trivedi. Reachability-time games on timed automata (ICALP'07).

EMSIG Autumn School 2015

Kim Larsen [8]

Computing Winning States

EMSIG Autumn School 2015

Kim Larsen [9]

Reachability Games

Backwards Fixed-Point Computation

Х

Y

 $Pred_t(X,Y)$

Definitions

 $\pi(X) = \text{Pred}_{t}[X \cup c\text{Pred}(X), u\text{Pred}(X^{C})]$

Theorem:

The set of winning states is obtained as the least fixpoint of the function: $X \mapsto \pi(X) \cup Goal$

Symbolic On-the-fly Algorithms for Timed Games [CDF+05, BCD+07]

-S.S'	Initialization:
-G	$Passed \leftarrow \{S_0\}$ where $S_0 = \{(\ell_0, \vec{0})\}^{\nearrow}$;
is the set of (concrete) goal states;	Waiting $\leftarrow \{(S_0, \alpha, S') \mid S' = Post_{\alpha}(S_0)^{\nearrow}\};\$
$-E = \{S \xrightarrow{\sim} S', S \xrightarrow{\sim} S'\}$ the (finite) set of symbolic transitions (controlle	$Win[S_0] \leftarrow S_0 \cap (\{Goal\} \times \mathbb{R}^X_{\geq 0});$
$-Waiting \subseteq E$	$Depend[S_0] \leftarrow \emptyset$:
is the list of symbolic transitions waiting to be p	$= \circ_F \circ \cdots \circ [\circ \circ] = \circ$
- Passed	Main:
is the list of the passed symbolic states; $-Win[S] \subseteq S$	while $((Waiting \neq \emptyset) \land (s_0 \notin Win[S_0]))$ do
is the subset of S currently known to be winning	$e = (S, \alpha, S') \leftarrow pop(Waiting);$
$- Depend[S] \subseteq E$	if $S' \notin Passed$ then
indicates the edges (predecessors) of S which mu information about S is obtained	$Passed \leftarrow Passed \cup \{S'\};$
	$Depend[S'] \leftarrow \{(S, \alpha, S')\};$
	$Win[S'] \leftarrow S' \cap (\{Goal\} \times \mathbb{R}^X_{\geq 0});$
	$Waiting \leftarrow Waiting \cup \{(S', \alpha, S'') \mid S'' = Post_{\alpha}(S')^{\nearrow}\};$
	if $Win[S'] \neq \emptyset$ then $Waiting \leftarrow Waiting \cup \{e\}$:
	$(* reevaluate *)^a$
symbolic version of on-the-fly MC alg	gorithm $Win^* \leftarrow \operatorname{Pred}_t(Win[S] \cup [] \subset \operatorname{Pred}_c(Win[T]))$
for modal mu-calculus	$\bigcup_{S \to T} \operatorname{Pred}_{\mathcal{C}}(T \setminus Win[T])) \cap S$
Liu & Smolka 98	$\bigcup_{S \xrightarrow{u} T} \operatorname{Ied}_u(I \setminus \operatorname{Vin}[I])) \mapsto S,$
	If $(Win[S] \subsetneq Win^+)$ then
	$Waiting \leftarrow Waiting \cup Depend[S]; Win[S] \leftarrow Win^*;$
	$Depend[S'] \leftarrow Depend[S'] \cup \{e\};$
	endif
	endwhile

[CDF+05] Cassez, David, Fleury, Larsen, Lime. Efficient on-the-fly algorithms for the analysis of timed games (CONCUR'05). [BCD+07] Berhmann, Cougnard, David, Fleury, Larsen, Lime. Uppaal-Tiga: Time for playing games! (CAV'07).

Model Checking (ex Train Gate)

Synthesis (ex Train Gate)

DEMO

A Buggy Brick Sorting Program

Brick Sorting

DEMO

Brick Sorting

Production Cell Overview

- Realistic casestudy described in several formalisms (1994 and later).
- Objective: stamp metal plates in press.
- feed belt, two-armed robot, press, and deposit belt.

