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Overview

 Timed Automata / UPPAAL
 Verification

 Stochastic Priced Timed Automata / UPPAAL SMC
 Performance Evaluation

 SMC in a Nutshell

 Stochastic Hybrid Automata

 Timed Games / UPPAAL TIGA
 Controller Syntesis

 Stochastic Priced Timed Games / UPPAAL STRATEGO
 Optimal & Safe Synteses

 Conclusion
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Train Crossing

Schedulability Analysis

Wireless Sensor Networks

Energy Aware Building

Train Crossing

Brick Sorting,Production Cell, HYDAC Case

Train Crossing

Go-To-Work

Adaptive Cruice Control

Floor Heating

Train Crossing



Timed Games

TIGA



Timed Automata & Model Checking
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State (L1, x=0.81)
Transitions

(L1 , x=0.81) 
- 2.1 ->

(L1 , x=2.91)
->

(goal , x=2.91)

Ehi goal ?

Ahi goal ?

A[ ] : L4 ?



Timed Games & Synthesis 
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Decidability of Timed Games
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Computing Winning States
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Reachability Games
Backwards Fixed-Point Computation

Theorem:

The set of winning states is obtained as the least fixpoint
of the function:             X a p(X) [ Goal

cPred(X) = { q2Q | 9 q’2 X. q c q’}

uPred(X) = { q2Q | 9 q’2 X. q u q’}

Predt(X,Y) = { q2Q | 9 t. qt2X   and  8 s·t. qs2YC }

p(X) = Predt[ X [ cPred(X) , uPred(XC) ]

Definitions

X

Y
Predt(X,Y)
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Symbolic On-the-fly Algorithms for 
Timed Games          [CDF+05, BCD+07]

symbolic version of on-the-fly MC algorithm
for modal mu-calculus

Liu & Smolka 98
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Model Checking (ex Train Gate)
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: Never two trains at

the crossing at the

same time

Environment

Controller



Synthesis (ex Train Gate)
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: Never two trains at

the crossing at the

same time

Environment

Controller

?



Timed Games
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: Never two trains at

the crossing at the

same time

Controllable Uncontrollable

Find strategy for controllable

actions st behaviour satisfies 

Controller

Environment



DEMO



A Buggy Brick Sorting Program

16MCD 2001, Twente Kim G. Larsen

UCb 

First UPPAAL model

Sorting of Lego Boxes

Conveyer Belt

Exercise:    Design Controller  so that only yellew boxes are being pushed out

Boxes

Piston

Black

Yellow

9 18 81 90

99

Blck
Yel

remove

eject

Controller

Ken Tindell

MAIN PUSH

Conveyer Belt

eject
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Brick Sorting

Piston

Generic Plate

Controller
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DEMO



Brick Sorting

Piston

Generic Plate

Controller
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Production Cell Overview

 Realistic case-
study described
in several formalisms
(1994 and later).

 Objective: stamp
metal plates in press.

 feed belt,  two-armed
robot, press, and
deposit belt.
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Production Cell in UPPAAL Tiga
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Experimental Results

[CDF+05]

[BCD+07]
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Plastic Injection Molding Machine

 Robust and optimal 
control

 Tool Chain

 Synthesis:       UPPAAL 
TIGA

 Verification:    PHAVer

 Performance:  SIMULINK

 40% improvement of 
existing solutions..

Quasiomodo
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[CJL+09]



Oil Pump Control Problem

 R1: stay within safe 
interval [4.9,25.1]

 R2: minimize 
average/overall oil 
volume

Kim Larsen [24]EMSIG Autumn School 2015

Quasiomodo



The Machine (consumption)

 Infinite cyclic demand 
to be satisfied by our 
control strategy.

 P: latency 2 s between 
state change of pump

 F: noise  0.1 l/s

Kim Larsen [25]EMSIG Autumn School 2015

Quasiomodo



Hybrid Game Model

EMSIG Autumn School 2015 Kim Larsen [26]

Undecidability


Discretization



Abstract Game Model

 UPPAAL Tiga 
offers games of perfect information

 Abstract game model such that states only 
contain information about:
 Volume of oil at the beginning of cycle

 The ideal volume as predicted by the 
consumption cycle

 Current time within the cycle

 State of the Pump (on/off)

 Discrete model

D
V, V_rate

V_acc
time

Kim Larsen [27]EMSIG Autumn School 2015

Quasiomodo



Machine (uncontrollable)

Checks whether V 
under noise gets 

outside 
[Vmin+0.1,Vmax-0.1]
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Quasiomodo



Pump (controllable)

Every 1 (one) 
seconds

Kim Larsen [29]EMSIG Autumn School 2015

Quasiomodo
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Global Approach

 Find some interval I1=[V1,V2] 
µ [4.9,25.1] s.t

 I1 is m-stable i.e. from any 
V0 in I1 there is strategy st
whatever fluctuation volume 
is always within [5,25] and 
at the end within 
I2=[V1+m,V1-m]

 I1 is optimal among all m-
stable intervals.