Kim Larsen [20]

Production Cell in UPPAAL Tiga

EMSIG Autumn School 2015

Experimental Results

[CDF+05]

Pla	Plates Basic		Basic +inc		Basic +inc		Basic + lose + inc		Basic+lose +inc		
					+pruning		+pruning		+topt		
		time	mem	time	mem	time	mem	time	mem	time	mem
2	win	0.0s	1M	0.0s	1M	0.0s	1M	0.0s	1M	0.04s	1M
2	lose	0.0s	1M	0.0s	1M	0.0s	1M	0.0s	1M	n/a	n/a
R	win	0.5s	19M	0.0s	1M	0.0s	1M	0.1s	1M	0.27s	4M
5	lose	1.1s	45M	0.1s	1M	0.0s	1M	0.2s	3M	n/a	n/a
Δ	win	33.9s	1395M	0.2s	8M	0.1s	6M	0.4s	5M	1.88s	13M
4	lose	-	-	0.5s	11M	0.4s	10M	0.9s	9M	n/a	n/a
5	win	-	-	3.0s	31M	1.5s	22M	2.0s	16M	13.35s	59M
5	lose	-	-	11.1s	61M	5.9s	46M	7.0s	41M	n/a	n/a
6	win	-	-	89.1s	179M	38.9s	121M	12.0s	63M	220.3s	369M
0	lose	-	-	699s	480M	317s	346M	135.1s	273M	n/a	n/a
7	win	-	-	3256s	1183M	1181s	786M	124s	319M	6188s	2457M
1	lose	-	-	-	-	16791s	2981M	4075s	2090M	n/a	n/a

Model	С	3	c 6		c12		u3		u6		u12	
Old	0.1s	1M	12s	63M	-	-	0.2s	3M	235s	273M	-	-
New	0.05s	3.5M	0.05s	3.5M	0.14s	55M	0.02s	3.5M	0.04s	3.5M	0.12s	55M

[BCD+07]

[CDF+05] Cassez, David, Fleury, Larsen, Lime. Efficient on-the-fly algorithms for the analysis of timed games (CONCUR'05). [BCD+07] Berhmann, Cougnard, David, Fleury, Larsen, Lime. Uppaal-Tiga: Time for playing games! (CAV'07).

EMSIG Autumn School 2015

Kim Larsen [22]

Plastic Injection Molding Machine

[CJL+09]

- Robust and optimal control
- Tool Chain
 - Synthesis: UPPAAL TIGA
 - Verification: **PHAVer**
 - Performance: SIMULINK
- 40% improvement of existing solutions..

[CJL+09] Cassez, Jessen, Larsen, Raskin, Reynier. Automatic Synthesis of Robust and Optimal Controllers – An Industrial Case Study (HSCC'09).

EMSIG Autumn School 2015

Kim Larsen [23]

Oil Pump Control Problem

 R1: stay within safe interval [4.9,25.1]

 R2: minimize average/overall oil volume

$$\int_{t=0}^{t=T} v(t) dt / T$$

EMSIG Autumn School 2015

Kim Larsen [24]

The Machine (consumption)

- Infinite cyclic demand to be satisfied by our control strategy.
- P: latency 2 s between state change of pump

F: noise 0.1 l/s

Juasiomodo

Hybrid Game Model

EMSIG Autumn School 2015

Kim Larsen [26]

Abstract Game Model

- UPPAAL Tiga offers games of perfect information
- Abstract game model such that states only contain information about:
 - Volume of oil at the beginning of cycle
 - The ideal volume as predicted by the consumption cycle
 - Current time within the cycle
 - State of the Pump (on/off)
 - Discrete model

D					
V, V_rate					
V_acc					
time					

Machine (uncontrollable)

EMSIG Autumn School 2015

Kim Larsen [28]

Pump (controllable)

Quasiomodo

Global Approach

EMSIG Autumn School 2015

Tool Chain

EMSIG Autumn School 2015

Kim Larsen [31]

Stochastic Priced Timed Games

Going to Sydney – in 1 hour

Can I get to Sidney? (1-player)

Will I always come to Sidney? (1-player)

What is the optimal WC strategy? (2-player)

Is there a strategy guaranteeing $WC \le 60$? (2-player)

What is the optimal strategy? (1½-player)

What is the optimal strategy Guarenteeing WC ≤ 60 ? (1½-player)

lakob H.

Taankvist [33]

EMSIG Autumn School 2015

Timed Games

Strategy:

 $\sigma: Exec_{\mathcal{G}}^{f} \rightharpoonup \mathcal{P}\left(\Sigma_{c} \cup \{\lambda\}\right) \setminus \{\emptyset\}$

 Memoryless, deterministic, most permissive.

Run

$$\pi = (\text{INIT}, x = 0) \xrightarrow{50.1 \text{ r}} (\text{CHOICE}, x = 0) \xrightarrow{2.4 \text{ a}} (A, x = 0) \xrightarrow{20.3 \text{ d}} (\text{END}, x = 20.3)$$

Total time = 50.1 + 2.4 + 20.3 = 72.8

ATVA 2014, November 4, 2014

Kim Larsen [34]

Timed Games –

Time Bounded Reachability

Objective: $A\langle\rangle$ (END \land time ≤ 210)

Priced Timed Games

take b immediately
 WC= 280

Priced Timed MDP

- Cost optimal strategy

 take b immediately
 WC= 280
- Priced Timed MDP
- Optimal expected cost str
 - take b immediately expectation = 160

Priced Timed MDP

- Cost optimal strategy
 - take b immediately overall = 280
- Priced Timed MDP
- Optimal expected cost str
 - take b immediately expectation = 160
- Minimal Expected Cost while guaranteeing END is reached within time 210:

Strat.: t>90→ (100,w)

- t>70→ (0,a)
- t<70→ (0,b)

= 204

Stochastic Strategies for Learning!

Reinforcement Learning

Strategies - Representation

Kim Larsen [41]

Covariance Matrices

a b

ATVA 2014, November 4, 2014

Kim Larsen [42]

Covariance Matrices

λ a b

ATVA 2014, November 4, 2014

Kim Larsen [43]

Covariance Matrices

ATVA 2014, November 4, 2014

Kim Larsen [44]

Covariance Matrices

λ a b

ATVA 2014, November 4, 2014

Covariance Matrices

ATVA 2014, November 4, 2014

Covariance Matrices

a b

λ

ATVA 2014, November 4, 2014

Kim Larsen [47]

Going to Sydney – in 1 hour

Can I get to Sidney? (1-player)

Will I always come to Sidney? (1-player)

What is the optimal WC strategy? (2-player)

Is there a strategy guaranteeing $WC \le 60$? (2-player)

What is the optimal strategy? (1½-player)

What is the optimal strategy Guarenteeing WC ≤ 60 ? (1½-player)

lakob H.

Taankvist [49]

EMSIG Autumn School 2015

DEMO

Safe and Optimal Train Gate

EMSIG Autumn School 2015

Kim Larsen [51]

DEMO

Safe & Adaptive Cruice Control

Q1: Find a safety strategy for *Ego* such no crash will ever occur no matter what *Front* is doing.
Q2: Find the most permissive strategy ensuring safety
Q3: Find the optimal sub-strategy that will allow *Ego* to go as far as possible (without overtaking).

Kim Larsen [53]

Discretization

Kim Larsen [54]

Continuous

Kim Larsen [55]

EMSIG Autumn School 2015

No Strategy

Kim Larsen [57]

5

EMSIG Autumn School 2015

Safety Strategy

EMSIG Autumn School 2015

Kim Larsen [58]

Safety Strategy

inf{velosityFront-velosityEgo==v}: distance under safe

EMSIG Autumn School 2015

Kim Larsen [59]

Optimal and Safe Strategy

strategy safeFast = minE (D) [<=100]: <> time >= 100 under safe

EMSIG Autumn School 2015

Kim Larsen [60]

Other Case Studies

Floorheating

Thursday Afternoon Daniel Lux, Seluxit Marco Muniz, AAU

EMSIG Autumn School 2015

Kim Larsen [62]