0

25

5

10

15

20

I1 I2

0 s 20 s
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Tool Chain

Strategy Synthesis TIGA

Verification PHAVER

Performance Evaluation 

SIMULINK

Guaranteed
Correctness
Robustness

with
40% Improvement

Quasiomodo

Kim Larsen [31]EMSIG Autumn School 2015



Stochastic Priced
Timed Games



Going to Sydney – in 1 hour

EMSIG Autumn School 2015 Jakob H. 
Taankvist [33]

0.9

0.9

0.1

0.1

U[42,45]

U[0,35]

U[0,20]

U[0,140]

Can I get to Sidney? 
(1-player)

Will I always come to Sidney?
(1-player)

What is the optimal WC strategy?
(2-player)

Is there a strategy guaranteeing 
WC <= 60?
(2-player)

What is the optimal strategy?
(1½-player)

What is the optimal strategy
Guarenteeing WC <= 60?
(1½-player)



Timed Games

ATVA 2014, November 4, 2014 Kim Larsen [34]

 Strategy:

 Memoryless, deterministic, 
most permissive.

Uncontrol-

lable

Controllable

TIGA

Run

𝜋 = INIT, 𝑥 = 0
50.1

 
r
(CHOICE, 𝑥 = 0)

2.4
 
a
(A, 𝑥 = 0)

20.3
 
d
(END, 𝑥 = 20.3)

Total time = 50.1 + 2.4 + 20.3 = 72.8



Timed Games –
Time Bounded Reachability

ATVA 2014, November 4, 2014 Kim Larsen [35]

Objective: 𝐴〈〉(END ∧ time≤ 210)

Deterministic, memoryless strategy:

100 200

x w w

𝝀 𝝀

time

100 200

time

x w w

𝝀

9070

𝝀

a

𝝀

a b

Most permissive, memoryless strategy

100

100



Priced Timed Games

ATVA 2014, November 4, 2014 Kim Larsen [36]

• Cost optimal strategy
 take b immediately

WC= 280

”CORA”

COST

Total 𝑐𝑜𝑠𝑡 = 𝟎 + 𝟗. 𝟔 + 𝟔𝟎. 𝟗 = 𝟕𝟓. 𝟓

Priced Run

𝜋 = Init, 𝑥 = 0
50.1

𝟎
 
r
CHOICE, 𝑥 = 0

2.4

𝟗.𝟔
 
a
A, 𝑥 = 0

20.3

𝟔𝟎.𝟗
 
d
(END, 𝑥 = 20.3)



Priced Timed MDP

ATVA 2014, November 4, 2014 Kim Larsen [37]

• Cost optimal strategy
 take b immediately

WC= 280

 Priced Timed MDP

 Optimal expected cost str

 take b immediately

expectation = 160

UNIFORM[0,100]

Controllable

”SMC”

COST



Priced Timed MDP

ATVA 2014, November 4, 2014 Kim Larsen [38]

 Cost optimal strategy

 take b immediately

overall = 280

 Priced Timed MDP

 Optimal expected cost str

 take b immediately

expectation = 160

 Minimal Expected Cost while

guaranteeing END is reached

within time 210:

Strat.: t>90 (100,w)

t>70 (0,a)

t<70 (0,b)

=    204

UNIFORM[0,100]

Controllable

”SMC”

COST



Stochastic Strategies for Learning!

ATVA 2014, November 4, 2014 Kim Larsen [39]

Objective: 𝐴〈〉(END ∧ time≤ 210)

Most permissive, memoryless strategy:

100

100 200

time

x

w w

𝝀

9070

𝝀

a

𝝀

a b
Cost optimal  deterministic

sub-strategy !

100

200

time

x w w

𝝀

9070

𝝀

a

𝝀

a b

100

Stochastic Strategies

𝝀 )



Reinforcement Learning

ATVA 2014, November 4, 2014 Kim Larsen [40]

Time Bounded Reachability
(G,T)

TIGA

SMC

SMC



Strategies – Representation

ATVA 2014, November 4, 2014 Kim Larsen [41]

Nondeterministic Strategies 𝜎𝑛
(ℓ,𝑣)

⊆ Σ𝑐 ∪ 𝜆

Stochastic Strategies 

Covariance Matrices

Splitting

Logistic Regression

𝜇𝑠
(ℓ,𝑣)

∶ Σ𝑐 ∪ 𝜆  [0,1]

𝑅ℓ𝑅ℓ



Learned Strategies

ATVA 2014, November 4, 2014 Kim Larsen [42]

More plots of runs according to strategies learne.