CENTER FOR DATA-INTENSIVE CYBER-PHYSICAL SYSTEMS

2015-2021, 70MMDKK Innovation Fund DK

Learning, Analysis, SynthesiS and Optimization of Cyber-Physical Systems

EMSIG Autumn School 2015

Contact: kgl@cs.aau64lk

Applications

Case Studies: Controllers

- Memory Arbiter Synthesis and Verification for a Radar Memory Interface Card, 2005
- Analyzing a χ model of a turntable system using Spin, CADP and Uppaal, 2006
- Designing, Modelling and Verifying a Container Terminal System Using UPPAAL, 2008
- Model-based system analysis using Chi and Uppaal: An industrial case study, 2008
- Climate Controller for Pig Stables, 2008 (synth)

Kim Larsen [66/54]

 Optimal and Robust Controller for Hydralic Pump, 2009 (synth)

References

- Frits Vaandrager: <u>A first introduction to UPPAAL</u>
- Alexandre David, <u>Kim G Larsen: More features in UPPAAL</u>
- Alexandre David, Kim G Larsen, Axel Legay, Marius Mikucionis, Danny Bøgsted Poulsen: <u>UPPAAL SMC Tutorial</u>. To appear in Software Tools for Technology Transfer.
- Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikucionis, Zheng Wang: <u>Time for Statistical Model Checking</u> of Real-Time Systems. CAV 2011.
- Gerd Behrmann, Agnes Cougnard, Alexandre David, Emmanuel Fleury, Kim G. Larsen, and Didier Lime: <u>UPPAAL-Tiga: Time for</u> <u>Playing Games!</u> CAV 2007.
- Alexandre David, Peter Gjøl Jensen, Kim Guldstrand Larsen, Marius Mikucionis, Jakob Haahr Taankvist: <u>Uppaal Stratego</u>. TACAS 2015
- For more see

http://people.cs.aau.dk/~kgl/SSFT2015/

Kim Larsen [67]

Case Studies: Protocols

- Analysis of a protocol for dynamic configuration of IPv4 link local addresses using Uppaal, 2006
- Formalizing SHIM6, a Proposed Internet Standard in UPPAAL, 2007
- Verifying the distributed real-time network protocol RTnet using Uppaal, 2007
- Analysis of the Zeroconf protocol using UPPAAL, 2009
- Analysis of a Clock Synchronization Protocol for Wireless Sensor Networks, 2009

Kim Larsen [68/54]

 Model Checking the FlexRay Physical Layer Protocol, 2010

Using UPPAAL as Back-end

- Timed automata translator from Uppaal to PVS
- Component-Based Design and Analysis of Embedded Systems with UPPAAL PORT, 2008
- METAMOC: Modular WCET Analysis Using UPPAAL, 2010.

Kim Larsen [69/54]

 TetaSARTS: a tool for modular timing analysis of safety critical Java systems, 2013

www.uppaal.org

UPPAAL

Home

Home | About | Documentation | Download | Examples | Bugs

UPPAAL is an integrated tool environment for modeling, validation and verification of real-time systems modeled as networks of timed automata, extended with data types (bounded integers, arrays, etc.).

The tool is developed in collaboration between the <u>Department of Information Technology</u> at Uppsala University, Sweden and the <u>Department of Computer</u> <u>Science</u> at Aalborg University in Denmark.

Download

Figure 1: UPPAAL on screen.

The current official release is UPPAAL 3.4.11 (Jun 23, 2005). A release of UPPAAL **3.6 alpha 3** (dec 20, 2005) is also available. For more information about UPPAAL version 3.4, we refer to this <u>press release</u>.

RELATED SITES: TIMES | UPPAAL CORA | UPPAAL TRON

License

The UPPAAL tool is **free** for non-profit applications. For information about commercial licenses, please email sales(at)uppaal(dot)com.

To find out more about UPPAAL, read this short <u>introduction</u>. Further information may be found at this web site in the pages <u>About</u>, <u>Documentation</u>, <u>Download</u>, and <u>Examples</u>.

Mailing Lists

Kim Larsen [70]

UPPAAL has an open <u>discussion forum</u> group at Yahoo!Groups intended for users of the tool. To join or post to the forum, please refer to the information at the <u>discussion forum</u> page. Bugs should be reported using the <u>bug tracking</u> <u>system</u>. To email the development team directly, please use uppaal(at)list(dot)it(dot)uu(dot)se.

EMSIG Autumn School 2015

www.uppaal.{org,com}

Kim Larsen [71]