Covariance Matrices

𝝀

a

b



Learned Strategies
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More plots of runs according to strategies learne. 𝝀

a

b

Covariance Matrices



Learned Strategies
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More plots of runs according to strategies learne. 𝝀

a

b

Covariance Matrices



Learned Strategies
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More plots of runs according to strategies learne. 𝝀

a

b

Covariance Matrices



Learned Strategies
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More plots of runs according to strategies learne. 𝝀

a

b

Covariance Matrices



Learned Strategies

ATVA 2014, November 4, 2014 Kim Larsen [47]

More plots of runs according to strategies learne. 𝝀

a

b

Covariance Matrices



G
Timed Game

σ
Strategy

P
Stochastic 

Priced
Timed Game

P|σ

φ

synthesis

abstraction

σ°
optimized
Strategy

G|σ
Timed Automata

P|σ°
Stochastic Priced 
Timed Automata

minE(cost)

maxE(gain)

Uppaal TIGA
strategy NS = control: A<> goal
strategy NS = control: A[] safe

Statistical Learning

strategy DS = minE (cost) [<=10]: <> done under NS
strategy DS = maxE (gain) [<=10]: <> done under NS

Uppaal
E<> error under NS
A[] safe under NS

Uppaal SMC
simulate 5 [<=10]{e1, e2} under SS 
Pr[<=10](<> error) under SS 
E[<=10;100](max: cost) under SS



Going to Sydney – in 1 hour
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0.9

0.9

0.1

0.1

U[42,45]

U[0,35]

U[0,20]

U[0,140]

Can I get to Sidney? 
(1-player)

Will I always come to Sidney?
(1-player)

What is the optimal WC strategy?
(2-player)

Is there a strategy guaranteeing 
WC <= 60?
(2-player)

What is the optimal strategy?
(1½-player)

What is the optimal strategy
Guarenteeing WC <= 60?
(1½-player)



DEMO



Safe and Optimal Train Gate
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DEMO



Safe & Adaptive Cruice Control
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Q1: Find a safety strategy for Ego such no crash will ever
occur no matter what Front is doing.

Q2: Find the most permissive strategy ensuring safety
Q3: Find the optimal sub-strategy that will allow Ego to go 

as far as possible (without overtaking).

EGO FRONT



Discretization
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Discrete

Continuous



Ego
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Front
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No Strategy
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Safety Strategy
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Safety Strategy
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Optimal and Safe Strategy
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Other Case Studies

FIREWIRE BLUETOOTH 10 node LMAC

Battery

Scheduling

Kim Larsen [61]EMSIG Autumn School 2015

Energy Aware

Buildings

Genetic Oscilator

(HBS)

Passenger

Seating in

Aircraft

Schedulability

Analysis for

Mix Cr Sys

Smart Grid

Demand /

Response



Floorheating
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Thursday Afternoon
Daniel Lux, Seluxit
Marco Muniz, AAU
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LASSO
Learning, Analysis, SynthesiS and Optimization

of Cyber-Physical Systems

 1   

𝜇1 𝜇𝑛

Safety Constraints

Perf. Measures

Model of

Physical Comp.
Model of

Cyber Comp.

Unknown

Known

Learning

Analysis

Synthesize

Optimize

Fig 1. The LASSO Framework

Contact:  kgl@cs.aau.dkEMSIG Autumn School 2015 64



Applications



Case Studies: Controllers

 Memory Arbiter Synthesis and Verification for a 
Radar Memory Interface Card, 2005

 Analyzing a χ model of a turntable system using 
Spin, CADP and Uppaal, 2006 

 Designing, Modelling and Verifying a Container 
Terminal System Using UPPAAL, 2008

 Model-based system analysis using Chi and 
Uppaal: An industrial case study, 2008

 Climate Controller for Pig Stables, 2008 (synth)

 Optimal and Robust Controller for Hydralic
Pump, 2009 (synth)

EMSIG Autumn School 2015 Kim Larsen 
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Case Studies: Protocols

 Analysis of a protocol for dynamic configuration of 
IPv4 link local addresses using Uppaal, 2006

 Formalizing SHIM6, a Proposed Internet Standard 
in UPPAAL, 2007

 Verifying the distributed real-time network 
protocol RTnet using Uppaal, 2007

 Analysis of the Zeroconf protocol using UPPAAL, 
2009

 Analysis of a Clock Synchronization Protocol for 
Wireless Sensor Networks, 2009

 Model Checking the FlexRay Physical Layer 
Protocol, 2010
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Using UPPAAL as Back-end

 Timed automata translator from Uppaal to 
PVS

 Component-Based Design and Analysis of 
Embedded Systems with UPPAAL PORT, 
2008

 METAMOC: Modular WCET Analysis Using 
UPPAAL, 2010. 

 TetaSARTS: a tool for modular timing 
analysis of safety critical Java systems, 
2013
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www.uppaal.org
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www.uppaal.{org,com}
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THANKS !


